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1 Abstract
Many of the most successful modern (i.e., “deep”) off-policy algorithms use some variant of experience replay, but
the authors claim that this only works when the data in the buffer is correlated with the data induced by the current
agent’s policy. This does not work if there is what the authors define as extrapolation error, which is when there is a
mismatch between the two datasets, since with function approximation, unseen state-action pairs (s, a) might be more
or less attractive than seen pairs and get terrible reward from environment.

Though experience replay is actually designed to break correlation among samples, the most recent information is
put into the buffer, bumping older stuff out. By definition, that means some of the data in the experience replay is
correlated with the agent’s policy. To address such problems, the author introduces about restricting the actions so that
we keep funneling the agent towards the high-quality states in the batch.

We introduce a novel class of off-policy algorithms, batch-constrained reinforcement learning, which restricts
the action space in order to force the agent towards behaving close to on-policy with respect to a subset of the
given data = We want the set of states the agent experiences to be similar to the set of stated from the batch.

2 Idea
Idea of Batch Constrained Deep Q-learning (BCQ) performs general Q-learning, but considers one of such partial
methods in the phase of calculating maximum values for Q (usually maxa′ Q (s′, a′) by bellman equation).

1. A method to consider only a′ of (s′, a′) that appeared "in real" in batch data, without obtaining maximum values
for all possible actions.

2. A method to remove behaviors that are not well-selected by behavior policy πb (the policy that generates static
data in off-policy setting)

A summary of the paper’s theory is that batch-constrained learning still converges to an optimal policy for deterministic
MDPs. Much of the theory involves redefining or inducing a new MDP based on the batch, and then deferring to
standard Q-learning theory.

3 Method
Their first foray is to try and redefine the Bellman operator in finite, discrete MDPs in the context of reducing extrapo-
lation error so that the induced policy will visit the state-action pairs that more closely correspond with the distribution
of state-action pairs from the batch.
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A summary of the paper’s theory is that batch-constrained learning still converges to an optimal policy for determin-
istic MDPs. Much of the theory involves redefining or inducing a new MDP based on the batch, and then deferring to
standard Q-learning theory.

The paper claims that normal Q-learning on the batch of data will result in an optimal value function for an alternative
MDP, MB, based on the batch B. A related and important definition is the tabular extraploation error εMDP, defined
as discrepancy between the value function computed with the batch versus the value function computed with the true
MDP M :

εMDP(s, a) = Qπ(s, a)−QπB(s, a)

For any policy π, the exact form of εMDP(s, a) can be computed through a Bellman-like equation:

εMDP(s, a) =
∑
s′

(pM (s′ | s, a)− pB (s′ | s, a))(
r (s, a, s′) + γ

∑
a′

π (a′ | s′)QπB (s′, a′)

)
+ pM (s′ | s, a) γ

∑
a′

π (a′ | s′) εMDP (s′, a′)

it’s simpler to write as:

επMDP =
∑
s

µπ(s)
∑
a

π(a | s) |εMDP(s, a)|

By using the above, they are able to derive a new algorithm: Batch-Constrained Q-learning (BCQL) which restricts
the possible actions to be in the batch:

Q(s, a)← (1− α)Q(s, a) + α
(
r + γ

{
a′ s.t. (s′,a′)∈BQ (s′, a′)

})
4 Practical Algorithm for high-dimensional, continuous control
Batch-Constrained deep Q-learning (BCQ) utilizes four parameterized networks.

1. A Generative model Gω(s) which, given the state as input, produces an action. Using a generative model this
way assumes we pick actions using:

argmax
a

PGB (a | s)

or in other words, the most likely action given the state, with respect to the data in the batch. This is diffi-
cult to model in high dimensional continuous control environments, so they approximate it with a variational
autoencoder. This is trained along with the policy parameters during each for loop iteration.

2. A Perturbation model ξφ(s, a,Φ) which aims to "optimally perturb" the actions, so that they don’t need to
sample too much from Gω(s). The perturbation applies noise in [−Φ,Φ]. It is updated via a deterministic policy
gradient rule:

φ← argmax
φ

∑
(s,a)∈B

Qθ (s, a+ ξφ(s, a,Φ))

The above is a maximization problem over a sum of Q-function terms. The Q-function is differentiable as we
parameterize it with a deep neural network, and stochastic gradient descent methods will work with stochastic
inputs.
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3. Two Q-networks Qθ1(s, a) and Qθ2(s, a), to help push their policy to select actions that lead to "more certain
data." This is based Twin-Delayed DDPG (TD3) algorithm.

All networks other than the generative model also consist of target networks, following standard DDPG practices.

All together, their algorithm uses this policy:

π(s) = argmax
ai+ξφ(s,ai,Φ)

Qθ (s, ai + ξφ (s, ai,Φ)) {ai ∼ Gω(s)}ni=1

To be clear, they approximate this maximization by sampling n actions each time step, and picking the best one. The
perturbation model increases the diversity of the sampled actions.

Figure 1: Alogorithm of BCQ
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