
Qraft Technolongies (AXE)

CQL, COMBO

RL Research

1 CQL: Conservative Q-learning (2020)

1.1 Introduction
• Overestimation of values induced by distribution shift (mismatching between training dataset and learned policy)

is challenges of offline rl

• Offline Rl needs to answer counterfactual predictions about unseen outcomes without exploration (answering
’what if’ questions)

• However, counterfactual predictions for decisions that deviate too much from the behavior in the dataset cannot
be made reliably.

• For example Q-learning queries the Q-function at out-of-distribution inputs for computing the bootstrapping
target during training.

1.2 Various Method to solve distribution shift
Since we suffer from the curse of distribution shift, a strategy is to be pessimistic with respect to distribution shift
(can’t do much more than that)

1. Approach 1: Constrain the policy to be close to the behavior policy (policy constraint)

φ := arg maxφ Es∼D,a∼πφ(·|s) [Qθ(s,a)]− αD (πφ, πβ) or − αD (dπφ(s,a), dπβ (s,a))

D (πφ(a | s), πβ(a | s)) ≤ ε

• BCQ: D=KL

• BEAR: D=MMD

• BRAC: D=KL/MMD/Wasserstein

1



2. Approach 2: Directly Modify Q-function to be pessimistic(CQL)

• Key Idea behind of CQL: Learn lower bounds on Q-values

• Offline RL via Lower-Bounded Value Function

1.3 Method of CQL
1. Conservative Off-Policy Evaluation, finding Q̂π

(a) Make lower bound for Q̂π ≤ Qπ

Q̂k+1 ← arg min
Q

αEs∼D,a∼µ(a|s)[Q(s,a)]︸ ︷︷ ︸
Minimize large Q-values

+
1

2
Es,a∼D

[(
Q(s,a)− B̂πQ̂k(s,a)

)2]
︸ ︷︷ ︸

Standard Bellman Error

(b) Improve bound for V̂ π(s) := Eπ(·|s)
[
Q̂π(s,a)

]
≤ V π(s)

Q̂k+1 ← arg min
Q

α ·
(
Es∼D,a∼µ(a|s)[Q(s,a)] −Es∼D,a∼π̂β(a|s)[Q(s,a)]

)
+

1

2
Es,a,s′∼D

[(
Q(s,a)− B̂πQ̂k(s,a)

)2]
.

(c) Trains the Q-function using the following objective

2. Conservative Q-learning for offline Rl utilize conservative Q-function

Since the policy π̂k is typically derived from the Q-function, we could instead choose µ(a | s) to approximate
the policy that would maximize the current Q-function iterate, thus giving rise to an online algorithm.

2



• Variants of CQL

(a) R = H(µ)

αEs∼D

[
log
∑
a

exp(Q(s,a))− Ea∼π̂β(a|s)[Q(s,a)]

]
(b) R(µ) = −DKL(µ, ρ)

αEs∼dπβ (s)

[
Ea∼ρ(a|s)

[
Q(s,a)

exp(Q(s,a))

Z

]
− Ea∼πβ(a|s)[Q(s,a)]

]
(c) R(µ) = Df (µ, P̂ )

αEs∼dπβ(s)

√varP̂ (a|s)(Q(s,a))

dπβ (s)|D|


1.4 Advantage

• Since the regularizer can be estimated using samples in the dataset, and so there is no need for explicit
behavior policy estimation, CQL can use dataset where tha data is collected from multiple behavior policy
which is impossible for previous works (BCQ, BEAR, BRAC)

• The only change introduced in CQL is a modified training objective for the Q-function as highlighted
above. This makes it simple to use CQL directly on top of any standard deep Q-learning or actor-critic
implementations.

• Once a conservative estimate of the policy value QπCQL is obtained, CQL simply plugs this estimate into
an actor-critic or Q-learning method, as shown above, and updates π towards maximizing the conservative
Q-function.

3



1.5 Algorithm
• Algorithms can use the CQL(H) (or CQL(R) in general ) objective from the CQL framework for training the
Q -function Qθ

• The actor-critic algorithm, a policy πφ is trained as well. The algorithm modifies the objective for the Q-function
(swaps out Bellman error with CQL(H)) or CQL(ρ) in a standard actor-critic or Q-learning setting.

2 COMBO: Conservative Offline Model-Based Policy Optimization (2021)

2.1 Goal
1. The principal challenge in practice with prior offline model-based algorithms is the strong reliance on uncer-

tainty quantification, which can be chalenging for complex datasets or deep neural network models

2. Develop a model-based offline RL algorithm that enables optimizing a lower bound on the policy performance,
but without requiring uncertainty quantification.

3. Achieve this by extending conservative Q-learning, which does not require explicit uncertainty quantification,
into the model-based setting.

4. COMBO employs an actor-critic method where the value function is learned using both the offline dataset as
well as synthetically generated data from the model

2.2 Preliminaries
• dπM(s) := (1− γ)

∑∞
t=0 γ

tP (st = s | π) = discounted state visitation distribution of a policy π

• dπ
M̂

(s) = the discounted marginal state distribution when executing π in the learned model M̂.

• P (st = s | π) = the probability of reaching state s at time t by rolling out π inM.

• dπM(s,a) := dπM(s)π(a | s) = the state-action visitation distribution

4



• the dataset D is sampled from dπβ (s,a) := dπβ (s)πβ(a | s).

• d(s,a) = sampled-based version of dπβ (s,a)

• Model-Free (Including CQL)

To capture the the long term behavior of a policy without a model, we define the action value function as

Qπ(s,a) := E

[ ∞∑
t=0

γtr (st,at) | s0 = s,a0 = a

]
where future actions are sampled from π(· | s) and state transitions happen according to the MDP dynamics.
Consider the following Bellman operator:

B̂πQ(s,a) := r(s,a) + γQ (s′,a′)

– Policy Evaluation : The Q function associated with the current policy π is approximated conservatively
by repeating the following optimization:

Qk+1 ← arg min
Q

β
(
Es∼D,a∼µ(·|s)[Q(s,a)]− Es,a∼D[Q(s,a)]

)
+

1

2
Es,a,s′∼D

[(
Q(s,a)− B̂πQk(s,a)

))2]
where µ(· | s) is a wide sampling distribution such as the uniform distribution over action bounds. CQL
effectively penalizes the Q function at states in the dataset for actions not observed in the dataset. This
enables a conservative estimation of the value function for any policy, mitigating the challenges of over-
estimation bias and distribution shift.

– Policy Improvement: After approximating the Q function as Q^π, the policy is improved as

π ← arg max
π′

Es∼D,a∼π′(·|s)

[
Q̂π(s,a)

]
• Model-Based (Concentrating MBPO)

MBPO follows the standard structure of actor-critic algorithms, but in each iteration uses an augmented dataset
D ∪ Dmodel for policy evaluation. Here, D is the offline dataset and Dmodel is a dataset obtained by simulating
the current policy using the learned dynamics model. Specifically, at each iteration, MBPO performs k -step
rollouts using T̂ starting from state s ∈ D with a particular rollout policy µ(a | s), adds the model-generated
data to Dmodel , and optimizes the policy with a batch of data sampled from D ∪Dmodel where each datapoint in
the batch is drawn from D with probability f ∈ [0, 1] and Dmodel with probability 1− f .

2.3 Algorithm
1. Conservative Policy Evaluation to obtain a conservative estimate of Qπ

Penalize the Q-values(Using CQL) by repeating the following recursion:

Q̂k+1 ← arg min
Q

β
(
Es,a∼ρ(s,a)[Q(s,a)]− Es,a∼D[Q(s,a)]

)
+

1

2
Es,a,s′∼df

[(
Q(s,a)− B̂πQ̂k(s,a)

))2]

5



Penalize the Q-values evaluated on data drawn from a particular state-action distribution that is more likely to
be out-of-support while pushing up the Q-values on state-action pairs that are trustworthy.

Choosing sampling distribution between ρ(s,a) and df

Model-based algorithms allow ample flexibility for these choices while providing the ability to control the
bias introduced by these choices.

(a) For ρ(s,a) we make the following:

ρ(s,a) = dπM̂(s)π(a | s)

(b) For df := dµf , we make the following equation using f -interpolation between the offline dataset and
synthetic rollouts from the model:

dµf (s,a) := fd(s,a) + (1− f)dµ
M̂

(s,a)

Under such choices of ρ and df , we push down (or conservatively estimate) Q-values on state-action tuples
from model rollouts and push up Q-values on the real state-action pairs from the offline dataset. When updating
Q-values with the Bellman backup, we use a mixture of both the model generated data and the real data, similar
to Dyna. Note that in comparison to CQL and other model-free algorithms, COMBO learns the Q-function over
a richer set of states beyond the states in the offline dataset. This is made possible by performing rollouts under
the learned dynamics model, denoted by dµ

M̂
(s,a).

2. Policy Improvement Using a conservative Critic :After learning a conservative critic Q̂π , we improve the
policy as:

π′ ← arg max
π

Es∼ρ,a∼π(·|s)

[
Q̂π(s,a)

]
where ρ(s) is the state marginal of ρ(s,a). When policies are parameterized with neural networks, we approx-
imate the arg max with a few steps of gradient descent. In addition, entropy regularization can also be used to
prevent the policy from becoming degenerate if required

6



3. Practical Implementation Details.

• Our practical implementation largely follows MOPO, with the key exception that we perform conservative
policy evaluation as outlined in this section, rather than using uncertainty-based reward penalties.

• Following MOPO, we represent the probabilistic dynamics model using a neural network, with parameters
θ, that produces a Gaussian distribution over the next state and reward:

T̂θ (st+1, r | s,a) = N (µθ (st,at) ,Σθ (st,at))

• The model is trained via maximum likelihood. We set the ratio f = 0.5 to have an equal split between
model rollouts and data from the offline dataset.

2.4 Conclusion
• COMBO removes the need of uncertainty quantification as widely used in previous model-based offline RL

works which can be challenging and un- reliable with deep neural networks

• COMBO achieves a tighter lower-bound on the true policy value compared to prior model-free offline RL
methods and guarantees a safe policy improvement.

• COMBO achieves the best generalization performances in 3 tasks that require adaptation to unseen behaviors.

7


