Skip to content
master
Go to file
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md


Random Graph Generator

PyPI version Codecov built with Python3


Table of contents

Overview

Pyrgg is an easy-to-use synthetic random graph generator written in Python which supports various graph file formats including DIMACS .gr files. Pyrgg has the ability to generate graphs of different sizes and is designed to provide input files for broad range of graph-based research applications, including but not limited to testing, benchmarking and performance-analysis of graph processing frameworks. Pyrgg target audiences are computer scientists who study graph algorithms and graph processing frameworks.

Open Hub
PyPI Counter
Github Stars
Branch master dev
Travis
AppVeyor
Code Quality CodeFactor

Installation

Source Code

  • Download Version 0.9 or Latest Source
  • pip install -r requirements.txt or pip3 install -r requirements.txt (Need root access)
  • python3 setup.py install or python setup.py install (Need root access)

PyPI

Conda

Exe Version (Only Windows)

System Requirements

Pyrgg will likely run on a modern dual core PC. Typical configuration is:

  • Dual Core CPU (2.0 Ghz+)
  • 4GB of RAM

Note that it may run on lower end equipment though good performance is not guaranteed.

Usage

Issues & Bug Reports

Just fill an issue and describe it. I'll check it ASAP! or send an email to info@pyrgg.ir.

TODO

  • Formats
    • DIMACS
    • JSON
    • YAML
    • Pickle
    • CSV
    • TSV
    • WEL
    • ASP
    • TGF
    • UCINET DL
    • GML
    • GDF
    • Matrix Market
    • Graph Line
    • GEXF
  • Sizes
    • Small
    • Medium
    • Large
  • Weighted Graph
    • Signed Weights
  • Unweighted Graph
  • Dense Graph
  • Sparse Graph
  • Directed Graph
  • Self loop
  • Parallel Arc
  • Multithreading
  • GUI
  • Erdős–Rényi model
  • Tree

Sample Files

Example Of Usage

  • Generate synthetic data for graph processing frameworks (some of them mentioned here) performance-analysis

Fig. 1. Rand Graph Generation

  • Generate synthetic data for graph benchmark suite like GAP

Supported Formats

  • DIMACS(.gr)

     	p sp <number of vertices> <number of edges>
     	a <head_1> <tail_1> <weight_1>
    
     	.
     	.
     	.
     	
     	a <head_n> <tail_n> <weight_n>
    
  • CSV(.csv)

     	<head_1>,<tail_1>,<weight_1>
    
     	.
     	.
     	.
     	
     	<head_n>,<tail_n>,<weight_n>
    
  • TSV(.tsv)

     	<head_1>	<tail_1>	<weight_1>
    
     	.
     	.
     	.
     	
     	<head_n>	<tail_n>	<weight_n>
    
  • JSON(.json)

     	{
     	"graph": {
     			"nodes":[
     			{
     				"id": "1"
     			},
    
     			.
     			.
     			.
     			{
     				"id": "n"
     			}
     			],
     			"edges":[
     			{
     				"source": "head_1",
     				"target": "tail_1",
     				"weight": "weight_1"
     			},
    
     			.
     			.
     			.
    
     			{
     				"source": "head_n",
     				"target": "tail_n",
     				"weight": "weight_n"
     			},
     			]
     		}
     	}
    
  • YAML(.yaml)

     	graph:
     		edges:
     		- source: "head_1"
     	  	target: "tail_1"
     	  	weight: "weight_1"
     	
     		.
     		.
     		.
    
     		- source: "head_n"
     	  	target: "tail_n"
     	  	weight: "weight_n"
     					
     		nodes:
     		- id: '1'
    
     		.
     		.
     		.
    
     		- id: 'n'
    
    
  • Weighted Edge List(.wel)

     	<head_1> <tail_1> <weight_1>
     	
     	.
     	.
     	.
     	
     	<head_n> <tail_n> <weight_n>	
    
  • ASP(.lp)

     	node(1).
     	.
     	.
     	.
     	node(n).
     	edge(head_1,tail_1,weight_1).
     	.
     	.
     	.
     	edge(head_n,tail_n,weight_n).
    
  • Trivial_Graph_Format(.tgf)

     	1
     	.
     	.
     	.
     	n
     	#
     	1 2 weight_1
     	.
     	.
     	.
     	n k weight_n
    
  • UCINET DL Format(.dl)

     	dl
     	format=edgelist1
     	n=<number of vertices>
     	data:
     	1 2 weight_1
     	.
     	.
     	.
     	n k weight_n	
    
  • Matrix Market(.mtx)

        %%MatrixMarket matrix coordinate real general
        <number of vertices>  <number of vertices>  <number of edges>
        <head_1>    <tail_1>    <weight_1> 
        .
        .
        .
        <head_n>    <tail_n>    <weight_n> 
    
  • Graph Line(.gl)

        <head_1> <tail_1>:<weight_1> <tail_2>:<weight_2>  ... <tail_n>:<weight_n>
        <head_2> <tail_1>:<weight_1> <tail_2>:<weight_2>  ... <tail_n>:<weight_n>
        .
        .
        .
        <head_n> <tail_1>:<weight_1> <tail_2>:<weight_2>  ... <tail_n>:<weight_n>
    
  • GDF(.gdf)

        nodedef>name VARCHAR,label VARCHAR
        node_1,node_1_label
        node_2,node_2_label
        .
        .
        .
        node_n,node_n_label
        edgedef>node1 VARCHAR,node2 VARCHAR, weight DOUBLE
        node_1,node_2,weight_1
        node_1,node_3,weight_2
        .
        .
        .
        node_n,node_2,weight_n 
    
  • GML(.gml)

        graph
        [
          multigraph 0
          directed  0
          node
          [
           id 1
           label "Node 1"
          ]
          node
          [
           id 2
           label "Node 2"
          ]
          .
          .
          .
          node
          [
           id n
           label "Node n"
          ]
          edge
          [
           source 1
           target 2
           value W1
          ]
          edge
          [
           source 2
           target 4
           value W2
          ]
          .
          .
          .
          edge
          [
           source n
           target r
           value Wn
          ]
        ]
    
  • GEXF(.gexf)

        <?xml version="1.0" encoding="UTF-8"?>
        <gexf xmlns="http://www.gexf.net/1.2draft" version="1.2">
            <meta lastmodifieddate="2009-03-20">
                <creator>PyRGG</creator>
                <description>File Name</description>
            </meta>
            <graph defaultedgetype="directed">
                <nodes>
                    <node id="1" label="Node 1" />
                    <node id="2" label="Node 2" />
                    ...
                </nodes>
                <edges>
                    <edge id="1" source="1" target="2" weight="400" />
                    ...
                </edges>
            </graph>
        </gexf>
    
  • Pickle(.p) (Binary Format)

Similar Works

Dependencies

master dev
Requirements Status Requirements Status

Citing

If you use pyrgg in your research, please cite the JOSS paper ;-)

@article{Haghighi2017,
  doi = {10.21105/joss.00331},
  url = {https://doi.org/10.21105/joss.00331},
  year  = {2017},
  month = {sep},
  publisher = {The Open Journal},
  volume = {2},
  number = {17},
  author = {Sepand Haghighi},
  title = {Pyrgg: Python Random Graph Generator},
  journal = {The Journal of Open Source Software}
}
JOSS
Zenodo DOI

License

References

DIMACS

Donate to our project

Bitcoin :

1XGr9qbZjBpUQJJSB6WtgBQbDTgrhPLPA

Payping (For Iranian citizens) :

You can’t perform that action at this time.