Table of Contents
- Overview
- Installation
- Usage
- Supported Formats
- Example of Usage
- Similar Works
- Issues & Bug Reports
- Contribution
- References
- Citing
- Authors
- License
- Show Your Support
- Todo
- Changelog
- Code of Conduct
Overview
Pyrgg is an easy-to-use synthetic random graph generator written in Python which supports various graph file formats including DIMACS .gr files. Pyrgg has the ability to generate graphs of different sizes and is designed to provide input files for broad range of graph-based research applications, including but not limited to testing, benchmarking and performance-analysis of graph processing frameworks. Pyrgg target audiences are computer scientists who study graph algorithms and graph processing frameworks.
Open Hub | |
PyPI Counter | |
Github Stars |
Branch | master | dev |
CI |
Code Quality |
Installation
PyPI
- Check Python Packaging User Guide
pip install pyrgg==1.4
(Need root access)
Source Code
- Download Version 1.4 or Latest Source
pip install .
(Need root access)
Conda
- Check Conda Managing Package
conda install -c sepandhaghighi pyrgg
(Need root access)
Exe Version (Only Windows)
- Download Exe-Version 1.4
- Run
PYRGG-1.4.exe
System Requirements
Pyrgg will likely run on a modern dual core PC. Typical configuration is:
- Dual Core CPU (2.0 Ghz+)
- 4GB of RAM
Note that it may run on lower end equipment though good performance is not guaranteed.
Usage
- Open
CMD
(Windows) orTerminal
(UNIX) - Run
pyrgg
orpython -m pyrgg
(or runPYRGG.exe
) - Enter data
Supported Formats
-
p sp <number of vertices> <number of edges> a <head_1> <tail_1> <weight_1> . . . a <head_n> <tail_n> <weight_n>
-
<head_1>,<tail_1>,<weight_1> . . . <head_n>,<tail_n>,<weight_n>
-
<head_1> <tail_1> <weight_1> . . . <head_n> <tail_n> <weight_n>
-
{ "properties": { "directed": true, "signed": true, "multigraph": true, "weighted": true, "self_loop": true }, "graph": { "nodes":[ { "id": 1 }, . . . { "id": n } ], "edges":[ { "source": head_1, "target": tail_1, "weight": weight_1 }, . . . { "source": head_n, "target": tail_n, "weight": weight_n } ] } }
-
graph: edges: - source: head_1 target: tail_1 weight: weight_1 . . . - source: head_n target: tail_n weight: weight_n nodes: - id: 1 . . . - id: n properties: directed: true multigraph: true self_loop: true signed: true weighted: true
-
<head_1> <tail_1> <weight_1> . . . <head_n> <tail_n> <weight_n>
-
node(1). . . . node(n). edge(head_1,tail_1,weight_1). . . . edge(head_n,tail_n,weight_n).
-
1 . . . n # 1 2 weight_1 . . . n k weight_n
-
dl format=edgelist1 n=<number of vertices> data: 1 2 weight_1 . . . n k weight_n
-
%%MatrixMarket matrix coordinate real general <number of vertices> <number of vertices> <number of edges> <head_1> <tail_1> <weight_1> . . . <head_n> <tail_n> <weight_n>
-
Graph Line(.gl)
<head_1> <tail_1>:<weight_1> <tail_2>:<weight_2> ... <tail_n>:<weight_n> <head_2> <tail_1>:<weight_1> <tail_2>:<weight_2> ... <tail_n>:<weight_n> . . . <head_n> <tail_1>:<weight_1> <tail_2>:<weight_2> ... <tail_n>:<weight_n>
-
GDF(.gdf)
nodedef>name VARCHAR,label VARCHAR node_1,node_1_label node_2,node_2_label . . . node_n,node_n_label edgedef>node1 VARCHAR,node2 VARCHAR, weight DOUBLE node_1,node_2,weight_1 node_1,node_3,weight_2 . . . node_n,node_2,weight_n
-
graph [ multigraph 0 directed 0 node [ id 1 label "Node 1" ] node [ id 2 label "Node 2" ] . . . node [ id n label "Node n" ] edge [ source 1 target 2 value W1 ] edge [ source 2 target 4 value W2 ] . . . edge [ source n target r value Wn ] ]
-
<?xml version="1.0" encoding="UTF-8"?> <gexf xmlns="http://www.gexf.net/1.2draft" version="1.2"> <meta lastmodifieddate="2009-03-20"> <creator>PyRGG</creator> <description>File Name</description> </meta> <graph defaultedgetype="directed"> <nodes> <node id="1" label="Node 1" /> <node id="2" label="Node 2" /> ... </nodes> <edges> <edge id="1" source="1" target="2" weight="400" /> ... </edges> </graph> </gexf>
-
graph example { node1 -- node2 [weight=W1]; node3 -- node4 [weight=W2]; node1 -- node3 [weight=W3]; . . . }
- Sample 1 (100 Vertices , 11KB)
- Sample 2 (1000 Vertices , 106KB)
- Online Visualization
-
Pickle(.p) (Binary Format)
Example of Usage
- Generate synthetic data for graph processing frameworks (some of them mentioned here) performance-analysis
- Generate synthetic data for graph benchmark suite like GAP
Similar Works
- Random Modular Network Generator Generates random graphs with tunable strength of community structure
- randomGraph very simple random graph generator in MATLAB
- Graph1 Random Graph Generator with Max capacity paths (C++)
Issues & Bug Reports
Just fill an issue and describe it. We'll check it ASAP! or send an email to info@pyrgg.ir.
You can also join our discord server
Citing
If you use pyrgg in your research, please cite the JOSS paper ;-)
@article{Haghighi2017, doi = {10.21105/joss.00331}, url = {https://doi.org/10.21105/joss.00331}, year = {2017}, month = {sep}, publisher = {The Open Journal}, volume = {2}, number = {17}, author = {Sepand Haghighi}, title = {Pyrgg: Python Random Graph Generator}, journal = {The Journal of Open Source Software} }
JOSS | |
Zenodo |
References
1- 9th DIMACS Implementation Challenge - Shortest Paths
2- Problem Based Benchmark Suite
3- MaximalClique - ASP Competition 2013
4- Pitas, Ioannis, ed. Graph-based social media analysis. Vol. 39. CRC Press, 2016.
5- Roughan, Matthew, and Jonathan Tuke. "The hitchhikers guide to sharing graph data." 2015 3rd International Conference on Future Internet of Things and Cloud. IEEE, 2015.
6- Borgatti, Stephen P., Martin G. Everett, and Linton C. Freeman. "Ucinet for Windows: Software for social network analysis." Harvard, MA: analytic technologies 6 (2002).
7- Matrix Market: File Formats
8- Social Network Visualizer
9- Adar, Eytan. "GUESS: a language and interface for graph exploration." Proceedings of the SIGCHI conference on Human Factors in computing systems. 2006.
10- Skiena, Steven S. The algorithm design manual. Springer International Publishing, 2020.
11- Chakrabarti, Deepayan, Yiping Zhan, and Christos Faloutsos. "R-MAT: A recursive model for graph mining." Proceedings of the 2004 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2004.
12- Zhong, Jianlong, and Bingsheng He. "An overview of medusa: simplified graph processing on gpus." ACM SIGPLAN Notices 47.8 (2012): 283-284.
13- Ellson, John, et al. "Graphviz and dynagraph—static and dynamic graph drawing tools." Graph drawing software. Springer, Berlin, Heidelberg, 2004. 127-148.
- Logo designed by Zahra Mobasher
Show Your Support
Star This Repo
Give a ⭐️ if this project helped you!