
SSccrreeeenn UUppddaattiinngg aanndd CCuurrssoorr MMoovveemmeenntt OOppttiimmiizzaattiioonn::
AA LLiibbrraarryy PPaacckkaaggee

Kenneth C. R. C. Arnold
Elan Amir

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACTABSTRACT

This document describes a package of C library functions which allow the user to:

g update a screen with reasonable optimization,

g get input from the terminal in a screen-oriented fashion, and

g independent from the above, move the cursor optimally from one point to another.

These routines all use the tteerrmmccaapp(5) database to describe the capabilities of the terminal.

AAcckknnoowwlleeddggeemmeennttss

This package would not exist without the work of Bill Joy, who, in writing his editor, created the
capability to generally describe terminals, wrote the routines which read this database, and, most impor-
tantly, those which implement optimal cursor movement, which routines I have simply lifted nearly intact.
Doug Merritt and Kurt Shoens also were extremely important, as were both willing to waste time listening
to me rant and rave. The help and/or support of Ken Abrams, Alan Char, Mark Horton, and Joe Kalash,
was, and is, also greatly appreciated. Ken Arnold 16 April 1986

The help and/or support of Kirk McKusick and Keith Bostic (public vi!) was invaluable in bringing
the package ‘‘into the 90’s’’, which now includes completely new data structures and screen refresh optim-
ization routines. Elan Amir 29 December 1992

SSccrreeeenn PPaacckkaaggee PPSS11::1199--33

11.. OOvveerrvviieeww

In making available the generalized terminal descriptions in tteerrmmccaapp(5), much information was
made available to the programmer, but little work was taken out of one’s hands. The purpose of this pack-
age is to allow the C programmer to do the most common type of terminal dependent functions, those of
movement optimization and optimal screen updating, without doing any of the dirty work, and with nearly
as much ease as is necessary to simply print or read things.

11..11.. TTeerrmmiinnoollooggyy

In this document, the following terminology is used:

wwiinnddooww: An internal representation containing an image of what a section of the terminal screen may look
like at some point in time. This subsection can either encompass the entire terminal screen, or any
smaller portion down to a single character within that screen.

tteerrmmiinnaall: Sometimes called tteerrmmiinnaall ssccrreeeenn. The package’s idea of what the terminal’s screen currently
looks like, i.e., what the user sees now. This is a special screen:

ssccrreeeenn: This is a subset of windows which are as large as the terminal screen, i.e., they start at the upper
left hand corner and encompass the lower right hand corner. One of these, stdscr, is automatically
provided for the programmer.

11..22.. CCoommppiilliinngg AApppplliiccaattiioonnss

In order to use the library, it is necessary to have certain types and variables defined. Therefore, the
programmer must have a line:

##iinncclluuddee <<ccuurrsseess..hh>>

at the top of the program source. Compilations should have the following form:

cccc [flags] file ... −−llccuurrsseess −−lltteerrmmccaapp

11..33.. SSccrreeeenn UUppddaattiinngg

In order to update the screen optimally, it is necessary for the routines to know what the screen
currently looks like and what the programmer wants it to look like next. For this purpose, a data type
(structure) named WINDOW is defined which describes a window image to the routines, including its start-
ing position on the screen (the (y, x) co-ordinates of the upper left hand corner) and its size. One of these
(called curscr for current screen) is a screen image of what the terminal currently looks like. Another
screen (called stdscr, for standard screen) is provided by default to make changes on.

A window is a purely internal representation. It is used to build and store a potential image of a por-
tion of the terminal. It doesn’t bear any necessary relation to what is really on the terminal screen. It is
more like an array of characters on which to make changes.

When one has a window which describes what some part the terminal should look like, the routine
refresh() (or wrefresh() if the window is not stdscr) is called. Refresh() makes the terminal, in
the area covered by the window, look like that window. Note, therefore, that changing something on a
window does notnot change the terminal. Actual updates to the terminal screen are made only by calling
refresh() or wrefresh(). This allows the programmer to maintain several different ideas of what a
portion of the terminal screen should look like. Also, changes can be made to windows in any order,
without regard to motion efficiency. Then, at will, the programmer can effectively say ‘‘make it look like
this’’, and the package will execute the changes in an optimal way.

11..44.. NNaammiinngg CCoonnvveennttiioonnss

As hinted above, the routines can use several windows, but two are always available: curscr, which
is the image of what the terminal looks like at present, and stdscr, which is the image of what the program-
mer wants the terminal to look like next. The user should not access curscr directly. Changes should be
made to the appropriate screen, and then the routine refresh() (or wrefresh()) should be called.

PPSS11::1199--44 SSccrreeeenn PPaacckkaaggee

Many functions are set up to deal with stdscr as a default screen. For example, to add a character to
stdscr, one calls addch() with the desired character. If a different window is to be used, the routine
waddch() (for wwindow-specific addch()) is provided1. This convention of prepending function names
with a ‘‘ww’’ when they are to be applied to specific windows is consistent. The only routines which do not
do this are those to which a window must always be specified.

In order to move the current (y, x) co-ordinates from one point to another, the routines move() and
wmove() are provided. However, it is often desirable to first move and then perform some I/O operation.
In order to avoid clumsiness, most I/O routines can be preceded by the prefix ‘‘mmvv’’ and the desired (y, x)
co-ordinates can then be added to the arguments to the function. For example, the calls

move(y, x);
addch(ch);

can be replaced by

mvaddch(y, x, ch);

and

wmove(win, y, x);
waddch(win, ch);

can be replaced by

mvwaddch(win, y, x, ch);

Note that the window description pointer (win) comes before the added (y, x) co-ordinates. If a window
pointer is needed, it is always the first parameter passed.

22.. VVaarriiaabblleess

Many variables which are used to describe the terminal environment are available to the program-
mer. They are:

type name descriptioniii
WINDOW ∗ curscr current version of the screen (terminal screen).
WINDOW ∗ stdscr standard screen. Most updates are usually done here.
char ∗ Def−term default terminal type if type cannot be determined
bool My−term use the terminal specification in Def−term as terminal, ir-

relevant of real terminal type
char ∗ ttytype full name of the current terminal.
int LINES number of lines on the terminal
int COLS number of columns on the terminal
int ERR error flag returned by routines on a fail.
int OK flag returned by routines upon success.

33.. UUssaaggee

This is a description of how to actually use the screen package. For simplicity, we assume all updat-
ing, reading, etc. is applied to stdscr, although a different window can of course be specified.

33..11.. IInniittiiaalliizzaattiioonn

In order to use the screen package, the routines must know about terminal characteristics, and the
space for curscr and stdscr must be allocated. These functions are performed by initscr(). Since it
must allocate space for the windows, it can overflow core when attempting to do so. On this rather rare
occasion, initscr() returns ERR. Initscr() must alwaysalways be called before any of the routines which
affect windows are used. If it is not, the program will core dump as soon as either curscr or stdscr are
referenced. However, it is usually best to wait to call it until after you are sure you will need it, like after
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 Actually, addch() is really a ‘‘#define’’ macro with arguments, as are most of the "functions" which act upon stdscr.

SSccrreeeenn PPaacckkaaggee PPSS11::1199--55

checking for startup errors. Terminal status changing routines like nl() and cbreak() should be called
after initscr().

After the initial window allocation done by initscr(), specific window characteristics can be set.
Scrolling can be enabled by calling scrollok(). If you want the cursor to be left after the last change,
use leaveok(). If this isn’t done, refresh() will move the cursor to the window’s current (y, x) co-
ordinates after updating it. Additional windows can be created by using the functions newwin() and
subwin(). Delwin() allows you to delete an exisiting window. The variables LINES and COLS con-
trol the size of the terminal. They are initially implicitly set by initscr(), but can be altered explicitly
by the user followed by a call to initscr(). Note that any call to initscr(), will always delete any
existing stdscr and/or curscr before creating new ones so this change is best done before the initial call to
initscr().

33..22.. OOuuttppuutt

The basic functions used to change what will go on a window are addch() and move().
Addch() adds a character at the current (y, x) co-ordinates, returning ERR if it would cause the window to
illegally scroll, i.e., printing a character in the lower right-hand corner of a terminal which automatically
scrolls if scrolling is not allowed. Move() changes the current (y, x) co-ordinates to whatever you want
them to be. It returns ERR if you try to move off the window. As mentioned above, you can combine the
two into mvaddch() to do both things in one call.

The other output functions (such as addstr() and printw()) all call addch() to add characters
to the window.

After a change has been made to the window, you must call refresh(). when you want the por-
tion of the terminal covered by the window to reflect the change. In order to optimize finding changes,
refresh() assumes that any part of the window not changed since the last refresh() of that window
has not been changed on the terminal, i.e., that you have not refreshed a portion of the terminal with an
overlapping window. If this is not the case, the routines touchwin(), touchline(), and toucho-
verlap() are provided to make it look like a desired part of window has been changed, thus forcing
refresh() to check that whole subsection of the terminal for changes.

If you call wrefresh() with curscr, it will make the screen look like the image of curscr. This is
useful for implementing a command which would redraw the screen in case it got messed up.

33..33.. IInnppuutt

Input is essentially a mirror image of output. The complementary function to addch() is getch()
which, if echo is set, will call addch() to echo the character. Since the screen package needs to know
what is on the terminal at all times, if characters are to be echoed, the tty must be in raw or cbreak mode. If
it is not, getch() sets it to be cbreak, and then reads in the character.

33..44.. TTeerrmmiinnaattiioonn

In order to perform certain optimizations, and, on some terminals, to work at all, some things must be
done before the screen routines start up. These functions are performed in getttmode() and set-
term(), which are called by initscr(). In order to clean up after the routines, the routine endwin() is
provided. It restores tty modes to what they were when initscr() was first called. The terminal state
module uses the variable curses_termios to save the original terminal state which is then restored upon a
call to endwin(). Thus, anytime after the call to initscr, endwin() should be called before exiting.
Note however, that endwin() should always be called bbeeffoorree the final calls to delwin(), which free
the storage of the windows.

44.. CCuurrssoorr MMoovveemmeenntt OOppttiimmiizzaattiioonnss

One of the most difficult things to do properly is motion optimization. After using gettmode()
and setterm() to get the terminal descriptions, the function mvcur() deals with this task. It usage is
simple: simply tell it where you are now and where you want to go. For example

mvcur(0, 0, LINES/2, COLS/2);

PPSS11::1199--66 SSccrreeeenn PPaacckkaaggee

would move the cursor from the home position (0, 0) to the middle of the screen. If you wish to force
absolute addressing, you can use the function tgoto() from the tteerrmmlliibb(7) routines, or you can tell
mvcur() that you are impossibly far away, For example, to absolutely address the lower left hand corner of
the screen from anywhere just claim that you are in the upper right hand corner:

mvcur(0, COLS−1, LINES−1, 0);

55.. CChhaarraacctteerr OOuuttppuutt aanndd SSccrroolllliinngg

The character output policy deals with the following problems. First, where is the location of the
cursor after a character is printed, and secondly, when does the screen scroll if scrolling is enabled.

In the normal case the characters are output as expected, with the cursor occupying the position of
the next character to be output. However, when the cursor is on the last column of the line, the cursor will
remain on that position after the last character on the line is output and will only assume the position on the
next line when the next character (the first on the next line) is output.

Likewise, if scrolling is enabled, a scroll will be invoked only when the first character on he first line
past the bottom line of the window is output. If scrolling is not enabled the chracters will to be output to
the bottom right corner of the window which is the cursor location.

This policy allows consistent behavior of the cursor at the boundary conditions. Furthermore, it
prevents a scroll from happening before it is actually needed (the old package used to scroll when the bot-
tom right position was output a character). As a precendent, it models the xterm character output conven-
tions.

66.. TTeerrmmiinnaall SSttaattee HHaannddlliinngg

The variable curses_termios contains the terminal state of the terminal. Certain historical routines
return information: baudrate(), erasechar(), killchar(), and ospeed(). These routines are
obsolete and exist only for backward compatibility. If you wish to use the information in the
curses_termios structure, you should use the tsetattr(3) routines.

77.. SSuubbwwiinnddoowwss

Subwindows are windows which do not have an independent text structure, i.e., they are windows
whose text is a subset of the text of a larger window: the parent window. One consequence of this is that
changes to either the parent or the child window are destructive to the other, i.e., a change to the subwin-
dow is also a change to the parent window and a change to the parent window in the region defined by the
subwindow is implicitly a change to the subwindow as well. Apart from this detail, subwindows function
like any other window.

88.. TThhee FFuunnccttiioonnss

In the following definitions, ‘‘††’’ means that the ‘‘function’’ is really a ‘‘#define’’ macro with argu-
ments.

addch(char ch);†

Add the character ch on the window at the current (y, x) co-ordinates. If the character is a newline
(´\n´) the line will be cleared to the end, and the current (y, x) co-ordinates will be changed to the
beginning off the next line if newline mapping is on, or to the next line at the same x co-ordinate if it
is off. A return (´\r´) will move to the beginning of the line on the window. Tabs (´\t´) will be
expanded into spaces in the normal tabstop positions of every eight characters. This returns ERR if it
would cause the screen to scroll illegally.

addstr(char ∗ str);†

Add the string pointed to by str on the window at the current (y, x) co-ordinates. This returns ERR if
it would cause the screen to scroll illegally. In this case, it will put on as much as it can.

SSccrreeeenn PPaacckkaaggee PPSS11::1199--77

baudrate();†

Returns the output baud rate of the terminal. This is a system dependent constant (defined in
<<ssyyss//ttttyy..hh>> on BSD systems, which is included by <<ccuurrsseess..hh>>).

box(WINDOW win, char vert, char hor);

Draws a box around the window using vert as the character for drawing the vertical sides, and hor
for drawing the horizontal lines. If scrolling is not allowed, and the window encompasses the lower
right-hand corner of the terminal, the corners are left blank to avoid a scroll.

cbreak();†

Set or the terminal to cbreak mode.

clear();†

Resets the entire window to blanks. If win is a screen, this sets the clear flag, which will cause a
clear-screen sequence to be sent on the next refresh() call. This also moves the current (y, x)
co-ordinates to (0, 0).

clearok(WINDOW ∗ scr, int boolf);†

Sets the clear flag for the screen scr. If boolf is non-zero, this will force a clear-screen to be printed
on the next refresh(), or stop it from doing so if boolf is 0. This only works on screens, and,
unlike clear(), does not alter the contents of the screen. If scr is curscr, the next refresh() call
will cause a clear-screen, even if the window passed to refresh() is not a screen.

clrtobot();†

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This does not force a
clear-screen sequence on the next refresh under any circumstances. This has no associated ‘‘mmvv’’
command.

clrtoeol();†

Wipes the window clear from the current (y, x) co-ordinates to the end of the line. This has no asso-
ciated ‘‘mmvv’’ command.

crmode();†

Identical to cbreak(). The misnamed macro crmode() and nocrmode() is retained for back-
wards compatibility with ealier versions of the library.

delch();

Delete the character at the current (y, x) co-ordinates. Each character after it on the line shifts to the
left, and the last character becomes blank.

deleteln();

Delete the current line. Every line below the current one will move up, and the bottom line will
become blank. The current (y, x) co-ordinates will remain unchanged.

delwin(WINDOW ∗ win);

Deletes the window from existence. All resources are freed for future use by ccaalllloocc(3). If a window
has a subwin() allocated window inside of it, deleting the outer window the subwindow is not
affected, even though this does invalidate it. Therefore, subwindows should be deleted before their
outer windows are.

PPSS11::1199--88 SSccrreeeenn PPaacckkaaggee

echo();†

Sets the terminal to echo characters.

endwin();

Finish up window routines before exit. This restores the terminal to the state it was before
initscr() (or gettmode() and setterm()) was called. It should always be called before exit-
ing and before the final calls to delwin(). It does not exit. This is especially useful for resetting
tty stats when trapping rubouts via ssiiggnnaall(2).

erase();†

Erases the window to blanks without setting the clear flag. This is analagous to clear(), except
that it never causes a clear-screen sequence to be generated on a refresh(). This has no associ-
ated ‘‘mmvv’’ command.

erasechar();†

Returns the erase character for the terminal, i.e., the character used by the user to erase a single char-
acter from the input.

flushok(WINDOW ∗ win, int boolf);

Normally, refresh() fflush(’s); stdout when it is finished. flushok() allows you to con-
trol this. if boolf is non-zero (i.e., non-zero) it will do the fflush(), otherwise it will not.

getch();†

Gets a character from the terminal and (if necessary) echos it on the window. This returns ERR if it
would cause the screen to scroll illegally. Otherwise, the character gotten is returned. If noecho has
been set, then the window is left unaltered. In order to retain control of the terminal, it is necessary
to have one of noecho, cbreak, or rawmode set. If you do not set one, whatever routine you call to
read characters will set cbreak for you, and then reset to the original mode when finished.

getstr(char ∗ str);†

Get a string through the window and put it in the location pointed to by str, which is assumed to be
large enough to handle it. It sets tty modes if necessary, and then calls getch() (or wgetch()) to
get the characters needed to fill in the string until a newline or EOF is encountered. The newline
stripped off the string. This returns ERR if it would cause the screen to scroll illegally.

gettmode();

Get the tty stats. This is normally called by initscr().

getyx(WINDOW ∗ win, int y, int x);

Puts the current (y, x) co-ordinates of win in the variables y and x. Since it is a macro, not a function,
you do not pass the address of y and x.

idlok(WINDOW ∗ win, int boolf);

Reserved for future use. This will eventually signal to refresh() that it is all right to use the insert

SSccrreeeenn PPaacckkaaggee PPSS11::1199--99

and delete line sequences when updating the window.

inch();†

Returns the character at the current position on the given window. This does not make any changes
to the window.

initscr();

Initialize the screen routines. This must be called before any of the screen routines are used. It ini-
tializes the terminal-type data and such, and without it none of the routines can operate. If standard
input is not a tty, it sets the specifications to the terminal whose name is pointed to by Def−term (ini-
tially "dumb"). If the boolean My−term is non-zero, Def−term is always used. If the system supports
the TTIIOOCCGGWWIINNSSZZ ioctl(2) call, it is used to get the number of lines and columns for the terminal,
otherwise it is taken from the tteerrmmccaapp description.

insch(char c);

Insert c at the current (y, x) co-ordinates Each character after it shifts to the right, and the last charac-
ter disappears. This returns ERR if it would cause the screen to scroll illegally.

insertln();

Insert a line above the current one. Every line below the current line will be shifted down, and the
bottom line will disappear. The current line will become blank, and the current (y, x) co-ordinates
will remain unchanged.

killchar();†

Returns the line kill character for the terminal, i.e., the character used by the user to erase an entire
line from the input.

leaveok(WINDOW ∗ win, int boolf);†

Sets the boolean flag for leaving the cursor after the last change. If boolf is non-zero, the cursor will
be left after the last update on the terminal, and the current (y, x) co-ordinates for win will be
changed accordingly. If boolf
is 0 the cursor will be moved to the current (y, x) co-ordinates. This flag (initially 0) retains its
value until changed by the user.

move(int y, int x);

Change the current (y, x) co-ordinates of the window to (y, x). This returns ERR if it would cause
the screen to scroll illegally.

mvcur(int lasty, int lastx, int newy, int newx);

Moves the terminal’s cursor from (lasty, lastx) to (newy, newx) in an approximation of optimal
fashion. This routine uses the functions borrowed from ex version 2.6. It is possible to use this
optimization without the benefit of the screen routines. With the screen routines, this should not be
called by the user. move() and refresh() should be used to move the cursor position, so that
the routines know what’s going on.

mvprintw(int y, int x, const char ∗ fmt, ...);

Equivalent to:

move(y, x);
printw(fmt, ...);

PPSS11::1199--1100 SSccrreeeenn PPaacckkaaggee

mvscanw(int y, int x, const char ∗ fmt, ...);

Equivalent to:

move(y, x);
scanw(fmt, ...);

mvwin(WINDOW ∗ win, int y, int x);

Move the home position of the window win from its current starting coordinates to (y, x). If that
would put part or all of the window off the edge of the terminal screen, mvwin() returns ERR and
does not change anything. For subwindows, mvwin() also returns ERR if you attempt to move it
off its main window. If you move a main window, all subwindows are moved along with it.

mvwprintw(WINDOW ∗ win, int y, int x, const char ∗ fmt, ...);

Equivalent to:

wmove(win, y, x);
printw(fmt, ...);

mvwscanw(WINDOW ∗ win, int y, int x, const char ∗ fmt, ...);

Equivalent to:

wmove(win, y, x);
scanw(fmt, ...);

newwin(int lines, int cols, int begin_y, int begin_x);

Create a new window with lines lines and cols columns starting at position (begin−y, begin−x). If
either lines or cols is 0 (zero), that dimension will be set to (LINES − begin−y) or (COLS − begin−x)
respectively. Thus, to get a new window of dimensions LINES × COLS, use newwin(0, 0, 0, 0).

nl();†

Set the terminal to nl mode, i.e., start/stop the system from mapping <<RREETTUURRNN>> to <<LLIINNEE--
FFEEEEDD>>. If the mapping is not done, refresh() can do more optimization, so it is recommended,
but not required, to turn it off.

nocbreak();†

Unset the terminal from cbreak mode.

nocrmode();†

Identical to nocbreak(). The misnamed macro nocrmode() is retained for backwards compati-
bility with ealier versions of the library.

noecho();†

Turn echoing of characters off.

nonl();†

SSccrreeeenn PPaacckkaaggee PPSS11::1199--1111

Unset the terminal to from nl mode. See nl().

noraw();†

Unset the terminal from raw mode. See raw().

overlay(WINDOW ∗ win1, WINDOW ∗ win2);

Overlay win1 on win2. The contents of win1, insofar as they fit, are placed on win2 at their starting
(y, x) co-ordinates. This is done non-destructively, i.e., blanks on win1 leave the contents of the
space on win2 untouched. Note that all non-blank characters are overwritten destructively in the
overlay.

overwrite(WINDOW ∗ win1, WINDOW ∗ win2);

Overwrite win1 on win2. The contents of win1, insofar as they fit, are placed on win2 at their start-
ing (y, x) co-ordinates. This is done destructively, i.e., blanks on win1 become blank on win2.

printw(char ∗ fmt, ...);

Performs a printf() on the window starting at the current (y, x) co-ordinates. It uses addstr()
to add the string on the window. It is often advisable to use the field width options of printf() to
avoid leaving things on the window from earlier calls. This returns ERR if it would cause the screen
to scroll illegally.

raw();†

Set the terminal to raw mode. On version 7 UUNNIIXX22 this also turns off newline mapping (see nl()).

refresh();†

Synchronize the terminal screen with the desired window. If the window is not a screen, only that
part covered by it is updated. This returns ERR if it would cause the screen to scroll illegally. In this
case, it will update whatever it can without causing the scroll.

As a special case, if wrefresh() is called with the window curscr the screen is cleared and
repainted as it is currently. This is very useful for allowing the redrawing of the screen when the
user has garbage dumped on his terminal.

resetty();†

resetty() restores them to what savetty() stored. These functions are performed automatically
by initscr() and endwin(). This function should not be used by the user.

savetty();†

savetty() saves the current tty characteristic flags. See resetty(). This function should not be
used by the user.

scanw(char ∗ fmt, ...);

Perform a scanf() through the window using fmt. It does this using consecutive calls to getch()

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
2 UUNNIIXX is a trademark of Unix System Laboratories.

PPSS11::1199--1122 SSccrreeeenn PPaacckkaaggee

(or wgetch()). This returns ERR if it would cause the screen to scroll illegally.

scroll(WINDOW ∗ win);

Scroll the window upward one line. This is normally not used by the user.

scrollok(WINDOW ∗ win, int boolf);†

Set the scroll flag for the given window. If boolf is 0, scrolling is not allowed. This is its default set-
ting.

standend();†

End standout mode initiated by standout().

standout();†

Causes any characters added to the window to be put in standout mode on the terminal (if it has that
capability).

subwin(WINDOW ∗ win, int lines, int cols, int begin_y, int begin_x);

Create a new window with lines lines and cols columns starting at position (begin−y, begin−x) inside
the window win. This means that any change made to either window in the area covered by the
subwindow will be made on both windows. begin−y, begin−x are specified relative to the overall
screen, not the relative (0, 0) of win. If either lines or cols is 0 (zero), that dimension will be set to
(LINES − begin−y) or (COLS − begin−x) respectively.

touchline(WINDOW ∗ win, int y, int startx, int endx);

This function performs a function similar to touchwin() on a single line. It marks the first change
for the given line to be startx, if it is before the current first change mark, and the last change mark is
set to be endx if it is currently less than endx.

touchoverlap(WINDOW ∗ win1, WINDOW ∗ win2);

Touch the window win2 in the area which overlaps with win1. If they do not overlap, no changes are
made.

touchwin(WINDOW ∗ win);

Make it appear that the every location on the window has been changed. This is usually only needed
for refreshes with overlapping windows.

tstp()

This function will save the current tty state and then put the process to sleep. When the process gets
restarted, it restores the saved tty state and then calls wrefresh(curscr); to redraw the screen.
Initscr() sets the signal SIGTSTP to trap to this routine.

unctrl(char ∗ ch);†

Returns a string which is an ASCII representation of ch. Characters are 8 bits long.

unctrllen(char ∗ ch);†

SSccrreeeenn PPaacckkaaggee PPSS11::1199--1133

Returns the length of the ASCII representation of ch.

vwprintw(WINDOW ∗ win, const char ∗ fmt, va_list ap);

Identical to printw() except that it takes both a window specification and a pointer to a variable
length argument list.

vwscanw(WINDOW ∗ win, const char ∗ fmt, va_list ap);

Identical to scanw() except that it takes both a window specification and a pointer to a variable
length argument list.

waddbytes(WINDOW ∗ win, char ∗ str, int len);

This function is the low level character output function. Len characters of the string str are output to
the current (y, x) co-ordinates position of the window specified by win.

The following functions differ from the standard functions only in their specification of a window,
rather than the use of the default stdscr.

waddch(WINDOW ∗ win, char ch);
waddstr(WINDOW ∗ win, char ∗ str);
wclear(WINDOW ∗ win);
wclrtobot(WINDOW ∗ win);
wclrtoeol(WINDOW ∗ win);
wdelch(WINDOW ∗ win);
wdeleteln(WINDOW ∗ win);
werase(WINDOW ∗ win);
wgetch(WINDOW ∗ win);
wgetstr(WINDOW ∗ win, char ∗ str);
winch(WINDOW ∗ win);†
winsch(WINDOW ∗ win, char c);
winsertln(WINDOW ∗ win);
wmove(WINDOW ∗ win, int y, int, x");
wprintw(WINDOW ∗ win, char ∗ fmt, ...);
wrefresh(WINDOW ∗ win);
wscanw(WINDOW ∗ win, char ∗ fmt, ...);
wstandend(WINDOW ∗ win);
wstandout(WINDOW ∗ win);

PPSS11::1199--1144 SSccrreeeenn PPaacckkaaggee

11.. EExxaammpplleess

Here we present a few examples of how to use the package. They attempt to be representative,
though not comprehensive. Further examples can be found in the games section of the source tree and in
various utilities that use the screen such as systat(1).

The following examples are intended to demonstrate the basic structure of a program using the pack-
age. An additional, more comprehensive, program can be found in the source code in the examples sub-
directory.

11..11.. SSiimmppllee CChhaarraacctteerr OOuuttppuutt

This program demonstrates how to set up a window and output characters to it. Also, it demonstrates
how one might control the output to the window. If you run this program, you will get a demonstration of
the character output chracteristics discussed in the above Character Output section.

##iinncclluuddee <sys/types.h>
##iinncclluuddee <curses.h>
##iinncclluuddee <stdio.h>
##iinncclluuddee <signal.h>

##ddeeffiinnee YSIZE 10
##ddeeffiinnee XSIZE 20

iinntt quit();

main()
{{

iinntt i, j, c;
size−t len;
cchhaarr id[100];
FILE ∗ fp;
cchhaarr ∗ s;

initscr(); /∗ Always call initscr() first ∗ /
signal(SIGINT, quit); /∗ Make sure wou have a ´cleanup´ fn ∗ /
crmode(); /∗ We want cbreak mode ∗ /
noecho(); /∗ We want to have control of chars ∗ /
delwin(stdscr); /∗ Create our own stdscr ∗ /
stdscr = newwin(YSIZE, XSIZE, 10, 35);
flushok(stdscr, TRUE); /∗ Enable flushing of stdout ∗ /
scrollok(stdscr, TRUE); /∗ Enable scrolling ∗ /
erase(); /∗ Initially, clear the screen ∗ /

standout();
move(0,0);
wwhhiillee (1) {{

c = getchar();
sswwiittcchh(c) {{
ccaassee ´q´: /∗ Quit on ´q´ ∗ /

quit();
bbrreeaakk;

ccaassee ´s´: /∗ Go into standout mode on ´s´ ∗ /
standout();
bbrreeaakk;

SSccrreeeenn PPaacckkaaggee AAppppeennddiixx AA PPSS11::1199--1155

ccaassee ´e´: /∗ Exit standout mode on ´e´ ∗ /
standend();
bbrreeaakk;

ccaassee ´r´: /∗ Force a refresh on ´r´ ∗ /
wrefresh(curscr);
bbrreeaakk;

ddeeffaauulltt: /∗ By default output the character ∗ /
addch(c);
refresh();

}}
}}

}}

iinntt
quit()
{{

erase(); /∗ Terminate by erasing the screen ∗ /
refresh();
endwin(); /∗ Always end with endwin() ∗ /
delwin(curscr); /∗ Return storage ∗ /
delwin(stdscr);
putchar(´\n´);
exit(0);

}}

11..22.. TTwwiinnkkllee

This is a moderately simple program which prints patterns on the screen. It switches between pat-
terns of asterisks, putting them on one by one in random order, and then taking them off in the same
fashion. It is more efficient to write this using only the motion optimization, as is demonstrated below.

iinncclluuddee <curses.h>
iinncclluuddee <signal.h>

/∗
∗ the idea for this program was a product of the imagination of
∗ Kurt Schoens. Not responsible for minds lost or stolen.
∗ /

ddeeffiinnee NCOLS 80
ddeeffiinnee NLINES 24
ddeeffiinnee MAXPATTERNS 4

ttyyppeeddeeff ssttrruucctt {{
iinntt y, x;

}} LOCS;

LOCS Layout[NCOLS ∗ NLINES]; /∗ current board layout ∗ /

PPSS11::1199--1166 SSccrreeeenn PPaacckkaaggee AAppppeennddiixx AA

iinntt Pattern, /∗ current pattern number ∗ /
Numstars; /∗ number of stars in pattern ∗ /

cchhaarr ∗ getenv();

iinntt die();

main()
{{

srand(getpid()); /∗ initialize random sequence ∗ /

initscr();
signal(SIGINT, die);
noecho();
nonl();
leaveok(stdscr, TRUE);
scrollok(stdscr, FALSE);

ffoorr (;;) {{
makeboard(); /∗ make the board setup ∗ /
puton(´∗ ´); /∗ put on ´∗ ´s ∗ /
puton(´ ´); /∗ cover up with ´ ´s ∗ /

}}
}}

/∗
∗ On program exit, move the cursor to the lower left corner by
∗ direct addressing, since current location is not guaranteed.
∗ We lie and say we used to be at the upper right corner to guarantee
∗ absolute addressing.
∗ /
die()
{{

signal(SIGINT, SIG−IGN);
mvcur(0, COLS − 1, LINES − 1, 0);
endwin();
exit(0);

}}

/∗
∗ Make the current board setup. It picks a random pattern and
∗ calls ison() to determine if the character is on that pattern
∗ or not.
∗ /
makeboard()
{{

reg iinntt y, x;
reg LOCS ∗ lp;

Pattern = rand() % MAXPATTERNS;
lp = Layout;
ffoorr (y = 0; y < NLINES; y++)

ffoorr (x = 0; x < NCOLS; x++)
iiff (ison(y, x)) {{

lp−>y = y;
lp−>x = x;

SSccrreeeenn PPaacckkaaggee AAppppeennddiixx AA PPSS11::1199--1177

lp++;
}}

Numstars = lp − Layout;
}}

/∗
∗ Return TRUE if (y, x) is on the current pattern.
∗ /
ison(y, x)
reg iinntt y, x; {{

sswwiittcchh (Pattern) {{
ccaassee 0: /∗ alternating lines ∗ /

rreettuurrnn !(y & 01);
ccaassee 1: /∗ box ∗ /

iiff (x >= LINES && y >= NCOLS)
rreettuurrnn FALSE;

iiff (y < 3 || y >= NLINES − 3)
rreettuurrnn TRUE;

rreettuurrnn (x < 3 || x >= NCOLS − 3);
ccaassee 2: /∗ holy pattern! ∗ /

rreettuurrnn ((x + y) & 01);
ccaassee 3: /∗ bar across center ∗ /

rreettuurrnn (y >= 9 && y <= 15);
}}
/∗ NOTREACHED ∗ /

}}

puton(ch)
reg cchhaarr ch;
{{

reg LOCS ∗ lp;
reg iinntt r;
reg LOCS ∗ end;
LOCS temp;

end = &Layout[Numstars];
ffoorr (lp = Layout; lp < end; lp++) {{

r = rand() % Numstars;
temp = ∗ lp;
∗ lp = Layout[r];
Layout[r] = temp;

}}

ffoorr (lp = Layout; lp < end; lp++) {{
mvaddch(lp−>y, lp−>x, ch);
refresh();

}}
}}

PPSSDD::1199--22 SSccrreeeenn PPaacckkaaggee

ContentsContents

1 Overview .. 3
1.1 Terminology .. 3
1.2 Compiling Applications .. 3
1.3 Screen Updating .. 3
1.4 Naming Conventions ... 3

2 Variables ... 4
3 Usage .. 4

3.1 Initialization .. 4
3.2 Output .. 5
3.3 Input .. 5
3.4 Termination ... 5

4 Cursor Movement Optimizations ... 5
5 Character Output and Scrolling .. 6
6 Terminal State Handling .. 6
7 Subwindows ... 6
8 The Functions ... 6
AAppppeennddiixx AA ... 14
1 Examples .. 14

1.1 Simple Character Output ... 14
1.2 Twinkle .. 15

