
Name Server Operations Guide
for BIND
Release 4.9.2

Releases from 4.9
Paul Vixie1

<paul@vix.com>

Vixie Enterprises
Redwood City, CA

Releases through 4.8.3
Kevin J. Dunlap2

Michael J. Karels

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley CA 94720

1. Introduction

The Berkeley Internet Name Domain (BIND) implements an Internet name server for the UNIX†
operating system. The BIND consists of a server (or ‘‘daemon’’) and a resolver library. A name server
is a network service that enables clients to name resources or objects and share this information with
other objects in the network. This in effect is a distributed data base system for objects in a computer
network. BIND is fully integrated into BSD (4.3 and later releases) network programs for use in stor-
ing and retrieving host names and address. The system administrator can configure the system to use
BIND as a replacement to the older host table lookup of information in the network hosts file
/ etc/ hosts. The default configuration for BSD uses BIND.

2. Building A System with a Name Server

BIND is composed of two parts. One is the user interface called the resolver which consists of a
group of routines that reside in the C library /lib/libc.a. Second is the actual server called named. This
is a daemon that runs in the background and services queries on a given network port. The standard
port for UDP and TCP is specified in / etc/ services.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 This author was employed by Digital Equipment Corporation’s Network Systems Laboratory during the development and

release of BIND 4.9. Releases from 4.9.2 were sponsored by Vixie Enterprises.
2 This author was an employee of Digital Equipment Corporation’s Ultrix Engineering Advanced Development Group and was

on loan to CSRG when this work was done. Ultrix is a trademark of Digital Equipment Corporation.

†UNIX is a Trademark of AT&T Bell Laboratories

SMM:10-2 Name Server Operations Guide for BIND

2.1. Resolver Routines in libc

When building your 4.3BSD system you may either build the C library to use the name server
resolver routines or use the host table lookup routines to do host name and address resolution. The
default resolver for 4.3BSD uses the name server. Newer BSD systems include both name server
and host table functionality with preference given to the name server if there is one or if there is a
/etc/resolv.conf file.

Building the C library to use the name server changes the way gethostbyname (3N),
gethostbyaddr (3N), and sethostent (3N) do their functions. The name server renders
gethostent (3N) obsolete, since it has no concept of a next line in the database. These library calls
are built with the resolver routines needed to query the name server.

The resolver contains functions that build query packets and exchange them with name
servers.

Before building the 4.3BSD C library, set the variable HOSTLOOKUP equal to named in
/ usr/ src/ lib/ libc/ Makefile. You then make and install the C library and compiler and then compile
the rest of the 4.3BSD system. For more information see section 6.6 of ‘‘Installing and Operating
4.3BSD on the VAX‡’’.

If your operating system isn’t VAX‡ 4.3BSD, it is probably the case that your vendor has
included resolver support in the supplied C Library. You should consult your vendor’s documenta-
tion to find out what has to be done to enable resolver support. Note that your vendor’s resolver
may be out of date with respect to the one shipped with BIND, and that you might want to build
BIND’s resolver library and install it, and its include files, into your system’s compile/link path so
that your own network applications will be able to use the newer features.

2.2. The Name Service

The basic function of the name server is to provide information about network objects by
answering queries. The specifications for this name server are defined in RFC1034, RFC1035 and
RFC974. These documents can be found in /usr/src/etc/named/doc in 4.3BSD or ftped from
ftp.rs.internic.net. It is also recommended that you read the related manual pages, named (8),
resolver (3), and resolver (5).

The advantage of using a name server over the host table lookup for host name resolution is
to avoid the need for a single centralized clearinghouse for all names. The authority for this infor-
mation can be delegated to the different organizations on the network responsible for it.

The host table lookup routines require that the master file for the entire network be main-
tained at a central location by a few people. This works fine for small networks where there are
only a few machines and the different organizations responsible for them cooperate. But this does
not work well for large networks where machines cross organizational boundaries.

With the name server, the network can be broken into a hierarchy of domains. The name
space is organized as a tree according to organizational or administrative boundaries. Each node,
called a domain, is given a label, and the name of the domain is the concatenation of all the labels
of the domains from the root to the current domain, listed from right to left separated by dots. A
label need only be unique within its domain. The whole space is partitioned into several areas
called zones, each starting at a domain and extending down to the leaf domains or to domains where
other zones start. Zones usually represent administrative boundaries. An example of a host address
for a host at the University of California, Berkeley would look as follows:

monet . Berkeley . EDU

The top level domain for educational organizations is EDU; Berkeley is a subdomain of EDU and
monet is the name of the host.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
‡VAX is a Trademark of Digital Equipment Corporation

Name Server Operations Guide for BIND SMM:10-3

2.3. About Hesiod, and HS-class Resource Records

Hesiod, developed by MIT Project Athena, is an information service built upon BIND. Its
intent is similar to that of Sun’s NIS: to furnish information about users, groups, network-accessible
file systems, printcaps, and mail service throughout an installation. Aside from its use of BIND
rather than separate server code another important difference between Hesiod and NIS is that
Hesiod is not intended to deal with passwords and authentication, but only with data that are not
security sensitive. Hesiod servers can be implemented by adding resource records to BIND servers;
or they can be implemented as separate servers separately administered.

To learn about and obtain Hesiod make an anonymous FTP connection to host ATHENA-
DIST.MIT.EDU and retrieve the compressed tar file pub/hesiod.tar.Z. You will not need the named
and resolver library portions of the distribution because their functionality has already been
integrated into BIND 4.9. To learn how Hesiod functions as part of the Athena computing environ-
ment obtain the paper pub/usenix/athena-changes.PS from the above FTP server host. There is
also a tar file of sample Hesiod resource files.

Whether one should use Hesiod class is open to question, since the same services can prob-
ably be provided with class IN, type TXT and type CNAME records. In either case, the code and
documents for Hesiod will suggest how to set up and use the service.

Note that while BIND includes support for HS-class queries, the zone transfer logic for non-
IN-class zones is still experimental.

2.4. About ‘‘secure zones’’

Secure zones implement named security on a zone by zone basis. It is designed to use a per-
mission list of networks or hosts which may obtain particular information from the zone.

In order to use zone security, named must be compiled with SECURE_ZONES defined and
you must have at least one secure_zone TXT RR. Unless a secure_zone record exists for a given
zone, no restrictions will be applied to the data in that zone. The format of the secure_zone TXT
RR is:

secure_zone addr-class TXT string

The addr-class may be either HS or IN. The syntax for the TXT string is either "network
address:netmask" or "host IP address:H".

"network address:netmask" allows queries from an entire network. If the netmask is omitted,
named will use the default netmask for the network address specified.

"host IP address:H" allows queries from a host. The "H" after the ":" is required to differen-
tiate the host address from a network address. Multiple secure_zone TXT RRs are allowed in the
same zone file.

For example, you can set up a zone to only answer hesiod requests from the masked class B
network 130.215.0.0 and from host 128.23.10.56 by adding the following two TXT RR’s:

secure_zone HS TXT "130.215.0.0:255.255.0.0"
secure_zone HS TXT "128.23.10.56:H"

This feature can be used to restrict access to a Hesiod password map or to seperate internal
and external internet address resolution on a firewall machine without needing to run a seperate
named for internal and external address resolution.

3. Types of Zones

A ‘‘zone’’ is a point of delegation in the DNS tree. It contains all names from a certain point
‘‘downward’’ except those which are delegated to other servers. A ‘‘delegation point’’ has one or
more NS records in the ‘‘parent zone’’, which should be matched by equivalent NS records at the root
of the ‘‘delegated zone’’ (i.e., the ‘‘@’’ name in the zone file).

SMM:10-4 Name Server Operations Guide for BIND

Understanding the difference between a ‘‘zone’’ and a ‘‘domain’’ is crucial to the proper opera-
tion of a name server. As an example, consider the DEC.COM domain, which includes names such as
POBOX1.PA.DEC.COM and QUABBIN.CRL.DEC.COM even though the DEC.COM zone includes only
delegations for the PA.DEC.COM and CRL.DEC.COM zones. A zone can map exactly to a single
domain, but could also include only part of a domain (the rest of which could be delegated to other
name servers). Technically speaking, every name in the DNS tree is a ‘‘domain’’, even if it is ‘‘termi-
nal’’, that is, has no ‘‘subdomains’’. Technically speaking, every subdomain is a domain and every
domain except the root is also a subdomain. The terminology is not intuitive and you would do well to
read RFC’s 1033, 1034, and 1035 to gain a complete understanding of this difficult and subtle topic.

Though BIND is a Domain Name Server, it deals primarily in terms of zones. The primary and
secondary declarations in the named.boot file specify zones, not domains. When you ask someone if
they are willing to be a secondary server for your ‘‘domain’’, you are actually asking for secondary ser-
vice for some collection of zones.

Each zone will have one ‘‘primary’’ server, which loads the zone contents from some local file
which is edited by humans or perhaps generated mechanically from some other local file which is
edited by humans. Then there will be some number of ‘‘secondary’’ servers, which load the zone con-
tents using the IP/DNS protocol (that is, the secondary servers will contact the primary and fetch the
zone using IP/TCP). This set of servers (the primary and all of the secondaries) should be listed in the
NS records in the parent zone, which will constitute a ‘‘delegation’’. This set of servers must also be
listed in the zone file itself, usually under the ‘‘@’’ name which is a magic cookie that means the ‘‘top
level’’ or ‘‘root’’ of current $ORIGIN. You can list servers in the zone’s top-level ‘‘@’’ NS records
that are not in the parent’s NS delegation, but you cannot list servers in the parent’s delegation that are
not present in the zone’s ‘‘@’’. (This latter condition is one form of what is called a ‘‘lame delega-
tion’’.)

4. Types of Servers

Servers do not really have ‘‘types’’. A server can be a primary for some zones and a secondary
for others, or it can be only a primary, or only a secondary, or it can serve no zones and just answer
queries via its ‘‘cache’’. Previous versions of this document referred to servers as ‘‘master’’ and
‘‘slave’’ but we now feel that those distinctions — and the assignment of a ‘‘type’’ to a name server —
are not useful.

4.1. Caching Only Server

All servers are caching servers. This means that the server caches the information that it
receives for use until the data expires. A Caching Only Server is a server that is not authoritative
for any domain. This server services queries and asks other servers, who have the authority, for the
information needed. All servers keep data in their cache until the data expires, based on a TTL
(‘‘Time To Live’’) field which is maintained for all resource records.

4.2. Remote Server

A Remote Server is an option given to people who would like to use a name server from their
workstation or on a machine that has a limited amount of memory and CPU cycles. With this
option you can run all of the networking programs that use the name server without the name server
running on the local machine. All of the queries are serviced by a name server that is running on
another machine on the network. This kind of host is technically not a ‘‘server’’, since it has no
cache and does not answer queries. A host which has an /etc/resolv.conf file listing only remote
hosts, and which does not run a name server of its own, is sometimes called a Remote Server but
more often it is called simply a DNS Client.

4.3. Slave Server

A Slave Server is a server that always forwards queries it cannot satisfy from its cache, to a
fixed list of forwarding servers instead of interacting with the master nameservers for the root and
other domains. The queries to the forwarding servers are recursive queries. There may be one or

Name Server Operations Guide for BIND SMM:10-5

more forwarding servers, and they are tried in turn until the list is exhausted. A Slave and for-
warder configuration is typically used when you do not wish all the servers at a given site to be
interacting with the rest of the Internet servers. A typical scenario would involve a number of
workstations and a departmental timesharing machine with Internet access. The workstations might
be administratively prohibited from having Internet access. To give the workstations the appear-
ance of access to the Internet domain system, the workstations could be Slave servers to the
timesharing machine which would forward the queries and interact with other nameservers to
resolve the query before returning the answer. An added benefit of using the forwarding feature is
that the central machine develops a much more complete cache of information that all the worksta-
tions can take advantage of. The use of Slave mode and forwarding is discussed further under the
description of the named bootfile commands.

There is no prohibition against declaring a server to be a slave even though it has primary
and/or secondary zones as well; the effect will still be that anything in the local server’s cache or
zones will be answered, and anything else will be forwarded using the forwarders list.

5. Setting up Your Own Domain

When setting up a domain that is going to be on a public network the site administrator should
contact the organization in charge of the network and request the appropriate domain registration form.
An organization that belongs to multiple networks (such as the Internet and BITNET) should register
with only one network.

The contacts are as follows:

5.1. Internet

Sites on the Internet who need information on setting up a domain should contact the registrar
for their network, which is one of the following:

MILnet HOSTMASTER@NIC . DDN . MIL
other HOSTMASTER@RS . INTERNIC . NET

You may also want to be placed on the BIND mailing list, which is a mail group for people on the
Internet who run BIND. The group discusses future design decisions, operational problems, and
other related topic. The address to request being placed on this mailing list is:

bind-request @ uunet . uu . net

5.2. BITNET

If you are on the BITNET and need to set up a domain, contact INFO@BITNIC.

5.3. Subdomains of Existing Domains

If you want a subdomain of some existing domain, you should find the contact point for the
parent domain rather than asking one of the above top-level registrars. There should be a conven-
tion that registrar@domain or hostmaster@domain for any given domain will always be an alias
for that domain’s registrar (somewhat analogous to postmaster), but there is no such convention.
Try it as a last resort, but first you should examine the SOA record for the domain and send mail to
the ‘‘responsible person’’ shown therein.

SMM:10-6 Name Server Operations Guide for BIND

6. Files

The name server uses several files to load its data base. This section covers the files and their
formats needed for named.

6.1. Boot File

This is the file that is first read when named starts up. This tells the server what type of server
it is, which zones it has authority over and where to get its initial data. The default location for this
file is / etc / named . boot . However this can be changed by setting the BOOTFILE variable when
you compile named or by specifying the location on the command line when named is started up.

6.1.1. Domain

A default domain may be specified for the nameserver using a line such as

domain Berkeley . Edu

Older name servers use this information when they receive a query for a name without a ‘‘.’’
that is not known. Newer designs assume that the resolver library will append its own idea of a
‘‘default domain’’ to any unqualified names. Though the name server can still be compiled
with support for the domain directive in the boot file, the default is to leave it out and we strenu-
ously recommend against its use. If you use this feature, clients outside your local domain
which send you requests about unqualified names will have the implicit qualification of your
domain rather than theirs. The proper place for this function is on the client, in their
/etc/resolv.conf (or equivalent) file. Use of the domain directive in your boot file is strongly
discouraged.

6.1.2. Directory

The directory directive specifies the directory in which the nameserver should run, allow-
ing the other file names in the boot file to use relative path names. There can be only one direc-
tory directive and it should be given before any other directives that specify file names.

directory /var/named

If you have more than a couple of named files to be maintained, you may wish to place the
named files in a directory such as /var/named and adjust the directory command properly. The
main purposes of this command are to make sure named is in the proper directory when trying
to include files by relative path names with $Include and to allow named to run in a location that
is reasonable to dump core if it feels the urge.

6.1.3. Primary Service

The line in the boot file that designates the server as a primary server for a zone looks as
follows:

primary Berkeley . Edu ucbhosts

The first field specifies that the server is a primary one for the zone stated in the second field.
The third field is the name of the file from which the data is read.

The above assumes that the zone you are specifying is a class IN zone. If you wish to
designate a different class you can append /class to the first field, where class is either the
integer value or the standard mnemonic for the class. For example the line for a primary server
for a hesiod class zone looks as follows:

primary/HS Berkeley . Edu hesiod.data

Note that this support for specifying other than class IN zones is a compile-time option which
your vendor may not have enabled when they built your operating system.

Name Server Operations Guide for BIND SMM:10-7

6.1.4. Secondary Service

The line for a secondary server is similar to the primary except that it lists addresses of
other servers (usually primary servers) from which the zone data will be obtained.

secondary Berkeley . Edu 128.32.0.10 128.32.0.4 ucbhosts.bak

The first field specifies that the server is a secondary master server for the zone stated in the
second field. The two network addresses specify the name servers which have data for the
zone. Note that at least one of these will be a primary, and, unless you are using some protocol
other than IP/DNS for your zone transfer mechanism, the others will all be other secondary
servers. Having your secondary server pull data from other secondary servers is usually
unwise, since you can add delay to the propagation of zone updates if your network’s connec-
tivity varies in pathological but common ways. The intended use for multiple addresses on a
secondary declaration is when the primary server has multiple network interfaces and therefore
multiple host addresses. The secondary server gets its data across the network from one of the
listed servers. The server addresses are tried in the order listed. If a filename is present after
the list of primary servers, data for the zone will be dumped into that file as a backup. When the
server is first started, the data is loaded from the backup file if possible, and a primary server is
then consulted to check that the zone is still up-to-date. Note that listing your server as a secon-
dary server does not neccessarily make it one — the parent zone must delegate authority to your
server as well as the primary and the other secondaries, or you will be transferring a zone over
for no reason; no other server will have a reason to query you for that zone unless the parent
zone lists you as a server for the zone.

As with primary you may specify a secondary server for a class other than IN by append-
ing /class to the secondary keyword, e.g., secondary/HS.

6.1.5. Stub Service

The line for a stub server is similar to a secondary.

stub Berkeley . Edu 128.32.0.10 128.32.0.4 ucbhosts.bak

The first field specifies that the server is a stub server for the zone stated in the second field.

Stub zones are intened to ensure that a primary for a zone always has the correct
nameserver records for children of that zone. If the primary is not a secondary for a child zone it
should be configured with stub zones for all its children. Stub zones provide a mechanism to
allow nameserver records for a zone to be specified in only one place.

primary CSIRO . AU csiro.dat
stub dms.CSIRO . AU 130.155.16.1 dms.stub
stub dap.CSIRO . AU 130.155.98.1 dap.stub

6.1.6. Caching Server

You do not need a special line to designate that a server is a caching server. What
denotes a ‘‘caching only’’ server is the absence of authority lines, such as secondary or primary
in the boot file.

All servers, including ‘‘caching only’’ servers, should have a line as follows in the boot
file to prime the name servers cache:

cache . root.cache

All cache files listed will be read in at named boot time and any values still valid will be rein-
stated in the cache and the root nameserver information in the cache files will be used until a
root query is actually answered by one of the name servers in your cache file, at which time that
answer will be used until it times out and your cache file will be ignored.

As with primary and secondary, you may specify a secondary server for a class other than
IN by appending /class to the cache keyword, e.g., class/HS.

Do not put anything into your cache files other than root server information.

SMM:10-8 Name Server Operations Guide for BIND

6.1.7. Forwarders

Any server can make use of forwarders. A forwarder is another server capable of pro-
cessing recursive queries that is willing to try resolving queries on behalf of other systems. The
forwarders command specifies forwarders by internet address as follows:

forwarders 128.32.0.10 128.32.0.4

There are two main reasons for wanting to do so. First, some systems may not have full net-
work access and may be prevented from sending any IP packets into the rest of the Internet and
therefore must rely on a forwarder which does have access to the full net. The second reason is
that the forwarder sees a union of all queries as they pass through his server and therefore it
builds up a very rich cache of data compared to the cache in a typical workstation nameserver.
In effect, the forwarder becomes a meta-cache that all hosts can benefit from, thereby reducing
the total number of queries from that site to the rest of the net.

The effect of ‘‘forwarders’’ is to prepend some fixed addresses to the list of name servers
to be tried for every query. Normally that list is made up only of higher-authority servers
discovered via NS record lookups for the relevant domain. If the forwarders do not answer,
then unless the slave directive was given, the appropriate servers for the domains will be
queried directly.

6.1.8. Slave Servers

Slave mode is used if the use of forwarders is the only possible way to resolve queries
due to lack of full net access or if you wish to prevent the nameserver from using other than the
listed forwarders. Slave mode is activated by placing the simple command

slave

in the bootfile. If slave is used, then you must specify forwarders. When in slave mode, the
server will forward each query to each of the the forwarders until an answer is found or the list
of forwarders is exhausted. The server will not try to contact any remote name server other than
those named in the forwarders list.

So while forwarders adds to the end of the ‘‘server list’’ for each query, slave causes the
‘‘server list’’ to contain only those addresses listed in the forwarders declarations. Careless use
of the slave directive can cause really horrible forwarding loops, since you could end up for-
warding queries only to some set of hosts which are also slaves, and one or several of them
could be forwarding queries back to you.

Use of the slave directive should be considered very carefully.

6.1.9. Zone Transfer Restrictions

It may be the case that your organization does not wish to give complete lists of your
hosts to anyone on the Internet who can reach your name servers. While it is still possible for
people to ‘‘iterate’’ through your address range, looking for PTR records, and build a list of
your hosts the ‘‘slow’’ way, it is still considered reasonable to restrict your export of zones via
the zone transfer protocol. To limit the list of neighbors who can transfer zones from your
server, use the

xfrnets

directive. This directive has the same syntax as forwarders except that you can list network
numbers in addition to host addresses. For example, you could add the directive xfrnets
16.0.0.0 if you wanted to permit only hosts on Class A network number 16 to transfer zones
from your server. This is not nearly granular enough, and a future version of BIND will permit
such access-control to be specified on a per-zone basis rather than the current ‘‘global’’ basis.

The xfrnets directive may also be given as tcplist for compatibility with interim releases
of BIND 4.9.

Note that xfrnets support is a compile-time option which your vendor may not have
enabled when they built your operating system.

Name Server Operations Guide for BIND SMM:10-9

6.1.10. Sorting Addresses

If there are multiple addresses available for a name server which BIND wants to contact,
BIND will try the ones it believes are ‘‘closest’’ first. ‘‘Closeness’’ is defined in terms of
similarity-of-address; that is, if one address is on the same subnet as some interface of the local
host, then that address will be tried first. Failing that, an address which is on the same network
will be tried first. Failing that, they will be tried in a more-or-less random order unless the sort-
list directive was given in the named.boot file. sortlist has a syntax similar to forwarders and
xfrnets; you give it a list of networks and it uses these to ‘‘prefer’’ some remote name server
addresses over others. If you are on a Class C net which has a Class B net between you and the
rest of the Internet, you could try to improve the name server’s luck in getting answers by listing
the Class B network’s number in a sortlist directive. This should have the effect of trying
‘‘closer’’ servers before the more ‘‘distant’’ ones. Note that this behaviour is new in BIND 4.9.<

The other and older effect of the sortlist directive is to cause BIND to sort the A records in
any response it generates, so as to put those which appear on the sortlist earlier than those which
do not. This is not as helpful as you might think, since many clients will reorder the A records
either at random or using LIFO.

In actual practice, noone uses this directive since it hardwires information which changes
rapidly; a network which is ‘‘close’’ today may be ‘‘distant’’ next month. Since BIND builds up
a cache of the remote name servers’ response times, it will quickly converge on ‘‘reasonable’’
behaviour, which isn’t the same as ‘‘optimal’’ but it’s close enough. Future directions for BIND
include choosing addresses based on local interface metrics (on hosts which have more than
one) and perhaps on routing table information. We do not intend to solve the generalized
‘‘multi-homed host’’ problem, but we should be able to do a little better than we’re doing now.
Likewise, we hope to see a higher-level resolver library that sorts responses using topology
information that only exists on the client’s host.

6.1.11. Bogus Name Servers

It happens occasionally that some remote name server goes ‘‘bad’’. You can tell your
name server to refuse to listen to or ask questions of certain other name servers by listing them
in a bogusns directive in your named.boot file. Its syntax is the same as forwarders — you just
give it a list of dotted-quad Internet addresses.

Note that bogusns support is a compile-time option which your vendor may not have
enabled when they built your operating system.

6.1.12. Segmented Boot Files

If you are secondary for a lot of zones, you may find it convenient to split your
named.boot file into a static portion which hardly ever changes (directives such as directory,
sortlist, xfrnets and cache could go here), and dynamic portions that change frequently (all of
your primary directives might go in one file, and all of your secondary directives might go in
another file — and either or both of these might be fetched automatically from some neighbor
so that they can change your list of secondary zones without requiring your active intervention).
You can accomplish this via the include directive, which takes just a single file name as its argu-
ment. No quotes are needed around the file name. The file name will be evaluated after the
name server has changed its working directory to that specified in the directory directive, so you
can use relative pathnames if your system supports them.

6.2. Resolver Configuration

The resolver will try to contact a nameserver on the localhost if it cannot find its
configuration file. You should install the configuration file on every host anyway, since you can list
the local host’s address if the localhost runs a nameserver, and there is no other recommended way
to specify a system-level default domain. Note that if you wish to list the local host in your resolver
configuration file, you should probably use its primary Internet address rather than a localhost alias
such as 127.0.0.1 or 0.0.0.0. This is due to a bug in the handling of connected SOCK_DGRAM

SMM:10-10 Name Server Operations Guide for BIND

sockets in some versions of the BSD networking code. If you must use an address-alias, you
should prefer 0.0.0.0 (or simply ‘‘0’’) over 127.0.0.1, though be warned that depending on the vin-
tage of your BSD-derived networking code, both of them are capable of failing in their own ways.

The configuration file’s name is / etc/ resolv . conf. This file designates the name servers on
the network that should be sent queries. It is considered reasonable to create this file even if you
run a local server, since its contents will be cached by each client of the resolver library when the
client makes its first call to a resolver routine. If you run a name server locally, list it in your
resolv.conf file.

The resolv.conf file contains directives, one per line, of the following forms:

; comment
another comment
domain local-domain
search search-list
nameserver server-address
sortlist sort-list
options option-list

Exactly one of the domain or search directives should be given, exactly once. If the search direc-
tive is given, the first item in the given search-list will override any previously-specified local-
domain. The nameserver directive may be given up to three times; additional nameserver direc-
tives will be ignored. Comments may be given by starting a line with a ‘‘ ; ’’ or ‘‘ # ’’; note that
comments were not permitted in versions of the resolver earlier than the one included with BIND 4.9
— so if your vendor’s resolver supports comments, you know they are really on the ball.

The local-domain will be appended to any query-name that does not contain a ‘‘ . ’’. local-
domain can be overridden on a per-process basis by setting the LOCALDOMAIN environment vari-
able. Note that local-domain processing can be disabled by setting an option in the resolver.

The search-list is a list of domains which are tried, in order, as qualifying domains for
query-names which do not contain a ‘‘ . ’’. Note that search-list processing can be disabled by set-
ting an option in the resolver. Also note that the environment variable ‘‘LOCALDOMAIN’’ can
override this search-list on a per-process basis.

The server-address ’s are aggregated and then used as the default destination of queries gen-
erated through the resolver. This is, in other words, the way you tell the resolver which name
servers it should use. It is possible for a given client application to override this list, and this is
often done inside the name server (which is itself a resolver client) and in test programs such as
nslookup.

The sort-list is a list of IP address, netmask pairs. Addresses returned by gethostbyname are
sorted to the order specifed by this list. Any addresses that do not match the address netmask pair
will returned after those that do. The netmask is optional and the natural netmask will be used if not
specified.

The option-list is a list of options which each override some internal resolver variable. Sup-
ported options at this time are:

debug
sets the RES_DEBUG bit in _res.options.

ndots:n
sets the lower threshold (measured in ‘‘number of dots’’) on names given to res_query() such
that names with more than this number of dots will be tried as absolute names before any
local-domain or search-list processing is done. The default for this internal variable is ‘‘1’’.

Finally, if the environment variable HOSTALIASES is set, it is taken to contain the name of a
file which in turn contains resolver-level aliases. These aliases are applied only to names which do
not contain any ‘‘ . ’’ characters, and they are applied to query-names before the query is generated.
Note that the resolver options governing the operation of local-domain and search-list do not apply
to HOSTALIASES.

Name Server Operations Guide for BIND SMM:10-11

6.3. Cache Initialization

6.3.1. root.cache

The name server needs to know the servers that are the authoritative name servers for the
root domain of the network. To do this we have to prime the name server’s cache with the
addresses of these higher authorities. The location of this file is specified in the boot file. This
file uses the Standard Resource Record Format (aka. Masterfile Format) covered further on in
this paper.

6.3.2. named . local

This file specifies the PTR record for the local loopback interface, better known as
localhost, whose network address is 127.0.0.1. The location of this file is specified in the boot
file. It is vitally important to the proper operation of every name server that the 127.0.0.1
address have a PTR record pointing back to the name ‘‘localhost.my.dom.ain’’. The name of
this PTR record is always ‘‘1.0.0.127.IN-ADDR.ARPA’’. This is neccessary if you want your
users to be able to use hostname-authentication (hosts.equiv or ˜/.rhosts) on the name
‘‘localhost’’. As implied by this PTR record, there should be an A record in your domain speci-
fying that ‘‘localhost.my.dom.ain’’ has the Internet address 127.0.0.1.

6.4. Domain Data Files

There are two standard files for specifying the data for a domain. These are hosts and
host . rev. These files use the Standard Resource Record Format covered later in this paper. Note
that the file names are arbitrary; many network administrators prefer to name their zone files after
the domains they contain, especially in the average case which is where a given server is primary
and/or secondary for many different zones.

6.4.1. hosts

This file contains all the data about the machines in this zone. The location of this file is
specified in the boot file.

6.4.2. hosts . rev

This file specifies the IN-ADDR . ARPA domain. This is a special domain for allowing
address to name mapping. As internet host addresses do not fall within domain boundaries, this
special domain was formed to allow inverse mapping. The IN-ADDR . ARPA domain has four
labels preceding it. These labels correspond to the 4 octets of an Internet address. All four octets
must be specified even if an octets is zero. The Internet address 128.32.0.4 is located in the
domain 4 . 0 . 32 . 128 . IN-ADDR . ARPA. This reversal of the address is awkward to read but
allows for the natural grouping of hosts in a network.

6.5. Standard Resource Record Format

The records in the name server data files are called resource records. The Standard Resource
Record Format (RR) is specified in RFC1035. The following is a general description of these
records:

{name} {ttl} addr-class Record Type Record Specific data

Resource records have a standard format shown above. The first field is always the name of the
domain record and it must always start in column 1. For all RR’s other than the first in a file, the
name may be left blank; in that case it takes on the name of the previous RR. The second field is an
optional time to live field. This specifies how long this data will be stored in the data base. By
leaving this field blank the default time to live is specified in the Start Of Authority resource record
(see below). The third field is the address class; currently, only one class is supported: IN for inter-
net addresses and other internet information. Limited support is included for the HS class, which is

SMM:10-12 Name Server Operations Guide for BIND

for MIT/Athena ‘‘Hesiod’’ information. The fourth field states the type of the resource record. The
fields after that are dependent on the type of the RR. Case is preserved in names and data fields
when loaded into the name server. All comparisons and lookups in the name server data base are
case insensitive.

The following characters have special meanings:

‘‘.’’ A free standing dot in the name field refers to the current domain.

‘‘@’’ A free standing @ in the name field denotes the current origin.

‘‘. .’’ Two free standing dots represent the null domain name of the root when used in the name
field.

‘‘\X’’ Where X is any character other than a digit (0-9), quotes that character so that its special
meaning does not apply. For example, ‘‘\.’’ can be used to place a dot character in a label.

‘‘\DDD’’
Where each D is a digit, is the octet corresponding to the decimal number described by DDD.
The resulting octet is assumed to be text and is not checked for special meaning.

‘‘()’’ Parentheses are used to group data that crosses a line. In effect, line terminations are not
recognized within parentheses.

‘‘;’’ Semicolon starts a comment; the remainder of the line is ignored.

‘‘*’’ An asterisk signifies wildcarding. Note that this is just another data character whose special
meaning comes about only during internal name server search operations. Wildcarding is
only meaningful for some RR types (notably MX), and then only in the name field — not in
the data fields.

Anywhere a name appears — either in the name field or in some data field defined to contain
names — the current origin will be appended if the name does not end in a ‘‘ . ’’. This is useful for
appending the current domain name to the data, such as machine names, but may cause problems
where you do not want this to happen. A good rule of thumb is that, if the name is not in the
domain for which you are creating the data file, end the name with a ‘‘.’’.

6.5.1. $INCLUDE

An include line begins with $INCLUDE, starting in column 1, and is followed by a file
name, and, optionally, by a new temporary $ORIGIN to be used while reading this file. This
feature is particularly useful for separating different types of data into multiple files. An exam-
ple would be:

$INCLUDE /usr/local/adm/named/data/mail-exchangers

The line would be interpreted as a request to load the file /usr/named/data/mail-exchangers.
The $INCLUDE command does not cause data to be loaded into a different zone or tree. This is
simply a way to allow data for a given primary zone to be organized in separate files. Not even
the ‘‘temporary $ORIGIN’’ feature described above is sufficient to cause your data to branch
out into some other zone — zone boundaries can only be introduced in the boot file.

6.5.2. ‘‘$ORIGIN’’

The origin is a way of changing the origin in a data file. The line starts in column 1, and
is followed by a domain origin. This seems like it could be useful for putting more then one
zone into a data file, but that’s not how it works. The name server fundamentally requires that a
given zone map entirely to some specific file. You should therefore be very careful to use
$ORIGIN only once at the top of a file, or, within a file, to change to a ‘‘lower’’ domain in the
zone — never to some other zone altogether.

Name Server Operations Guide for BIND SMM:10-13

6.5.3. SOA - Start Of Authority

name {ttl} addr-class SOA Origin Person in charge
@ IN SOA ucbvax.Berkeley.Edu. kjd.ucbvax.Berkeley.Edu. (

1993041403 ; Serial
10800 ; Refresh
1800 ; Retry
3600000 ; Expire
259200) ; Minimum

The Start of Authority, SOA, record designates the start of a zone. The name is the name of the
zone. Origin is the name of the host on which this data file resides. Person in charge is the mail-
ing address for the person responsible for the name server. The serial number is the version
number of this data file; this number should be incremented whenever a change is made to the
data. Older servers permitted the use of a phantom ‘‘.’’ in this and other numbers in a zone file;
the meaning of n.m was ‘‘n000m’’ rather than the more intuitive ‘‘n*1000+m’’ (such that 1.234
translated to 1000234 rather than to 1234). This feature has been deprecated due to its obscu-
rity, unpredictability, and lack of neccessity. Note that using a ‘‘YYYYMMDDNN’’ notation
you can still make 100 changes per day until the year 4294. You should choose a notation that
works for you. If you’re a clever perl programmer you could even use RCS version numbers to
help generate your zone serial numbers. The refresh indicates how often, in seconds, the secon-
dary name servers are to check with the primary name server to see if an update is needed. The
retry indicates how long, in seconds, a secondary server should wait before retrying a failed
zone transfer. Expire is the upper limit, in seconds, that a secondary name server is to use the
data before it expires for lack of getting a refresh. Minimum is the default number of seconds to
be used for the Time To Live field on resource records which do not specify one in the zone file.
It is also an enforced minimum on Time To Live if it is specified on an RR. There should only
be one SOA record per zone.

6.5.4. NS - Name Server

{name} {ttl} addr-class NS Name servers name
IN NS ucbarpa . Berkeley . Edu.

The Name Server record, NS, lists a name server responsible for a given domain. The first name
field lists the domain that is serviced by the listed name server. There should be one NS record
for each name server for the domain, and every domain should have at least two nameservers.

6.5.5. A - Address

{name} {ttl} addr-class A address
ucbarpa IN A 128.32.0.4

IN A 10.0.0.78

The Address record, A, lists the address for a given machine. The name field is the machine
name and the address is the network address. There should be one A record for each address of
the machine.

6.5.6. HINFO - Host Information

{name} {ttl} addr-class HINFO Hardware OS
IN HINFO VAX-11/780 UNIX

Host Information resource record, HINFO, is for host specific data. This lists the hardware and
operating system that are running at the listed host. If you want to include a space in the
machine name you must quote the name. There could be one HINFO record for each host,
though for security reasons most domains don’t have any HINFO records at all. No application
depends on them.

SMM:10-14 Name Server Operations Guide for BIND

6.5.7. WKS - Well Known Services

{name} {ttl} addr-class WKS address protocol list of services
IN WKS 128.32.0.10 UDP who route timed domain
IN WKS 128.32.0.10 TCP (echo telnet

discard sunrpc sftp
uucp-path systat daytime
netstat qotd nntp
link chargen ftp
auth time whois mtp
pop rje finger smtp
supdup hostnames
domain
nameserver)

The Well Known Services record, WKS, describes the well known services supported by a par-
ticular protocol at a specified address. The list of services and port numbers come from the list
of services specified in /etc/services. There should be only one WKS record per protocol per ad-
dress. Note that RFC 1123 says of WKS records:

2.2 Using Domain Name Service
...

An application SHOULD NOT rely on the ability to locate a WKS
record containing an accurate listing of all services at a
particular host address, since the WKS RR type is not often used
by Internet sites. To confirm that a service is present, simply
attempt to use it.

...
5.2.12 WKS Use in MX Processing: RFC-974, p. 5

RFC-974 [SMTP:3] recommended that the domain system be queried
for WKS ("Well-Known Service") records, to verify that each
proposed mail target does support SMTP. Later experience has
shown that WKS is not widely supported, so the WKS step in MX
processing SHOULD NOT be used.

...
6.1.3.6 Status of RR Types

...
The TXT and WKS RR types have not been widely used by
Internet sites; as a result, an application cannot rely
on the the existence of a TXT or WKS RR in most
domains.

6.5.8. CNAME - Canonical Name

aliases {ttl} addr-class CNAME Canonical name
ucbmonet IN CNAME monet

The Canonical Name resource record, CNAME, specifies an alias or nickname for the official,
or canonical, host name. This record should be the only one associated with the alias name. All
other resource records should be associated with the canonical name, not with the nickname.
Any resource records that include a domain name as their value (e.g., NS or MX) must list the
canonical name, not the nickname.

Nicknames are also useful when a host changes its name. In that case, it is usually a good
idea to have a CNAME record so that people still using the old name will get to the right place.

Name Server Operations Guide for BIND SMM:10-15

6.5.9. PTR - Domain Name Pointer

name {ttl} addr-class PTR real name
7.0 IN PTR monet . Berkeley . Edu .

A Domain Name Pointer record, PTR, allows special names to point to some other location in
the domain. The above example of a PTR record is used in setting up reverse pointers for the
special IN-ADDR . ARPA domain. This line is from the example hosts.rev file. PTR records are
needed by the gethostbyaddr function. Note the trailing ‘‘ . ’’ which prevents BIND from
appending the current $ORIGIN.

6.5.10. MX - Mail Exchanger

name {ttl} addr-class MX preference value mail exchanger
Munnari . OZ . AU . IN MX 0 Seismo . CSS . GOV .
* . IL . IN MX 0 RELAY . CS . NET .

Mail eXchanger records, MX, are used to specify a list of hosts which are configured to receive
mail sent to this domain name. Every name which receives mail should have an MX since if
one is not found at the time mail is being delivered, an MX will be ‘‘imputed’’ with a cost of 0
and a destination of the host itself. If you want a host to receive its own mail, you should create
an MX for your host’s name, pointing at your host’s name. It is better to have this be explicit
than to let it be imputed by remote mailers. In the first example, above, Seismo . CSS . GOV . is
a mail gateway that knows how to deliver mail to Munnari . OZ . AU .. These two machines
may have a private connection or use a different transport medium. The preference value is the
order that a mailer should follow when there is more then one way to deliver mail to a single
machine. Note that lower numbers indicate higher precedence, and that mailers are supposed to
randomize same-valued MX hosts so as to distribute the load evenly if the costs are equal. See
RFC 974 for more detailed information.

Wildcard names containing the character ‘‘*’’ may be used for mail routing with MX
records. There are likely to be servers on the network that simply state that any mail to a
domain is to be routed through a relay. Second example, above, all mail to hosts in the domain
IL is routed through RELAY.CS.NET. This is done by creating a wildcard resource record,
which states that *.IL has an MX of RELAY.CS.NET. Wildcard MX records are not very useful
in practice, though, since once a mail message gets to the gateway for a given domain it still has
to be routed within that domain and it is not currently possible to have an apparently-different
set of MX records inside and outside of a domain. If you won’t be needing any Mail
Exchangers inside your domain, go ahead and use a wildcard. If you want to use both wildcard
‘‘top-level’’ and specific ‘‘interior’’ MX records, note that each specific record will have to
‘‘end with’’ a complete recitation of the same data that is carried in the top-level record. This is
because the specific MX records will take precedence over the top-level wildcard records, and
must be able to perform the top-level’s if a given interior domain is to be able to receive mail
from outside the gateway. Wildcard MX records are very subtle and you should be careful with
them.

6.5.11. TXT - Text

name {ttl} addr-class TXT string
Munnari . OZ . AU . IN TXT "foo"

A TXT record contains free-form textual data. The syntax of the text depends on the domain
where it is found; several systems use TXT records to encode the local user database
(/etc/passwd) and other administrative data. MIT Hesiod is one such system, which, though it
uses an addr-class of HS rather than IN, implements its database with TXT records in the DNS.

SMM:10-16 Name Server Operations Guide for BIND

6.5.12. RP - Responsible Person

owner {ttl} addr-class RP mbox-domain-name TXT-domain-name
franklin IN RP ben.franklin.berkeley.edu. sysadmins.berkeley.edu.

The Responsible Person record, RP, identifies the name or group name of the responsible
person for a host. Often it is desirable to be able to identify the responsible entity for a particu-
lar host. When that host is down or malfunctioning, you would want to contact those parties
who might be able to repair the host.

The first field, mbox-domain-name, is a domain name that specifies the mailbox for the
responsible person. Its format in master files uses the DNS convention for mailbox encoding,
identical to that used for the Person-in-charge mailbox field in the SOA record. In the example
above, the mbox domain name shows the encoding for ‘‘<ben@franklin.berkeley.edu>’’. The
root domain name (just ‘‘ . ’’) may be specified to indicate that no mailbox is available.

The second field, TXT-domain-name, is a domain name for which TXT records exist. A
subsequent query can be performed to retrieve the associated TXT resource records at TXT
domain name. This provides a level of indirection so that the entity can be referred to from
multiple places in the DNS. The root domain name (just ‘‘ . ’’) may be specified for TXT
domain name to indicate that no associated TXT RR exists. In the example above,
‘‘sysadmins.berkeley.edu.’’ is the name of a TXT record that might contain some text with
names and phone numbers.

The format of the RP record is class-insensitive. Multiple RP records at a single name
may be present in the database, though they should have identical TTLs.

The RP record is still experimental; not all name servers implement or recognize it.

6.5.13. AFSDB - DCE or AFS Server

name {ttl} addr-class AFSDB subtype mail exchanger
toaster.com. IN AFSDB 1 jack.toaster.com
toaster.com. IN AFSDB 1 jill.toaster.com.
toaster.com. IN AFSDB 2 tracker.toaster.com.

AFSDB records are used to specify the hosts that provide a style of distributed service adver-
tised under this domain name. A subtype value (analogous to the ‘‘preference’’ value in the MX
record) indicates which style of distributed service is provided with the given name. Subtype 1
indicates that the named host is an AFS (R) database server for the AFS cell of the given
domain name. Subtype 2 indicates that the named host provides intra-cell name service for the
DCE (R) cell named by the given domain name. In the example above, jack . toaster . com and
jill . toaster . com are declared to be AFS database servers for the toaster . com AFS cell, so that
AFS clients wishing service from tracker . com are directed to those two hosts for further infor-
mation. The third record declares that tracker . toaster . com houses a directory server for the
root of the DCE cell toaster . com, so that DCE clients that wish to refer to DCE services should
consult with the host tracker . toaster . com for further information. The DCE sub-type of record
is usually accompanied by a TXTP record for other information specifying other details to be
used in accessing the DCE cell. RFC 1183 contains more detailed information on the use of
this record type.

The AFSDB record is still experimental; not all name servers implement or recognize it.

6.6. Discussion about the TTL

The Time To Live assigned to the records and to the zone via the Minimum field in the SOA
record is very important. High values will lead to lower BIND network traffic and faster response
time. Lower values will tend to generate lots of requests but will allow faster propagation of
changes.

Only changes and deletions from the zone are affected by the TTLs. Additions propagate
according to the Refresh value in the SOA.

Name Server Operations Guide for BIND SMM:10-17

Experience has shown that sites use default TTLs for their zones varying from around 0.5 day
to around 7 days. You may wish to consider boosting the default TTL shown in former versions of
this guide from one day (86400 seconds) to three days (259200 seconds). This will drastically
reduce the number of requests made to your name servers.

If you need fast propagation of changes and deletions, it might be wise to reduce the
Minimum field a few days before the change, then do the modification itself and augment the TTL
to its former value.

If you know that your zone is pretty stable (you mainly add new records without changing
regularly old ones) then you may even wish to consider a TTL higher than three days.

Note that in any case, it makes no sense to have records with a TTL below the SOA Refresh
delay, as Delay is the time required for secondaries to get a copy of the newly modified zone.

6.7. Sample Files

The following section contains sample files for the name server. This covers example boot
files for the different types of servers and example domain data base files.

6.7.1. Boot Files

6.7.1.1. Primary Server

;
; Boot file for Primary Name Server
;

; type domain source file or host
;
directory /usr/local/adm/named
primary Berkeley.Edu ucbhosts
primary 32.128.in-addr.arpa ucbhosts.rev
primary 0.0.127.in-addr.arpa named.local
cache . root.cache

6.7.1.2. Secondary Server

;
; Boot file for Secondary Name Server
;

; type domain source file or host
;
directory /usr/local/adm/named
secondary Berkeley.Edu 128.32.0.4 128.32.0.10 ucbhosts.bak
secondary 32.128.in-addr.arpa 128.32.0.4 128.32.0.10 ucbhosts.rev.bak
primary 0.0.127.in-addr.arpa named.local
cache . root.cache

SMM:10-18 Name Server Operations Guide for BIND

6.7.1.3. Caching Only Server

;
; Boot file for Caching Only Name Server
;

; type domain source file or host
;
directory /usr/local/adm/named
cache . root.cache
primary 0.0.127.in-addr.arpa named.local

6.7.2. Remote Server / DNS Client

6.7.2.1. /etc/resolv.conf

domain Berkeley.Edu
nameserver 128.32.0.4
nameserver 128.32.0.10
sortlist 130.155.160.0/255.255.240.0 130.155.0.0

Name Server Operations Guide for BIND SMM:10-19

6.7.3. root.cache

;
; Initial cache data for root domain servers.
;
; This data was current as of April 15, 1993. The official and current
; version is always available from via anonymous FTP from RS.INTERNIC.NET
; as /domain/named.cache.
;
; Thanks to Long-Morrow@CS.Yale.EDU for providing this update.
;

. 99999999 IN NS NS.NIC.DDN.MIL.
99999999 IN NS NS.NASA.GOV.
99999999 IN NS KAVA.NISC.SRI.COM.
99999999 IN NS TERP.UMD.EDU.
99999999 IN NS AOS.ARL.ARMY.MIL.
99999999 IN NS C.NYSER.NET.
99999999 IN NS NIC.NORDU.NET.
99999999 IN NS NS.INTERNIC.NET.

; Prep the cache (hotwire the addresses).
NS.NIC.DDN.MIL. 99999999 IN A 192.112.36.4
NS.NASA.GOV. 99999999 IN A 128.102.16.10
NS.NASA.GOV. 99999999 IN A 192.52.195.10
KAVA.NISC.SRI.COM. 99999999 IN A 192.33.33.24
AOS.ARL.ARMY.MIL. 99999999 IN A 128.63.4.82
AOS.ARL.ARMY.MIL. 99999999 IN A 192.5.25.82
C.NYSER.NET. 99999999 IN A 192.33.4.12
TERP.UMD.EDU. 99999999 IN A 128.8.10.90
NIC.NORDU.NET. 99999999 IN A 192.36.148.17
NS.INTERNIC.NET. 99999999 IN A 198.41.0.4

6.7.4. named.local

@ IN SOA ucbvax.Berkeley.Edu. kjd.ucbvax.Berkeley.Edu. (
1993050201 ; Serial
10800 ; Refresh
1800 ; Retry
3600000 ; Expire
259200) ; Minimum

IN NS ucbvax.Berkeley.Edu. ; pedantic
1 IN PTR localhost.Berkeley.Edu.

SMM:10-20 Name Server Operations Guide for BIND

6.7.5. Hosts

;
; @(#)ucb-hosts 1.2 (berkeley) 88/02/05
;

@ IN SOA ucbvax.Berkeley.Edu. kjd.monet.Berkeley.Edu. (
1988020501 ; Serial
10800 ; Refresh
1800 ; Retry
3600000 ; Expire
259200) ; Minimum

IN NS ucbarpa.Berkeley.Edu.
IN NS ucbvax.Berkeley.Edu.

localhost IN A 127.1
; note that 127.1 is the same as 127.0.0.1; see inet(3n)

ucbarpa IN A 128.32.4
IN A 10.0.0.78
IN HINFO VAX-11/780 UNIX

arpa IN CNAME ucbarpa
ernie IN A 128.32.6

IN HINFO VAX-11/780 UNIX
ucbernie IN CNAME ernie
monet IN A 128.32.7

IN A 128.32.130.6
IN HINFO VAX-11/750 UNIX

ucbmonet IN CNAME monet
ucbvax IN A 10.2.0.78

; 128.32.10 means 128.32.0.10; see inet(3n)
IN A 128.32.10

; HINFO and WKS are widely unused,
; but we’ll show them as examples.

IN HINFO VAX-11/750 UNIX
IN WKS 128.32.0.10 TCP (echo telnet

discard sunrpc sftp
uucp-path systat daytime
netstat qotd nntp
link chargen ftp
auth time whhois mtp
pop rje finger smtp
supdup hostnames
domain
nameserver)

vax IN CNAME ucbvax
toybox IN A 128.32.131.119

IN HINFO Pro350 RT11
toybox IN MX 0 monet.Berkeley.Edu.
csrg IN MX 0 Ralph.CS

IN MX 0 Zhou.CS
IN MX 0 Painter.CS
IN MX 0 Riggle.CS
IN MX 0 Terry.CS
IN MX 0 Kevin.CS

Name Server Operations Guide for BIND SMM:10-21

6.7.6. host.rev

;
; @(#)ucb-hosts.rev 1.1 (Berkeley) 86/02/05
;

@ IN SOA ucbvax.Berkeley.Edu. kjd.monet.Berkeley.Edu. (
1986020501 ; Serial
10800 ; Refresh
1800 ; Retry
3600000 ; Expire
259200) ; Minimum

IN NS ucbarpa.Berkeley.Edu.
IN NS ucbvax.Berkeley.Edu.

0.0 IN PTR Berkeley-net.Berkeley.EDU.
IN A 255.255.255.0

0.130 IN PTR csdiv-net.Berkeley.EDU.
4.0 IN PTR ucbarpa.Berkeley.Edu.
6.0 IN PTR ernie.Berkeley.Edu.
7.0 IN PTR monet.Berkeley.Edu.
10.0 IN PTR ucbvax.Berkeley.Edu.
6.130 IN PTR monet.Berkeley.Edu.

7. Domain Management

This section contains information for starting, controlling and debugging named.

7.1. /etc/rc.local

The hostname should be set to the full domain style name in /etc/rc.local using hostname (1).
The following entry should be added to /etc/rc.local to start up named at system boot time:

if [-f /etc/named]; then
/etc/named [options] & echo -n ’ named’ >/dev/console

fi

This usually directly follows the lines that start syslogd. Do Not attempt to run named from inetd.
This will continuously restart the name server and defeat the purpose of the cache.

7.2. /etc/named.pid

When named is successfully started up it writes its process id into the file /etc/named.pid.
This is useful to programs that want to send signals to named. The name of this file may be changed
by defining PIDFILE to the new name when compiling named.

7.3. /etc/hosts

The gethostbyname () library call can detect if named is running. If it is determined that
named is not running it will look in /etc/hosts to resolve an address. This option was added to allow
ifconfig (8C) to configure the machines local interfaces and to enable a system manager to access
the network while the system is in single user mode. It is advisable to put the local machines inter-
face addresses and a couple of machine names and address in /etc/hosts so the system manager can
rcp files from another machine when the system is in single user mode. The format of /etc/hosts has
not changed. See hosts (5) for more information. Since the process of reading /etc/hosts is slow, it
is not advisable to use this option when the system is in multi user mode.

SMM:10-22 Name Server Operations Guide for BIND

7.4. Signals

There are several signals that can be sent to the named process to have it do tasks without res-
tarting the process.

7.4.1. Reload

SIGHUP - Causes named to read named.boot and reload the database. This is useful
when you have made a change to a ‘‘primary’’ data file and you want named ’s internal data-
base to reflect the change. If you build BIND with the FORCED_RELOAD option, then SIGHUP
also has the effect of scheduling all ‘‘secondary’’ zones for serial-number checks, which could
lead to zone transfers ahead of the usual schedule. Normally serial-number compares are done
only at the intervals specified in the zone’s SOA record.

7.4.2. Debugging

When named is running incorrectly, look first in /var/log/messages and check for any
messages logged by syslog. Next send it a signal to see what is happening. Unless you run it
with the ‘‘-d’’ option, named has very little to say on its standard output or standard error.
Everything named has to say, it says to syslog.

SIGINT - Dumps the current data base and cache to /var/ tmp/ named_dump . db This
should give you an indication to whether the data base was loaded correctly. The name of the
dump file may be changed by defining DUMPFILE to the new name when compiling named.

Note: the following two signals only work when named is built with DEBUG defined.

SIGUSR1 - Turns on debugging. Each following USR1 increments the debug level. The
output goes to /var/tmp/named.run The name of this debug file may be changed by defining
DEBUGFILE to the new name before compiling named.

SIGUSR2 - Turns off debugging completely.

For more detailed debugging, define DEBUG when compiling the resolver routines into
/lib/libc.a.

SIGWINCH - Toggles tracing of all incoming queries if named has been compiled with
QRYLOG defined. The trace is sent to syslog, and is huge, but it is very useful for tracking
down problems.

To run with tracing of all queries specify the -q flag on the command line. If you routinely log
queries you will probably want to analyze the results using the dnsstats stats script in the contrib
directory.

ACKNOWLEDGEMENTS

Many thanks to the users at U.C. Berkeley for falling into many of the holes involved with integrat-
ing BIND into the system so that others would be spared the trauma. I would also like to extend gratitude
to Jim McGinness and Digital Equipment Corporation for permitting me to spend most of my time on this
project.

Ralph Campbell, Doug Kingston, Craig Partridge, Smoot Carl-Mitchell, Mike Muuss and everyone
else on the DARPA Internet who has contributed to the development of BIND. To the members of the ori-
ginal BIND project, Douglas Terry, Mark Painter, David Riggle and Songnian Zhou.

Anne Hughes, Jim Bloom and Kirk McKusick and the many others who have reviewed this paper
giving considerable advice.

This work was sponsored by the Defense Advanced Research Projects Agency (DoD), Arpa Order
No. 4871 monitored by the Naval Electronics Systems Command under contract No. N00039-84-C-0089.
The views and conclusions contained in this document are those of the authors and should not be inter-
preted as representing official policies, either expressed or implied, of the Defense Research Projects
Agency, of the US Government, or of Digital Equipment Corporation.

Name Server Operations Guide for BIND SMM:10-23

Update for the 4.9 release: the alpha-test group was extremely helpful in furnishing improvements,
finding and repairing bugs, and being patient. I would like to express special thanks to Brian Reid for fund-
ing this work. Robert Elz, Alan Barrett, Paul Albitz, Bryan Beecher, Andrew Partan, Andy Cherenson,
Tom Limoncelli, Berthold Paffrath, Fuat Baran, Anant Kumar, Art Harkin, Win Treese, Don Lewis, Chris-
tophe Wolfhugel, and a cast of dozens all helped out above and beyond the call of duty. Special thanks to
Phil Almquist, who got the project started and contributed a lot of the code and fixed several of the worst
bugs. [Paul Vixie, DECWRL and DECNSL, April ’93].

SMM:10-24 Name Server Operations Guide for BIND

REFERENCES

[Birrell] Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M.D., ‘‘Grapevine: An Exer-
cise in Distributed Computing.’’ In Comm. A.C.M. 25, 4:260-274 April 1982.

[RFC819] Su, Z. Postel, J., ‘‘The Domain Naming Convention for Internet User Applications.’’
Internet Request For Comment 819 Network Information Center, SRI International,
Menlo Park, California. August 1982.

[RFC974] Partridge, C., ‘‘Mail Routing and The Domain System.’’ Internet Request For Comment
974 Network Information Center, SRI International, Menlo Park, California. February
1986.

[RFC1032] Stahl, M., ‘‘Domain Administrators Guide’’ Internet Request For Comment 1032 Net-
work Information Center, SRI International, Menlo Park, California. November 1987.

[RFC1033] Lottor, M., ‘‘Domain Administrators Guide’’ Internet Request For Comment 1033 Net-
work Information Center, SRI International, Menlo Park, California. November 1987.

[RFC1034] Mockapetris, P., ‘‘Domain Names - Concept and Facilities.’’ Internet Request For Com-
ment 1034 Network Information Center, SRI International, Menlo Park, California.
November 1987.

[RFC1035] Mockapetris, P., ‘‘Domain Names - Implementation and Specification.’’ Internet
Request For Comment 1035 Network Information Center, SRI International, Menlo Park,
California. November 1987.

[RFC1101] Mockapetris, P., ‘‘DNS Encoding of Network Names and Other Types.’’ Internet
Request For Comment 1101 Network Information Center, SRI International, Menlo Park,
California. April 1989.

[RFC1123] R. Braden, Editor, ‘‘Requirements for Internet Hosts -- Application and Support’’ Inter-
net Request For Comment 1123 Network Information Center, SRI International, Menlo
Park, California. October 1989.

[RFC1183] Everhart, C., Mamakos, L., Ullmann, R., and Mockapetris, P., ‘‘New DNS RR
Definitions’’ Internet Request For Comment 1183 Network Information Center, SRI
International, Menlo Park, California. October 1990.

[Terry] Terry, D. B., Painter, M., Riggle, D. W., and Zhou, S., The Berkeley Internet Name
Domain Server. Proceedings USENIX Summer Conference, Salt Lake City, Utah. June
1984, pages 23-31.

[Zhou] Zhou, S., The Design and Implementation of the Berkeley Internet Name Domain (BIND)
Servers. UCB/CSD 84/177. University of California, Berkeley, Computer Science Divi-
sion. May 1984.

[Mockapetris] Mockapetris, P., Dunlap, K, Development of the Domain Name System ACM Computer
Communications Review 18, 4:123-133. Proceedings ACM SIGCOMM ’88 Sympo-
sium, August 1988.

[Liu] Liu, C., Albitz, P., DNS and BIND O’Reilly & Associates, Sebastopol, CA, 502 pages,
ISBN 0-937175-82-X 1992

