
Ex/Vi Reference Manual

Keith Bostic

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

December 2, 1994

Abstract

This document is the reference guide for the 4.4BSD implementations of nex/nvi, which are
reimplementations of the historic Berkeley ex/vi editors.

Acknowledgements

Bruce Englar encouraged the early development of the historic ex/vi editor. Peter Kessler
helped bring sanity to version 2’s command layout. Bill Joy wrote versions 1 and 2.0 through 2.7, and
created the framework that users see in the present editor. Mark Horton added macros and other
features and made ex/vi work on a large number of terminals and Unix systems.

Nvi is originally derived from software contributed to the University of California, Berkeley by
Steve Kirkendall, the author of the vi clone elvis.

IEEE Standard Portable Operating System Interface for Computer Environments (POSIX)
1003.2 style Regular Expression support was done by Henry Spencer.

The curses library was originally done by Ken Arnold. Scrolling and reworking for nvi was
done by Elan Amir.

The Institute of Electrical and Electronics Engineers has given us permission to reprint portions
of their documentation. Portions of this document are reprinted and reproduced from IEEE Std
1003.2-1992, IEEE Standard Portable Operating System Interface for Computer Environments (PO-
SIX), copyright 1992 by the Institute of Electrical and Electronics Engineers, Inc.

The financial support of UUNET Communications Services is gratefully acknowledged.

Nvi/Nex Reference USD:13-3

1. Description

Vi is a screen oriented text editor. Ex is a line-oriented text editor. Ex and vi are different interfaces
to the same program, and it is possible to switch back and forth during an edit session. View is the
equivalent of using the −−R (read-only) option of vi.

This reference manual is the one provided with the nex/nvi versions of the ex/vi text editors.
Nex/nvi are intended as bug-for-bug compatible replacements for the original Fourth Berkeley Software
Distribution (4BSD) ex/vi programs. This reference manual is accompanied by a traditional-style manual
page. That manual page describes the functionality found in ex/vi in far less detail than the description
here. In addition, it describes the system interface to ex/vi, e.g. command line options, session recovery,
signals, environmental variables, and similar things.

This reference is intended for users already familiar with ex/vi. Anyone else should almost certainly
read a good tutorial on the editor first. If you are in an unfamiliar environment, and you absolutely have to
get work done immediately, see the section entitled ‘‘Fast Startup’’ in the manual page. It is probably
enough to get you started.

There are a few features in nex/nvi that are not found in historic versions of ex/vi. Some of the more
interesting of those features are briefly described in the section entitled ‘‘Additional Features’’ near the
end of this document. For the rest of this document, nex/nvi is used only when it is necessary to distin-
guish it from the historic implementations of ex/vi.

Future versions of this software will be periodically made available by anonymous ftp, and can be
retrieved from ftp.cs.berkeley.edu, in the directory ucb/4bsd.

2. Startup Information

Ex/vi interprets one of two possible environmental variables and reads up to three of five possible
files during startup. The variables and files are expected to contain ex commands, not vi commands. In
addition, they are interpreted before the file to be edited is read, and therefore many ex commands may not
be used. Generally, any command that requires output to the screen or that needs a file upon which to
operate, will cause an error if included in a startup file or environmental variable.

Because the ex command set supported by nex/nvi is a superset of the command set supported by
most historical implementations of ex, nex/nvi can use the startup files created for the historical implemen-
tations, but the converse may not be true.

If the −−s (the historic − option) is specified, or if standard input is redirected from a file, all environ-
mental variables and startup files are ignored.

Otherwise, startup files and environmental variables are handled in the following order:

(1) The file /etc/vi.exrc is read, as long as it is owned by root or the effective user ID of the user.

(2) The environmental variable NEXINIT (or the variable EXINIT, if NEXINIT is not set) is inter-
preted.

(3) If neither NEXINIT or EXINIT was set, and the HOME environmental variable is set, the file
$HOME/.nexrc (or the file $HOME/.exrc, if $HOME/.nexrc does not exist) is read, as long
as the effective user ID of the user is root or is the same as the owner of the file.

(4) If the exrc option was turned on by one of the previous startup information sources, the file
.nexrc (or the file .exrc, if .nexrc does not exist) is read, as long as the effective user ID of
the user is the same as the owner of the file.

No startup file is read if it is writable by anyone other than its owner.

It is not an error for any of the startup environmental variables or files not to exist.

Once all environmental variables are interpreted, and all startup files are read, the first file to be
edited is read in (or a temporary file is created). Then, any commands specified using the −−c option are
executed, in the context of that file.

USD:13-4 Nvi/Nex Reference

3. Recovery

There is no recovery program for nex/nvi, nor does nex/nvi run setuid. Recovery files are created
readable and writable by the owner only. Users may recover any file which they can read, and the
superuser may recover any edit session.

Edit sessions are backed by files in the directory named by the recdir option (the directory
/var/tmp/vi.recover by default), and are named ‘‘vi.XXXXXX’’, where ‘‘XXXXXX’’ is a number
related to the process ID. When a file is first modified, a second recovery file containing an email message
for the user is created, and is named ‘‘recover.XXXXXX’’, where, again, ‘‘XXXXXX’’ is associated with
the process ID. Both files are removed at the end of a normal edit session, but will remain if the edit ses-
sion is abnormally terminated or the user runs the ex preserve command.

The recdir option may be set in either the user’s or system’s startup information, changing the
recovery directory. (Note, however, that if a memory based file system is used as the backup directory,
each system reboot will delete all of the recovery files! The same caution applies to directories such as
/tmp which are cleared of their contents by a system reboot, or /usr/tmp which is periodically cleared
of old files on many systems.)

The recovery directory should be owned by root, or at least by a pseudo-user. In addition, if direc-
tory ‘‘sticky-bit’’ semantics are available, the directory should have the sticky-bit set so that files may only
be removed by their owners. The recovery directory must be read, write, and executable by any user, i.e.
mode 1777.

If the recovery directory does not exist, ex/vi will attempt to create it. This can result in the recovery
directory being owned by a normal user, which means that that user will be able to remove other user’s
recovery and backup files. This is annoying, but is not a security issue as the user cannot otherwise access
or modify the files.

The recovery file has all of the necessary information in it to enable the user to recover the edit ses-
sion. In addition, it has all of the necessary email headers for sendmail(8). When the system is rebooted,
all of the files in /var/tmp/vi.recover named ‘‘recover.XXXXXX’’ should be sent to their owners,
by email, using the −−t option of sendmail (or a similar mechanism in other mailers). If ex/vi receives a
hangup (SIGHUP) signal, or the user executes the ex preserve command, ex/vi will automatically email
the recovery information to the user.

If your system does not have the sendmail utility (or a mailer program which supports its interface)
the source file nvi/common/recover.c will have to be modified to use your local mail delivery pro-
grams. Note, if nex/nvi is changed to use another mailer, it is important to remember that the owner of the
file given to the mailer is the nex/nvi user, so nothing in the file should be trusted as it may have been
modified in an effort to compromise the system.

Finally, the owner execute bit is set on backup files when they are created, and unset when they are
first modified, e.g. backup files that have no associated email recovery file will have this bit set. (There is
also a small window where empty files can be created and not yet have this bit set. This is due to the
method in which the files are created.) Such files should be deleted when the system reboots.

A simple way to do this cleanup is to insert the following Bourne shell script into your
/etc/rc.local (or other startup) file. The script should work with the historic Bourne shell, a POSIX
1003.2 shell or the Korn shell. (A copy of this script is included as nvi/install/recover.script
in the nex/nvi distribution.)

Nvi/Nex Reference USD:13-5

@(#)recover.script 8.7 (Berkeley) 8/16/94
#
Script to recover nvi edit sessions.
#
RECDIR=/var/tmp/vi.recover
SENDMAIL=/usr/lib/sendmail
echo ’Recovering nvi editor sessions.’

Check editor backup files.
vibackup=‘echo $RECDIR/vi.*‘
if ["$vibackup" != "$RECDIR/vi.*"]; then

for i in $vibackup; do
Only test files that are readable.
if test ! -r $i; then

continue
fi

Unmodified nvi editor backup files either have the
execute bit set or are zero length. Delete them.
if test -x $i -o ! -s $i; then

rm $i
fi

done
fi

It is possible to get incomplete recovery files, if the editor crashes
at the right time.
virecovery=‘echo $RECDIR/recover.*‘
if ["$virecovery" != "$RECDIR/recover.*"]; then

for i in $virecovery; do
Only test files that are readable.
if test ! -r $i; then

continue
fi

Delete any recovery files that are zero length, corrupted,
or that have no corresponding backup file. Else send mail
to the user.
recfile=‘awk ’/ˆX-vi-recover-path:/{print $2}’ < $i‘
if test -n "$recfile" -a -s "$recfile"; then

$SENDMAIL -t < $i
else

rm $i
fi

done
fi

If you are not using the default value for the recdir option, be sure to substitute the value you’re
using for the RECDIR value in the recovery script.

If the path of your system’s sendmail program (or whatever mailer you’re using) is not
/usr/lib/sendmail, be sure to substitute the correct pathname for the SENDMAIL value in the
recovery script. Consult the manual page for details on recovering preserved or aborted editing sessions.

USD:13-6 Nvi/Nex Reference

4. Sizing the Screen

The size of the screen can be set in a number of ways. Ex/vi takes the following steps until values
are obtained for both the number of rows and number of columns in the screen.

(1) If the environmental variable LINES exists, it is used to specify the number of rows in the screen.

(2) If the environmental variable COLUMNS exists, it is used to specify the number of columns in the
screen.

(3) The TIOCGWINSZ ioctl(2) is attempted on the standard error file descriptor.

(4) The termcap entry (or terminfo entry on System V machines) is checked for the ‘‘li’’ entry (rows)
and the ‘‘co’’ entry (columns).

(5) The number of rows is set to 24, and the number of columns is set to 80.

If a window change size signal (SIGWINCH) is received, the new window size is retrieved using the
TIOCGWINSZ ioctl(2) call, and all other information is ignored.

5. Character Display

In both ex and vi printable characters as defined by isprint(3) are displayed using the local character
set.

Non-printable characters, for which iscntrl(3) returns true, and which are less than octal \076, are
displayed as the string ‘‘ˆ<character>’’, where <character> is the character that is the original
character’s value offset from the ‘‘@’’ character. For example, the octal character \001 is displayed as
‘‘ˆA’’. If iscntrl(3) returns true for the octal character \177, it is displayed as the string ‘‘ˆ?’’. All other
characters are displayed as either hexadecimal values, in the form ‘‘0x<high-halfbyte> ...
0x<low-halfbyte>’’, or as octal values, in the form ‘‘\<high-one-or-two-bits> ...
\<low-three-bits>’’. The display of unknown characters is based on the value of the octal option.

In vi command mode, the cursor is always positioned on the last column of characters which take up
more than one column on the screen. In vi text input mode, the cursor is positioned on the first column of
characters which take up more than one column on the screen.

6. Multiple Screens

Nvi supports multiple screens by dividing the window into regions. It also supports stacks of screens
by permitting the user to change the set of screens that are currently displayed.

The command split divides the current screen into two regions of approximately equal size. If a list
of files are specified as arguments to the split command, the list of files to be edited is initialized as if the
next command had been used. If no files are specified, the new screen will begin by editing the same file
as the previous screen.

When more than one screen is editing a file, changes in any screen are reflected in all other screens
editing the same file. Exiting a screen without saving any changes (or explicitly discarding them) is per-
mitted until the last screen editing the file is exited, at which time the changes must be saved or discarded.

The resize command permits resizing of individual screens. Screens may be grown, shrunk or set to
an absolute number of rows.

The ˆW command is used to switch between screens. Each ˆW moves to the next lower screen in the
window, or to the first screen in the window if there are no lower screens.

The bg command ‘‘backgrounds’’ the current screen. The screen disappears from the window, and
the rows it occupied are taken over by a neighboring screen. It is an error to attempt to background the
only screen in the window.

The display screens command displays the names of the files associated with the current back-
grounded screens in the window.

The fg [file] command ‘‘foregrounds’’ the first screen in the list of backgrounded screens that is
associated with its argument. If no file argument is specified, the first screen on the list is foregrounded.
Foregrounding consists of backgrounding the current screen, and replacing its space in the window with the
foregrounded screen.

Nvi/Nex Reference USD:13-7

If the last screen in the window is exited, and there are backgrounded screens, the first screen on the
list of backgrounded screens takes over the window.

7. Regular Expressions and Replacement Strings

Regular expressions are used in line addresses, as the first part of the ex substitute, global, and v
commands, and in search patterns.

The regular expressions supported by ex/vi are, by default, the Basic Regular Expressions (BRE’s)
described in the IEEE POSIX Standard 1003.2. The extended option causes all regular expressions to be
interpreted as the Extended Regular Expressions (ERE’s) described by the same standard. (See
re_format(7) for more information.) Generally speaking, BRE’s are the Regular Expressions found in
ed(1) and grep(1), and ERE’s are the Regular Expressions found in egrep(1).

The following is not intended to provide a description of Regular Expressions. The information here
only describes strings and characters which have special meanings in the ex/vi version of RE’s, or options
which change the meanings of characters that normally have special meanings in RE’s.

(1) An empty RE (e.g. ‘‘//’’ or ‘‘??’’ is equivalent to the last RE used.

(2) The construct ‘‘\<’’ matches the beginning of a word.

(3) The construct ‘‘\>’’ matches the end of a word.

(4) The character ‘‘˜’’ matches the replacement part of the last substitute command.

When the magic option is not set, the only characters with special meanings are a ‘‘ˆ’’ character at
the beginning of an RE, a ‘‘$’’ character at the end of an RE, and the escaping character ‘‘\’’. The char-
acters ‘‘.’’, ‘‘*’’, ‘‘[’’ and ‘‘˜’’ are treated as ordinary characters unless preceded by a ‘‘\’’; when pre-
ceded by a ‘‘\’’ they regain their special meaning.

Replacement strings are the second part of a substitute command.

The character ‘‘&’’ (or ‘‘\&’’ if the magic option is not set) in the replacement string stands for the
text matched by the RE that is being replaced. The character ‘‘˜’’ (or ‘‘\˜’’ if the magic option is not set)
stands for the replacement part of the previous substitute command. It is only valid after a substitute
command has been performed.

The string ‘‘\#’’, where ‘‘#’’ is an integer value from 1 to 9, stands for the text matched by the por-
tion of the RE enclosed in the ‘‘#’’’th set of escaped parentheses, e.g. ‘‘\(’’ and ‘‘\)’’. For example,
‘‘s/abc\(.*\)def/\1/’’ deletes the strings ‘‘abc’’ and ‘‘def’’ from the matched pattern.

The strings ‘‘\l’’, ‘‘\u’’, ‘‘\L’’ and ‘‘\U’’ can be used to modify the case of elements in the
replacement string. The string ‘‘\l’’ causes the next character to be converted to lowercase; the string
‘‘\u’’ behaves similarly, but converts to uppercase (e.g. s/abc/\U&/ replaces the string abc with
ABC). The strings ‘‘\L’’ causes characters up to the end of the string or the next occurrence of the strings
‘‘\e’’ or ‘‘\E’’ to be converted to lowercase; the string ‘‘\U’’ behaves similarly, but converts to upper-
case.

If the entire replacement pattern is ‘‘%’’, then the last replacement pattern is used again.

In vi, inserting a <control-M> into the replacement string will cause the matched line to be split
into two lines at that point. (The <control-M> will be discarded.)

8. General Editor Description

When ex or vi are executed, the text of a file is read (or a temporary file is created), and then all edit-
ing changes happen within the context of the copy of the file. No changes affect the actual file until the file
is written out, either using a write command or another command which is affected by the autowrite
option.

All files are locked (using the flock(2) or fcntl(2) interfaces) during the edit session, to avoid inadver-
tently making modifications to multiple copies of the file. If a lock cannot be obtained for a file because it
is locked by another process, the edit session is read-only (as if the readonly option or the −−R flag had
been specified). If a lock cannot be obtained for other reasons, the edit session will continue, but the file
status information (see the <control-G> command) will reflect this fact.

USD:13-8 Nvi/Nex Reference

Both ex and vi are modeful editors, i.e. they have two modes, ‘‘command’’ mode and ‘‘text input’’
mode. The former is intended to permit you to enter commands which modifies already existing text. The
latter is intended to permit you to enter new text. When ex first starts running, it is in command mode, and
usually displays a prompt (see the prompt option for more information). The prompt is a single colon
(‘‘:’’) character. There are three commands that switch ex into text input mode: append, change and
insert. Once in input mode, entering a line containing only a single period (‘‘.’’) ends text input mode
and returns to command mode, where the prompt is redisplayed.

When vi first starts running, it is in command mode as well. There are eleven commands that switch
vi into text input mode: A, a, C, c, I, i, O, o, R, S and s. Once in input mode, entering an <escape> char-
acter ends text input mode and returns to command mode.

Ex/vi present three different interfaces to editing a file. Ex presents a line oriented interface. Vi
presents a full screen display oriented interface, also known as ‘‘visual mode’’. In addition, there is a third
mode, ‘‘open mode’’, which is line oriented, but supports cursor movement and editing within the
displayed line, similarly to visual mode. Open mode is not yet implemented in nvi.

The following words have special meanings in both the ex and vi command descriptions:

<interrupt>
The interrupt character is used to interrupt the current operation. Normally <control-C>, what-
ever character is set for the current terminal is used.

<literal-next>
The literal next character is used to escape the subsequent character from any special meaning. This
character is always <control-V>. If the terminal is not set up to do XON/XOFF flow control,
then <control-Q> is used to mean literal next as well.

current pathname
The pathname of the file currently being edited by vi. When the percent character (‘‘%’’) appears in
a file name entered as part of an ex command argument, it is replaced by the current pathname. (The
‘‘%’’ character can be escaped by preceding it with a backslash.)

alternate pathname
The name of the last file name mentioned in an ex command, or, the previous current pathname if the
last file mentioned becomes the current file. When the hash mark character (‘‘#’’) appears in a file
name entered as part of an ex command argument, it is replaced by the alternate pathname. (The
‘‘#’’ character can be escaped by preceding it with a backslash.)

buffer
One of a number of named areas for saving copies of text. Commands that change or delete text can
save the changed or deleted text into a specific buffer, for later use, if the command allows it (i.e. the
ex change command cannot save the changed text in a named buffer). Buffers are named with a sin-
gle character, preceded by a double quote, e.g. "<character> in vi and without the double quote,
e.g. <character>, in ex. (The double quote isn’t necessary for ex because buffers names are
denoted by their position in the command line.) Historic implementations of ex/vi limited <char-
acter> to the alphanumeric characters; nex/nvi permits the use of any character without another
meaning in the position where a buffer name is expected.

Buffers named by uppercase characters are the same as buffers named by lowercase characters, e.g.
the buffer named by the English character ‘‘A’’ is the same as the buffer named by the character
‘‘a’’, with the exception that, if the buffer contents are being changed (as with a text deletion or vi
change command), the text is appended to the buffer, instead of replacing the current contents.

The buffers named by the numeric characters (in English, ‘‘1’’ through ‘‘9’’), are special. If a
region of text including characters from more than one line, or a single line of text specified by using
a line-oriented motion, is changed or deleted in the file using the vi change or delete commands, a
copy of the text is placed into the numeric buffer ‘‘1’’, regardless of the user specifying another

Nvi/Nex Reference USD:13-9

buffer in which to save it. In addition, there are a few commands which, when used as a motion
with the vi change and delete commands, always copy the specified region of text into the numeric
buffers regardless of the region including characters from more than one line. These commands are:

<control-A> % ()
‘<character> / ? N

n { }

Before this copy is done, the previous contents of buffer ‘‘1’’ are moved into buffer ‘‘2’’, ‘‘2’’ into
buffer ‘‘3’’, and so on. The contents of buffer ‘‘9’’ are discarded. In vi, text may be explicitly
stored into the numeric buffers. In this case, the buffer rotation described above occurs before the
replacement of the buffer’s contents. The numeric buffers are only available in visual and open
modes, and are not accessible by ex in any way, although changed and deleted text is still stored
there while in ex mode.

When a vi command synopsis shows both a [buffer] and a [count], they may be presented in
any order.

Finally, all buffers are either ‘‘line’’ or ‘‘character’’ oriented. All ex commands which store text
into buffers are line oriented. Some vi commands which store text into buffers are line oriented, and
some are character oriented; the description for each applicable vi command notes whether text
copied into buffers using the command is line or character oriented. In addition, the vi command
display buffers displays the current orientation for each buffer. Generally, the only importance
attached to this orientation is that if the buffer is subsequently inserted into the text, line oriented
buffers create new lines for each of the lines they contain, and character oriented buffers create new
lines for any lines other than the first and last lines they contain. The first and last lines are inserted
into the text at the current cursor position, becoming part of the current line. If there is more than
one line in the buffer, however, the current line itself will be split.

unnamed buffer
The unnamed buffer is a text storage area which is used by commands that use or operate on a buffer
when no buffer is specified by the user. If the command stores text into a buffer, the text is stored
into the unnamed buffer even if a buffer is also specified by the user, It is not possible to append text
to the unnamed buffer. If text is appended to a named buffer, the named buffer contains both the old
and new text, while the unnamed buffer contains only the new text. There is no way to explicitly
reference the unnamed buffer.

Historically, the contents of the unnamed buffer were discarded by many different commands, even
ones that didn’t store text into it. Nex/nvi never discards the contents of the unnamed buffer until
new text replaces them.

whitespace
The characters <tab> and <space>.

<carriage-return>
The character represented by an ASCII <control-M>. This character is almost always treated
identically to a <newline> character, but differs in that it can be escaped into the file text or into a
command.

<newline>
The character represented by an ASCII <control-J>. This character is almost always treated
identically to a <control-M> character, but differs in that it cannot be escaped into the file text or
into a command.

USD:13-10 Nvi/Nex Reference (Vi Commands)

9. Vi Description

Vi takes up the entire screen to display the edited file, except for the bottom line of the screen. The
bottom line of the screen is used to enter ex commands, and for vi error and informational messages. If no
other information is being displayed, the default display can show the current cursor row and cursor
column, an indication of whether the file has been modified, and the current mode of the editor. See the
ruler and showmode options for more information.

Empty lines do not have any special representation on the screen, but lines on the screen that would
logically come after the end of the file are displayed as a single tilde (‘‘˜’’) character. To differentiate
between empty lines and lines consisting of only whitespace characters, use the list option. Historically,
implementations of vi have also displayed some lines as single asterisk (‘‘@’’) characters. These were lines
that were not correctly displayed, i.e. lines on the screen that did not correspond to lines in the file, or lines
that did not fit on the current screen. Nvi never displays lines in this fashion.

Vi is a modeful editor, i.e. it has two modes, ‘‘command’’ mode and ‘‘text input’’ mode. When vi
first starts, it is in command mode. There are several commands that change vi into text input mode. The
<escape> character is used to resolve the text input into the file, and exit back into command mode. In vi
command mode, the cursor is always positioned on the last column of characters which take up more than
one column on the screen. In vi text insert mode, the cursor is positioned on the first column of characters
which take up more than one column on the screen.

When positioning the cursor to a new line and column, the type of movement is defined by the dis-
tance to the new cursor position. If the new position is close, the screen is scrolled to the new location. If
the new position is far away, the screen is repainted so that the new position is on the screen. If the screen
is scrolled, it is moved a minimal amount, and the cursor line will usually appear at the top or bottom of the
screen. If the screen is repainted, the cursor line will appear in the center of the screen, unless the cursor is
sufficiently close to the beginning or end of the file that this isn’t possible. If the leftright option is set, the
screen may be scrolled or repainted in a horizontal direction as well as in a vertical one.

A major difference between the historical vi presentation and nvi is in the scrolling and screen
oriented position commands, <control-B>, <control-D>, <control-E>, <control-F>, <control-U>,
<control-Y>, H, L and M. In historical implementations of vi, these commands acted on physical (as
opposed to logical, or screen) lines. For lines that were sufficiently long in relation to the size of the
screen, this meant that single line scroll commands might repaint the entire screen, scrolling or screen posi-
tioning commands might not change the screen or move the cursor at all, and some lines simply could not
be displayed, even though vi would edit the file that contained them. In nvi, these commands act on logi-
cal, i.e. screen lines. You are unlikely to notice any difference unless you are editing files with lines
significantly longer than a screen width.

Vi keeps track of the currently ‘‘most attractive’’ cursor position. Each command description (for
commands that alter the current cursor position), specifies if the cursor is set to a specific location in the
line, or if it is moved to the ‘‘most attractive cursor position’’. The latter means that the cursor is moved to
the cursor position that is horizontally as close as possible to the current cursor position. If the current line
is shorter than the cursor position vi would select, the cursor is positioned on the last character in the line.
(If the line is empty, the cursor is positioned on the first column of the line.) If a command moves the cur-
sor to the most attractive position, it does not alter the current cursor position, and a subsequent movement
will again attempt to move the cursor to that position. Therefore, although a movement to a line shorter
than the currently most attractive position will cause the cursor to move to the end of that line, a subsequent
movement to a longer line will cause the cursor to move back to the most attractive position.

In addition, the $ command makes the end of each line the most attractive cursor position rather than
a specific column.

Each vi command described below notes where the cursor ends up after it is executed. This position
is described in terms of characters on the line, i.e. ‘‘the previous character’’, or, ‘‘the last character in the
line’’. This is to avoid needing to continually refer to on what part of the character the cursor rests.

The following words have special meaning for vi commands.

previous context
The position of the cursor before the command which caused the last absolute movement was

Nvi/Nex Reference (Vi Commands) USD:13-11

executed. Each vi command described in the next section that is considered an absolute movement is
so noted. In addition, specifying any address to an ex command is considered an absolute move-
ment.

motion
A second vi command can be used as an optional trailing argument to the vi <, >, !, c, d, y, and
(depending on the tildeop option) ˜ commands. This command indicates the end of the region of text
that’s affected by the command. The motion command may be either the command character
repeated (in which case it means the current line) or a cursor movement command. In the latter case,
the region affected by the command is from the starting or stopping cursor position which comes first
in the file, to immediately before the starting or stopping cursor position which comes later in the file.
Commands that operate on lines instead of using beginning and ending cursor positions operate on
all of the lines that are wholly or partially in the region. In addition, some other commands become
line oriented depending on where in the text they are used. The command descriptions below note
these special cases.

The following commands may all be used as motion components for vi commands:

<control-A> <control-H> <control-J> <control-M>
<control-N> <control-P> <space> $

% ’<character> ()
+ , - /
0 ; ? B
E F G H
L M N T
W [[]] ˆ
_ ‘<character> b e
f h j k
l n t w
{ | }

The optional count prefix available for some of the vi commands that take motion commands, or the
count prefix available for the vi commands that are used as motion components, may be included and
is always considered part of the motion argument. For example, the commands ‘‘c2w’’ and ‘‘2cw’’
are equivalent, and the region affected by the c command is two words of text. In addition, if the
optional count prefix is specified for both the vi command and its motion component, the effect is
multiplicative and is considered part of the motion argument. For example, the commands ‘‘4cw’’
and ‘‘2c2w’’ are equivalent, and the region affected by the c command is four words of text.

count
A positive number used as an optional argument to most commands, either to give a size or a posi-
tion (for display or movement commands), or as a repeat count (for commands that modify text).
The count argument is always optional and defaults to 1 unless otherwise noted in the command
description.

When a vi command synopsis shows both a [buffer] and [count], they may be presented in
any order.

word
Generally, in languages where it is applicable, vi recognizes two kinds of words. First, a sequence of
letters, digits and underscores, delimited at both ends by: characters other than letters, digits, or
underscores, the beginning or end of a line, and the beginning or end of the file. Second, a sequence
of characters other than letters, digits, underscores, or whitespace characters, delimited at both ends
by: a letter, digit, underscore, or whitespace character, the beginning or end of a line, and the begin-
ning or end of the file. For example, the characters ‘‘ !@#abc$%ˆ ’’ contain three words: ‘‘!@#’’,

USD:13-12 Nvi/Nex Reference (Vi Commands)

‘‘abc’’ and ‘‘$%ˆ’’.

Groups of empty lines (or lines containing only whitespace characters) are treated as a single word.

bigword
A set of non-whitespace characters preceded and followed by whitespace characters or the beginning
or end of the file or line. For example, the characters ‘‘ !@#abc$%ˆ ’’ contain one bigword:
‘‘!@#abc$%ˆ’’.

Groups of empty lines (or lines containing only whitespace characters) are treated as a single big-
word.

paragraph
An area of text that begins with either the beginning of a file, an empty line, or a section boundary,
and continues until either an empty line, section boundary, or the end of the file.

Groups of empty lines (or lines containing only whitespace characters) are treated as a single para-
graph.

Additional paragraph boundaries can be defined using the paragraphs option.

section
An area of text that starts with the beginning of the file or a line whose first character is an open
brace (‘‘{’’) and continues until the next section or the end of the file.

Additional section boundaries can be defined using the sections option.

sentence
An area of text that begins with either the beginning of the file or the first nonblank character follow-
ing the previous sentence, paragraph, or section boundary and continues until the end of the file or a
period (‘‘.’’) exclamation point (‘‘!’’) or question mark (‘‘?’’) character, followed by either an
end-of-line or two whitespace characters. Any number of closing parentheses (‘‘)’’), brackets
(‘‘]’’), double-quote (‘‘"’’) or single quote (‘‘’’’) characters can appear between the period, excla-
mation point, or question mark and the whitespace characters or end-of-line.

Groups of empty lines (or lines containing only whitespace characters) are treated as a single sen-
tence.

10. Vi Commands

The following section describes the commands available in the command mode of the vi editor. In
each entry below, the tag line is a usage synopsis for the command character. In addition, the final line and
column the cursor rests upon, and any options which affect the command are noted.

[count] <control-A>
Search forward count times for the current word. The current word begins at the first non-
whitespace character on or after the current cursor position, and extends up to the next non-word
character or the end of the line. The search is literal, i.e. no characters in the word have any special
meaning in terms of Regular Expressions. It is an error if no matching pattern is found between the
starting position and the end of the file.

The <control-A> command is an absolute movement. The <control-A> command may be used as
the motion component of other vi commands, in which case any text copied into a buffer is character
oriented.

Line: Set to the line where the word is found.

Nvi/Nex Reference (Vi Commands) USD:13-13

Column: Set to the first character of the word.
Options: Affected by the ignorecase and wrapscan options.

[count] <control-B>
Page backward count screens. Two lines of overlap are maintained, if possible, by displaying the
window starting at line (top_line - count * window_size) + 2, where
window_size is the value of the window option. (In the case of split screens, this size is corrected
to the current screen size.) It is an error if the movement is past the beginning of the file.

Line: Set to the last line of text displayed on the screen.
Column: Set to the first nonblank character of the line.
Options: Affected by the window option.

[count] <control-D>
Scroll forward count lines. If count is not specified, scroll forward the number of lines specified
by the last <control-D> or <control-U> command. If this is the first <control-D> or <control-U>
command, scroll forward half the number of lines in the screen. (In the case of split screens, the
default scrolling distance is corrected to half the current screen size.) It is an error if the movement
is past the end of the file.

Line: Set to the current line plus the number of lines scrolled.
Column: Set to the first nonblank character of the line.
Options: None.

[count] <control-E>
Scroll forward count lines, leaving the cursor on the current line and column, if possible. It is an
error if the movement is past the end of the file.

Line: Unchanged unless the current line scrolls off the screen, in which case it is set to the first
line on the screen.

Column: Unchanged unless the current line scrolls off the screen, in which case it is set to the most
attractive cursor position.

Options: None.

[count] <control-F>
Page forward count screens. Two lines of overlap are maintained, if possible, by displaying the
window starting at line top_line + count * window_size - 2, where window_size is
the value of the window option. (In the case of split screens, this size is corrected to the current
screen size.) It is an error if the movement is past the end of the file.

Line: Set to the first line on the screen.
Column: Set to the first nonblank character of the current line.
Options: Affected by the window option.

<control-G>
Display the file information. The information includes the current pathname, the current line, the
number of total lines in the file, the current line as a percentage of the total lines in the file, if the file
has been modified, was able to be locked, if the file’s name has been changed, and if the edit session
is read-only.

Line: Unchanged.
Column: Unchanged.
Options: None.

<control-H>
[count] h

Move the cursor back count characters in the current line. It is an error if the cursor is on the first

USD:13-14 Nvi/Nex Reference (Vi Commands)

character in the line.

The <control-H> and h commands may be used as the motion component of other vi commands, in
which case any text copied into a buffer is character oriented.

Line: Unchanged.
Column: Set to the current - count character, or, the first character in the line if count is

greater than or equal to the number of characters in the line before the cursor.
Options: None.

[count] <control-J>
[count] <control-N>
[count] j

Move the cursor down count lines without changing the current column. It is an error if the move-
ment is past the end of the file.

The <control-J>, <control-N> and j commands may be used as the motion component of other vi
commands, in which case any text copied into a buffer is line oriented.

Line: Set to the current line plus count.
Column: The most attractive cursor position.
Options: None.

<control-L>
<control-R>

Repaint the screen.

Line: Unchanged.
Column: Unchanged.
Options: None.

[count] <control-M>
[count] +

Move the cursor down count lines to the first nonblank character of that line. It is an error if the
movement is past the end of the file.

The <control-M> and + commands may be used as the motion component of other vi commands, in
which case any text copied into a buffer is line oriented.

Line: Set to the current line plus count.
Column: Set to the first nonblank character in the line.
Options: None.

[count] <control-P>
[count] k

Move the cursor up count lines, without changing the current column. It is an error if the move-
ment is past the beginning of the file.

The <control-P> and k commands may be used as the motion component of other vi commands, in
which case any text copied into a buffer is line oriented.

Line: Set to the current line minus count.
Column: The most attractive cursor position.
Options: None.

<control-T>
Return to the most recent tag context. The <control-T> command is an absolute movement.

Nvi/Nex Reference (Vi Commands) USD:13-15

Line: Set to the context of the previous tag command.
Column: Set to the context of the previous tag command.
Options: None.

[count] <control-U>
Scroll backward count lines. If count is not specified, scroll backward the number of lines
specified by the last <control-D> or <control-U> command. If this is the first <control-D> or
<control-U> command, scroll backward half the number of lines in the screen. (In the case of split
screens, the default scrolling distance is corrected to half the current screen size.) It is an error if the
movement is past the beginning of the file.

Line: Set to the current line minus the amount scrolled.
Column: Set to the first nonblank character in the line.
Options: None.

<control-W>
Switch to the next lower screen in the window, or, to the first screen if there are no lower screens in
the window.

Line: Set to the previous cursor position in the window.
Column: Set to the previous cursor position in the window.
Options: None.

[count] <control-Y>
Scroll backward count lines, leaving the current line and column as is, if possible. It is an error if
the movement is past the beginning of the file.

Line: Unchanged unless the current line scrolls off the screen, in which case it is set to the last
line of text displayed on the screen.

Column: Unchanged unless the current line scrolls off the screen, in which case it is the most
attractive cursor position.

Options: None.

<control-Z>
Suspend the current editor session. If the file has been modified since it was last completely written,
and the autowrite option is set, the file is written before the editor session is suspended. If this write
fails, the editor session is not suspended.

Line: Unchanged.
Column: Unchanged.
Options: Affected by the autowrite option.

<escape>
Execute ex commands or cancel partial commands. If an ex command is being entered (e.g. /, ?, : or
!), the command is executed. If a partial command has been entered, e.g. ‘‘[0-9]*’’, or ‘‘[0-
9]*[!<>cdy]’’, the command is cancelled. Otherwise, it is an error.

Line: When an ex command is being executed, the current line is set as described for that com-
mand. Otherwise, unchanged.

Column: When an ex command is being executed, the current column is set as described for that
command. Otherwise, unchanged.

Options: None.

<control-]>
Push a tag reference onto the tag stack. The tags files (see the tags option for more information) are
searched for a tag matching the current word. The current word begins at the first non-whitespace
character on or after the current cursor position, and extends up to the next non-word character or the

USD:13-16 Nvi/Nex Reference (Vi Commands)

end of the line. If a matching tag is found, the current file is discarded and the file containing the tag
reference is edited.

If the current file has been modified since it was last completely written, the command will fail. The
<control-]> command is an absolute movement.

Line: Set to the line containing the matching tag string.
Column: Set to the start of the matching tag string.
Options: Affected by the tags and taglength options.

<control-ˆ>
Switch to the most recently edited file.

If the file has been modified since it was last completely written, and the autowrite option is set, the
file is written out. If this write fails, the command will fail. Otherwise, if the current file has been
modified since it was last completely written, the command will fail.

Line: Set to the line the cursor was on when the file was last edited.
Column: Set to the column the cursor was on when the file was last edited.
Options: Affected by the autowrite option.

[count] <space>
[count] l

Move the cursor forward count characters without changing the current line. It is an error if the
cursor is on the last character in the line.

The <space> and l commands may be used as the motion component of other vi commands, in which
case any text copied into a buffer is character oriented. In addition, these commands may be used as
the motion components of other commands when the cursor is on the last character in the line,
without error.

Line: Unchanged.
Column: Set to the current character plus the next count characters, or to the last character on the

line if count is greater than the number of characters in the line after the current charac-
ter.

Options: None.

[count] ! motion shell-argument(s)<carriage-return>
Replace text with results from a shell command. Pass the lines specified by the count and motion
arguments as standard input to the program named by the shell option, and replace those lines with
the output (both standard error and standard output) of that command.

After the motion is entered, vi prompts for arguments to the shell command.

Within those arguments, ‘‘%’’ and ‘‘#’’ characters are expanded to the current and alternate path-
names, respectively. The ‘‘!’’ character is expanded with the command text of the previous ! or :!
commands. (Therefore, the command !<motion>! repeats the previous ! command.) The special
meanings of ‘‘%’’, ‘‘#’’ and ‘‘!’’ can be overridden by escaping them with a backslash. If no ! or
:! command has yet been executed, it is an error to use an unescaped ‘‘!’’ character as a shell argu-
ment. The ! command does not do shell expansion on the strings provided as arguments. If any of
the above expansions change the arguments the user entered, the command is redisplayed at the bot-
tom of the screen.

Vi then executes the program named by the shell option, with a −−c flag followed by the arguments
(which are bundled into a single argument).

The ! command is permitted in an empty file.

Nvi/Nex Reference (Vi Commands) USD:13-17

If the file has been modified since it was last completely written, the ! command will warn you.

Line: The first line of the replaced text.
Column: The first column of the replaced text.
Options: Affected by the shell option.

[count] # +|-
Increment or decrement the number referenced by the cursor. If the trailing character is a +, the
number is incremented by count. If the trailing character is a -, the number is decremented by
count.

A leading ‘‘0X’’ or ‘‘0x’’ causes the number to be interpreted as a hexadecimal number. Otherwise,
a leading ‘‘0’’ causes the number to be interpreted as an octal number, unless a non-octal digit is
found as part of the number. Otherwise, the number is interpreted as a decimal number, and may
have a leading + or - sign. The current number begins at the first non-blank character at or after the
current cursor position, and extends up to the end of the line or the first character that isn’t a possible
character for the numeric type. The format of the number (e.g. leading 0’s, signs) is retained unless
the new value cannot be represented in the previous format.

Octal and hexadecimal numbers, and the result of the operation, must fit into an ‘‘unsigned
long’’. Similarly, decimal numbers and their result must fit into a ‘‘signed long’’. It is an
error to use this command when the cursor is not positioned at a number.

Line: Unchanged.
Column: Set to the first character in the cursor number.
Options: None.

[count] $
Move the cursor to the end of a line. If count is specified, the cursor moves down count - 1
lines.

It is not an error to use the $ command when the cursor is on the last character in the line or when the
line is empty.

The $ command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is character oriented, unless the cursor is at, or before the first nonblank charac-
ter in the line, in which case it is line oriented. It is not an error to use the $ command as a motion
component when the cursor is on the last character in the line, although it is an error when the line is
empty.

Line: Set to the current line plus count minus 1.
Column: Set to the last character in the line.
Options: None.

%
Move to the matching character. The cursor moves to the parenthesis or curly brace which matches
the parenthesis or curly brace found at the current cursor position or which is the closest one to the
right of the cursor on the line. It is an error to execute the % command on a line without a
parenthesis or curly brace. Historically, any count specified to the % command was ignored.

The % command is an absolute movement. The % command may be used as the motion component
of other vi commands, in which case any text copied into a buffer is character oriented, unless the
starting point of the region is at or before the first nonblank character on its line, and the ending point
is at or after the last nonblank character on its line, in which case it is line oriented.

USD:13-18 Nvi/Nex Reference (Vi Commands)

Line: Set to the line containing the matching character.
Column: Set to the matching character.
Options: None.

&
Repeat the previous substitution command on the current line.

Historically, any count specified to the & command was ignored.

Line: Unchanged.
Column: Unchanged if the cursor was on the last character in the line, otherwise, set to the first

nonblank character in the line.
Options: Affected by the edcompatible, extended, ignorecase and magic options.

´<character>
‘<character>

Return to a context marked by the character <character>. If <character> is the ‘‘’’’ or ‘‘‘’’
character, return to the previous context. If <character> is any other character, return to the con-
text marked by that character (see the m command for more information). If the command is the ´
command, only the line value is restored, and the cursor is placed on the first nonblank character of
that line. If the command is the ‘ command, both the line and column values are restored.

It is an error if the context no longer exists because of line deletion. (Contexts follow lines that are
moved, or which are deleted and then restored.)

The ´ and ‘ commands are both absolute movements. They may be used as a motion component for
other vi commands. For the ´ command, any text copied into a buffer is line oriented. For the ‘ com-
mand, any text copied into a buffer is character oriented, unless it both starts and stops at the first
character in the line, in which case it is line oriented. In addition, when using the ‘ command as a
motion component, commands which move backward and started at the first character in the line, or
move forward and ended at the first character in the line, are corrected to the last character of the line
preceding the starting and ending lines, respectively.

Line: Set to the line from the context.
Column: Set to the first nonblank character in the line, for the ´ command, and set to the context’s

column for the ‘ command.
Options: None.

[count] (
Back up count sentences.

The (command is an absolute movement. The (command may be used as the motion component of
other vi commands, in which case any text copied into a buffer is character oriented, unless the start-
ing and stopping points of the region are the first character in the line, in which case it is line
oriented. If it is line oriented, the starting point of the region is adjusted to be the end of the line
immediately before the starting cursor position.

Line: Set to the line containing the beginning of the sentence.
Column: Set to the first nonblank character of the sentence.
Options: Affected by the lisp option.

[count])
Move forward count sentences.

The) command is an absolute movement. The) command may be used as the motion component of
other vi commands, in which case any text copied into a buffer is character oriented, unless the start-
ing point of the region is the first character in the line, in which case it is line oriented. In the latter

Nvi/Nex Reference (Vi Commands) USD:13-19

case, if the stopping point of the region is also the first character in the line, it is adjusted to be the
end of the line immediately before it.

Line: Set to the line containing the beginning of the sentence.
Column: Set to the first nonblank character of the sentence.
Options: Affected by the lisp option.

[count] ,
Reverse find character count times. Reverse the last F, f, T or t command, searching the other way
in the line, count times. It is an error if a F, f, T or t command has not been performed yet.

The , command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is character oriented.

Line: Unchanged.
Column: Set to the searched-for character for the F and f commands, before the character for the t

command and after the character for the T command.
Options: None.

[count] −−
Move to the first nonblank of the previous line, count times.

It is an error if the movement is past the beginning of the file.

The - command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is line oriented.

Line: Set to the current line minus count.
Column: Set to the first nonblank character in the line.
Options: None.

[count] .
Repeat the last vi command that modified text. The repeated command may be a command and
motion component combination. If count is specified, it replaces both the count specified for the
repeated command, and, if applicable, for the repeated motion component. If count is not
specified, the counts originally specified to the command being repeated are used again.

As a special case, if the . command is executed immediately after the u command, the change log is
rolled forward or backward, depending on the action of the u command.

Line: Set as described for the repeated command.
Column: Set as described for the repeated command.
Options: None.

/RE<carriage-return>
/RE/ [offset]<carriage-return>
?RE<carriage-return>
?RE? [offset]<carriage-return>
N
n

Search forward or backward for a regular expression. The commands beginning with a slash (‘‘/’’)
character are forward searches, the commands beginning with a question mark (‘‘?’’) are backward
searches. Vi prompts with the leading character on the last line of the screen for a string. It then
searches forward or backward in the file for the next occurrence of the string, which is interpreted as
a Basic Regular Expression.

The / and ? commands are absolute movements. They may be used as the motion components of

USD:13-20 Nvi/Nex Reference (Vi Commands)

other vi commands, in which case any text copied into a buffer is character oriented, unless the
search started and ended on the first column of a line, in which case it is line oriented. In addition,
forward searches ending at the first character of a line, and backward searches beginning at the first
character in the line, are corrected to begin or end at the last character of the previous line. (Note,
forward and backward searches can occur for both / and ? commands, if the wrapscan option is
set.)

If an offset from the matched line is specified (i.e. a trailing ‘‘/’’ or ‘‘?’’ character is followed by a
signed offset), the buffer will always be line oriented (e.g. ‘‘/string/+0’’ will always guarantee
a line orientation).

The N command repeats the previous search, but in the reverse direction. The n command repeats
the previous search. If either the N or n commands are used as motion components for the ! com-
mand, you will not be prompted for the text of the bang command, instead the previous bang com-
mand will be executed.

Missing RE’s (e.g. ‘‘//<carriage-return>’’, ‘‘/<carriage-return>’’,
‘‘??<carriage-return>’’, or ‘‘?<carriage-return>’’ search for the last search RE, in
the indicated direction.

Searches may be interrupted using the <interrupt> character.

Multiple search patterns may be grouped together by delimiting them with semicolons and zero or
more whitespace characters, e.g. /foo/ ; ?bar? searches forward for foo and then, from that
location, backwards for bar. When search patterns are grouped together in this manner, the search
patterns are evaluated left to right with the final cursor position determined by the last search pattern.

It is also permissible to append a z command to the search strings, e.g. /foo/ z. searches for-
ward for the next occurrence of foo, and then positions that line in the middle of screen.

Line: Set to the line in which the match occurred.
Column: Set to the first character of the matched string.
Options: Affected by the edcompatible, extended, ignorecase, magic, and wrapscan options.

0
Move to the first character in the current line. It is not an error to use the 0 command when the cur-
sor is on the first character in the line,

The 0 command may be used as the motion component of other vi commands, in which case it is an
error if the cursor is on the first character in the line, and any text copied into a buffer is character
oriented.

Line: Unchanged.
Column: Set to the first character in the line.
Options: None.

:
Execute an ex command. Vi prompts for an ex command on the last line of the screen, using a colon
(‘‘:’’) character. The command is terminated by a <carriage-return>, <newline> or
<escape> character; all of these characters may be escaped by using a <literal-next> char-
acter. The command is then executed.

If the ex command writes to the screen, vi will prompt the user for a <carriage-return> before
continuing when the ex command finishes. Large amounts of output from the ex command will be
paged for the user, and the user prompted for a <carriage-return> or <space> key to con-
tinue. In some cases, a quit (normally a ‘‘q’’ character) or <interrupt> may be entered to inter-
rupt the ex command.

Nvi/Nex Reference (Vi Commands) USD:13-21

When the ex command finishes, and the user is prompted to resume visual mode, it is also possible to
enter another ‘‘:’’ character followed by another ex command.

Line: The current line is set as described for the ex command.
Column: The current column is set as described for the ex command.
Options: Affected as described for the ex command.

[count] ;
Repeat the last character find count times. The last character find is one of the F, f, T or t com-
mands. It is an error if a F, f, T or t command has not been performed yet.

The ; command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is character oriented.

Line: Unchanged.
Column: Set to the searched-for character for the F and f commands, before the character for the t

command and after the character for the T command.
Options: None.

[count] < motion
[count] > motion

Shift lines left or right. Shift the number of lines in the region specified by the count and motion
left (for the < command) or right (for the > command) by the number of columns specified by the
shiftwidth option. Only whitespace characters are deleted when shifting left. Once the first charac-
ter in the line no longer contains a whitespace character, the command will succeed, but the line will
not be modified.

Line: Unchanged.
Column: Set to the first nonblank character in the line.
Options: Affected by the shiftwidth option.

@ buffer
Execute a named buffer. Execute the named buffer as vi commands. The buffer may include ex
commands, too, but they must be expressed as a : command. If the buffer is line oriented, <new-
line> characters are logically appended to each line of the buffer. If the buffer is character
oriented, <newline> characters are logically appended to all but the last line in the buffer.

If the buffer name is ‘‘@’’, or ‘‘*’’, then the last buffer executed shall be used. It is an error to
specify ‘‘@@’’ or ‘‘**’’ if there were no previous buffer executions. The text of a buffer may con-
tain an @ or * command, and it is possible to create infinite loops in this manner. (The <inter-
rupt> character may be used to interrupt the loop.)

Line: The current line is set as described for the command(s).
Column: The current column is set as described for the command(s).
Options: None.

[count] A
Enter input mode, appending the text after the end of the line. If count is specified, the text is
repeatedly input count - 1 more times after input mode is exited.

Line: Set to the last line upon which characters were entered.
Column: Set to the last character entered.
Options: Affected by the altwerase, autoindent, beautify, showmatch, ttywerase and wrapmar-

gin options.

[count] B
Move backward count bigwords. Move the cursor backward to the beginning of a bigword by

USD:13-22 Nvi/Nex Reference (Vi Commands)

repeating the following algorithm: if the current position is at the beginning of a bigword or the char-
acter at the current position cannot be part of a bigword, move to the first character of the preceding
bigword. Otherwise, move to the first character of the bigword at the current position. If no preced-
ing bigword exists on the current line, move to the first character of the last bigword on the first
preceding line that contains a bigword.

The B command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is character oriented.

Line: Set to the line containing the word selected.
Column: Set to the first character of the word selected.
Options: None.

[buffer] [count] C
Change text from the current position to the end-of-line. If count is specified, the input text
replaces from the current position to the end-of-line, plus count - 1 subsequent lines.

Line: Set to the last line upon which characters were entered.
Column: Set to the last character entered.
Options: Affected by the altwerase, autoindent, beautify, showmatch, ttywerase and wrapmar-

gin options.

[buffer] D
Delete text from the current position to the end-of-line.

It is not an error to execute the D command on an empty line.

Line: Unchanged.
Column: Set to the character before the current character, or, column 1 if the cursor was on column

1.
Options: None.

[count] E
Move forward count end-of-bigwords. Move the cursor forward to the end of a bigword by repeat-
ing the following algorithm: if the current position is the end of a bigword or the character at that
position cannot be part of a bigword, move to the last character of the following bigword. Other-
wise, move to the last character of the bigword at the current position. If no succeeding bigword
exists on the current line, move to the last character of the first bigword on the next following line
that contains a bigword.

The E command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is character oriented.

Line: Set to the line containing the word selected.
Column: Set to the last character of the word selected.
Options: None.

[count] F <character>
Search count times backward through the current line for <character>.

The F command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is character oriented.

Line: Unchanged.
Column: Set to the searched-for character.
Options: None.

Nvi/Nex Reference (Vi Commands) USD:13-23

[count] G
Move to line count, or the last line of the file if count not specified.

The G command is an absolute movement. The G command may be used as the motion component
of other vi commands, in which case any text copied into a buffer is line oriented.

Line: Set to count, if specified, otherwise, the last line.
Column: Set to the first nonblank character in the line.
Options: None.

[count] H
Move to the screen line count - 1 lines below the top of the screen.

The H command is an absolute movement. The H command may be used as the motion component
of other vi commands, in which case any text copied into a buffer is line oriented.

Line: Set to the line count - 1 lines below the top of the screen.
Column: Set to the first nonblank character of the screen line.
Options: None.

[count] I
Enter input mode, inserting the text at the beginning of the line. If count is specified, the text input
is repeatedly input count - 1 more times.

Line: Set to the last line upon which characters were entered.
Column: Set to the last character entered.
Options: None.

[count] J
Join lines. If count is specified, count lines are joined; a minimum of two lines are always joined,
regardless of the value of count.

If the current line ends with a whitespace character, all whitespace is stripped from the next line.
Otherwise, if the next line starts with a open parenthesis (‘‘(’’) do nothing. Otherwise, if the current
line ends with a question mark (‘‘?’’), period (‘‘.’’) or exclamation point (‘‘!’’), insert two spaces.
Otherwise, insert a single space.

It is not an error to join lines past the end of the file, i.e. lines that do not exist.

Line: Unchanged.
Column: Set to the character after the last character of the next-to-last joined line.
Options: None.

[count] L
Move to the screen line count - 1 lines above the bottom of the screen.

The L command is an absolute movement. The L command may be used as the motion component
of other vi commands, in which case any text copied into a buffer is line oriented.

Line: Set to the line count - 1 lines above the bottom of the screen.
Column: Set to the first nonblank character of the screen line.
Options: None.

M
Move to the screen line in the middle of the screen.

The M command is an absolute movement. The M command may be used as the motion component

USD:13-24 Nvi/Nex Reference (Vi Commands)

of other vi commands, in which case any text copied into a buffer is line oriented.

Historically, any count specified to the M command was ignored.

Line: Set to the line in the middle of the screen.
Column: Set to the first nonblank character of the screen line.
Options: None.

[count] O
Enter input mode, appending text in a new line above the current line. If count is specified, the text
input is repeatedly input count - 1 more times.

Historically, any count specified to the O command was ignored.

Line: Set to the last line upon which characters were entered.
Column: Set to the last character entered.
Options: Affected by the altwerase, autoindent, beautify, showmatch, ttywerase and wrapmar-

gin options.

[buffer] P
Insert text from a buffer. Text from the buffer (the unnamed buffer by default) is inserted before the
current column or, if the buffer is line oriented, before the current line.

Line: Set to the lowest numbered line insert, if the buffer is line oriented, otherwise unchanged.
Column: Set to the first nonblank character of the appended text, if the buffer is line oriented, oth-

erwise, the last character of the appended text.
Options: None.

Q
Exit vi (or visual) mode and switch to ex mode.

Line: Unchanged.
Column: No longer relevant.
Options: None.

[count] R
Enter input mode, replacing the characters in the current line. If count is specified, the text input is
repeatedly input count - 1 more times.

If the end of the current line is reached, no more characters are replaced and any further characters
input are appended to the line.

Line: Set to the last line upon which characters were entered.
Column: Set to the last character entered.
Options: Affected by the altwerase, autoindent, beautify, showmatch, ttywerase and wrapmar-

gin options.

[buffer] [count] S
Substitute count lines.

Line: Set to the last line upon which characters were entered.
Column: Set to the last character entered.
Options: Affected by the altwerase, autoindent, beautify, showmatch, ttywerase and wrapmar-

gin options.

[count] T <character>
Search backward, count times, through the current line for the character after the specified

Nvi/Nex Reference (Vi Commands) USD:13-25

<character>.

The T command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is character oriented.

Line: Unchanged.
Column: Set to the character after the searched-for character.
Options: None.

U
Restore the current line to its state before the cursor last moved to it.

Line: Unchanged.
Column: The first character in the line.
Options: None.

[count] W
Move forward count bigwords. Move the cursor forward to the beginning of a bigword by repeat-
ing the following algorithm: if the current position is within a bigword or the character at that posi-
tion cannot be part of a bigword, move to the first character of the next bigword. If no subsequent
bigword exists on the current line, move to the first character of the first bigword on the first follow-
ing line that contains a bigword.

The W command may be used as the motion component of other vi commands, in which case any
text copied into a buffer is character oriented.

Line: The line containing the word selected.
Column: The first character of the word selected.
Options: None.

[buffer] [count] X
Delete count characters before the cursor. If the number of characters to be deleted is greater than
or equal to the number of characters to the beginning of the line, all of the characters before the
current cursor position, to the beginning of the line, are deleted.

Line: Unchanged.
Column: Set to the current character minus count, or the first character if count is greater than the

number of characters in the line before the cursor.
Options: None.

[buffer] [count] Y
Copy (or ‘‘yank’’) count lines into the specified buffer.

Line: Unchanged.
Column: Unchanged.
Options: None.

ZZ
Write the file and exit vi. The file is only written if it has been modified since the last complete write
of the file to any file.

The ZZ command will exit the editor after writing the file, if there are no further files to edit. Enter-
ing two ‘‘quit’’ commands (i.e. wq, quit, xit or ZZ) in a row will override this check and the editor
will exit, ignoring any files that have not yet been edited.

Line: Unchanged.

USD:13-26 Nvi/Nex Reference (Vi Commands)

Column: Unchanged.
Options: None.

[count] [[
Back up count section boundaries.

The [[command is an absolute movement. The [[command may be used as the motion component
of other vi commands, in which case any text copied into a buffer is character oriented, unless the
starting position is column 0, in which case it is line oriented.

It is an error if the movement is past the beginning of the file.

Line: Set to the previous line that is count section boundaries back, or the first line of the file
if no more section boundaries exist preceding the current line.

Column: Set to the first nonblank character in the line.
Options: Affected by the sections option.

[count]]]
Move forward count section boundaries.

The]] command is an absolute movement. The]] command may be used as the motion component
of other vi commands, in which case any text copied into a buffer is character oriented, unless the
starting position is column 0, in which case it is line oriented.

It is an error if the movement is past the end of the file.

Line: Set to the line that is count section boundaries forward, or to the last line of the file if no
more section boundaries exist following the current line.

Column: Set to the first nonblank character in the line.
Options: Affected by the sections option.

ˆ
Move to first nonblank character on the current line.

The ˆ command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is character oriented.

Line: Unchanged.
Column: Set to the first nonblank character of the current line.
Options: None.

[count] _
Move down count - 1 lines, to the first nonblank character. The _ command may be used as the
motion component of other vi commands, in which case any text copied into a buffer is line oriented.

It is not an error to execute the _ command when the cursor is on the first character in the line.

Line: The current line plus count - 1.
Column: The first nonblank character in the line.
Options: None.

[count] a
Enter input mode, appending the text after the cursor. If count is specified, the text input is repeat-
edly input count - 1 more times.

Line: Set to the last line upon which characters were entered.

Nvi/Nex Reference (Vi Commands) USD:13-27

Column: Set to the last character entered.
Options: Affected by the altwerase, autoindent, beautify, showmatch, ttywerase and wrapmar-

gin options.

[count] b
Move backward count words. Move the cursor backward to the beginning of a word by repeating
the following algorithm: if the current position is at the beginning of a word, move to the first charac-
ter of the preceding word. Otherwise, the current position moves to the first character of the word at
the current position. If no preceding word exists on the current line, move to the first character of the
last word on the first preceding line that contains a word.

The b command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is character oriented.

Line: Set to the line containing the word selected.
Column: Set to the first character of the word selected.
Options: None.

[buffer] [count] c motion
Change the region of text specified by the count and motion. If only part of a single line is
affected, then the last character being changed is marked with a ‘‘$’’. Otherwise, the region of text
is deleted, and input mode is entered.

Line: Set to the last line upon which characters were entered.
Column: Set to the last character entered.
Options: Affected by the altwerase, autoindent, beautify, showmatch, ttywerase and wrapmar-

gin options.

[buffer] [count] d motion
Delete the region of text specified by the count and motion.

Line: Set to the line where the region starts.
Column: Set to the first character in the line after the last character in the region. If no such char-

acter exists, set to the last character before the region.
Options: None.

[count] e
Move forward count end-of-words. Move the cursor forward to the end of a word by repeating the
following algorithm: if the current position is the end of a word, move to the last character of the fol-
lowing word. Otherwise, move to the last character of the word at the current position. If no
succeeding word exists on the current line, move to the last character of the first word on the next
following line that contains a word.

The e command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is character oriented.

Line: Set to the line containing the word selected.
Column: Set to the last character of the word selected.
Options: None.

[count] f <character>
Search forward, count times, through the rest of the current line for <character>.

The f command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is character oriented.

USD:13-28 Nvi/Nex Reference (Vi Commands)

Line: Unchanged.
Column: Set to the searched-for character.
Options: None.

[count] i
Enter input mode, inserting the text before the cursor. If count is specified, the text input is repeat-
edly input count - 1 more times.

Line: Set to the last line upon which characters were entered.
Column: Set to the last character entered.
Options: Affected by the altwerase, autoindent, beautify, showmatch, ttywerase and wrapmar-

gin options.

m <character>
Save the current context (line and column) as <character>. The exact position is referred to by
‘‘‘<character>’’. The line is referred to by ‘‘’<character>’’.

Historically, <character> was restricted to lower-case letters only, nvi permits the use of any
character.

Line: Unchanged.
Column: Unchanged.
Options: None.

[count] o
Enter input mode, appending text in a new line under the current line. If count is specified, the text
input is repeatedly input count - 1 more times.

Historically, any count specified to the o command was ignored.

Line: Set to the last line upon which characters were entered.
Column: Set to the last character entered.
Options: Affected by the altwerase, autoindent, beautify, showmatch, ttywerase and wrapmar-

gin options.

[buffer] p
Append text from a buffer. Text from the buffer (the unnamed buffer by default) is appended after
the current column or, if the buffer is line oriented, after the current line.

Line: Set to the first line appended, if the buffer is line oriented, otherwise unchanged.
Column: Set to the first nonblank character of the appended text if the buffer is line oriented, other-

wise, the last character of the appended text.
Options: None.

[count] r <character>
Replace characters. The next count characters in the line are replaced with <character>.
Replacing characters with <newline> characters results in creating new, empty lines into the file.

If <character> is <escape>, the command is cancelled.

Line: Unchanged unless the replacement character is a <newline>, in which case it is set to
the current line plus count - 1.

Column: Set to the last character replaced, unless the replacement character is a <newline>, in
which case the cursor is in column 1 of the last line inserted.

Options: None.

Nvi/Nex Reference (Vi Commands) USD:13-29

[buffer] [count] s
Substitute count characters in the current line starting with the current character.

Line: Set to the last line upon which characters were entered.
Column: Set to the last character entered.
Options: Affected by the altwerase, autoindent, beautify, showmatch, ttywerase and wrapmar-

gin options.

[count] t <character>
Search forward, count times, through the current line for the character immediately before <char-
acter>.

The t command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is character oriented.

Line: Unchanged.
Column: Set to the character before the searched-for character.
Options: None.

u
Undo the last change made to the file. If repeated, the u command alternates between these two
states, and is its own inverse. When used after an insert that inserted text on more than one line, the
lines are saved in the numeric buffers.

The . command, when used immediately after the u command, causes the change log to be rolled
forward or backward, depending on the action of the u command.

Line: Set to the position of the first line changed, if the reversal affects only one line or
represents an addition or change; otherwise, the line preceding the deleted text.

Column: Set to the cursor position before the change was made.
Options: None.

[count] w
Move forward count words. Move the cursor forward to the beginning of a word by repeating the
following algorithm: if the current position is at the beginning of a word, move to the first character
of the next word. If no subsequent word exists on the current line, move to the first character of the
first word on the first following line that contains a word.

The w command may be used as the motion component of other vi commands, in which case any
text copied into a buffer is character oriented.

Line: Set to the line containing the word selected.
Column: Set to the first character of the word selected.
Options: None.

[buffer] [count] x
Delete count characters. The deletion is at the current character position. If the number of charac-
ters to be deleted is greater than or equal to the number of characters to the end of the line, all of the
characters from the current cursor position to the end of the line are deleted.

Line: Unchanged.
Column: Unchanged unless the last character in the line is deleted and the cursor is not already on

the first character in the line, in which case it is set to the previous character.
Options: None.

[buffer] [count] y motion
Copy (or ‘‘yank’’) the text region specified by the count and motion, into a buffer.

USD:13-30 Nvi/Nex Reference (Vi Commands)

Line: Unchanged, unless the region covers more than a single line, in which case it is set to the
line where the region starts.

Column: Unchanged, unless the region covers more than a single line, in which case it is set to the
character were the region starts.

Options: None.

[count1] z [count2] type
Redraw the screen with a window count2 lines long, with line count1 placed as specified by the
type character. If count1 is not specified, it defaults to the current line. If count2 is not
specified, it defaults to the current window size.

The following type characters may be used:

+ If count1 is specified, place the line count1 at the top of the screen. Otherwise,
display the screen after the current screen, similarly to the <control-F> command.

<carriage-return>
Place the line count1 at the top of the screen.

. Place the line count1 in the center of the screen.
− Place the line count1 at the bottom of the screen.
ˆ If count1 is specified, place the line that is at the top of the screen when count1 is at

the bottom of the screen, at the bottom of the screen, i.e. display the screen before the
screen before count1. Otherwise, display the screen before the current screen, similarly
to the <control-B> command.

Line: Set to count1 unless count1 is not specified and the type character was either ‘‘ˆ’’
or ‘‘+’’, in which case it is set to the line before the first line on the previous screen or the
line after the last line on the previous screen, respectively.

Column: Set to the first nonblank character in the line.
Options: None.

[count] {
Move backward count paragraphs.

The { command is an absolute movement. The { command may be used as the motion component of
other vi commands, in which case any text copied into a buffer is character oriented, unless the start-
ing character is the first character on its line, in which case it is line oriented.

Line: Set to the line containing the beginning of the previous paragraph.
Column: Set to the first nonblank character in the line.
Options: Affected by the paragraph option.

[count] |
Move to a specific column position on the current line.

The | command may be used as the motion component of other vi commands, in which case any text
copied into a buffer is character oriented. It is an error to use the | command as a motion component
and for the cursor not to move.

Line: Unchanged.
Column: Set to the character occupying the column position identified by count, if the position

exists in the line. If the column length of the current line is less than count, the cursor is
moved to the last character in the line.

Options: None.

[count] }
Move forward count paragraphs.

Nvi/Nex Reference (Vi Commands) USD:13-31

The } command is an absolute movement. The } command may be used as the motion component of
other vi commands, in which case any text copied into a buffer is character oriented, unless the start-
ing character is at or before any nonblank characters in its line, in which case it is line oriented.

Line: Set to the line containing the beginning of the next paragraph.
Column: Set to the first nonblank character in the line.
Options: Affected by the paragraph option.

[count] ˜
Reverse the case of the next count character(s). This is the historic semantic for the ˜ command
and it is only in effect if the tildeop option is not set.

Lowercase alphabetic characters are changed to uppercase, and uppercase characters are changed to
lowercase. No other characters are affected.

Historically, the ˜ command did not take an associated count, nor did it move past the end of the
current line. As it had no associated motion it was difficult to change the case of large blocks of text.
In nvi, if the cursor is on the last character of a line, and there are more lines in the file, the cursor
moves to the next line.

It is not an error to specify a count larger than the number of characters between the cursor and the
end of the file.

Line: Set to the line of the character after count characters, or, end of file.
Column: Set to the character after count characters, or, end-of-file.
Options: Affected by the tildeop option.

[count] ˜ motion
Reverse the case of the characters in a text region specified by the count and motion. Only in
effect if the tildeop option is set.

Lowercase characters are changed to uppercase, and uppercase characters are changed to lowercase.
No other characters are affected.

Line: Set to the line of the character after the last character in the region.
Column: Set to the character after the last character in the region.
Options: Affected by the tildeop option.

<interrupt>
Interrupt the current operation. Many of the potentially long-running vi commands may be inter-
rupted using the terminal interrupt character. These operations include searches, file reading and
writing, filter operations and map character expansion. Interrupts are also enabled when running
commands outside of vi.

If the <interrupt> character is used to interrupt while entering an ex command, the command is
aborted, the cursor returns to its previous position, and vi remains in command mode.

Generally, if the <interrupt> character is used to interrupt any operation, any changes made
before the interrupt are left in place.

Line: Dependent on the operation being interrupted.
Column: Dependent on the operation being interrupted.
Options: None.

USD:13-32 Nvi/Nex Reference (Vi Commands)

11. Vi Text Input Commands

The following section describes the commands available in the text input mode of the vi editor.

Historically, vi implementations only permitted the characters inserted on the current line to be
erased. In addition, only the <control-D> erase character and the ‘‘0<control-D>’’ and
‘‘ˆ<control-D>’’ erase strings could erase autoindent characters. This implementation permits
erasure to continue past the beginning of the current line, and back to where text input mode was
entered. In addition, autoindent characters may be erased using the standard erase characters. For
the line and word erase characters, reaching the autoindent characters forms a ‘‘soft’’ boundary,
denoting the end of the current word or line erase. Repeating the word or line erase key will erase
the autoindent characters.

Historically, vi always used <control-H> and <control-W> as character and word erase
characters, respectively, regardless of the current terminal settings. This implementation accepts, in
addition to these two characters, the current terminal characters for those operations.

<nul>
If the first character of the input is a <nul>, the previous input is replayed, as if just entered.

<control-D>
If the previous character on the line was an autoindent character, erase it. Otherwise, if the
user is entering the first character in the line, <control-D> is ignored. Otherwise, a literal
<control-D> character is entered.

ˆ<control-D>
If the previous character on the line was an autoindent character, erase all of the autoindent
characters on the line. In addition, the autoindent level is reset to 0.

0<control-D>
If the previous character on the line was an autoindent character, erase all of the autoindent
characters on the line.

<control-T>
Insert sufficient <tab> and <space> characters to move the cursor forward to a column
immediately after the next column which is an even multiple of the shiftwidth option.

Historically, vi did not permit the <control-T> command to be used unless the cursor was
at the first column of a new line or it was preceded only by autoindent characters. Nvi permits
it to be used at any time during insert mode.

<erase>
<control-H>

Erase the last character.

<literal-next>
Quote the next character. The next character will not be mapped (see the map command for
more information) or interpreted specially. A carat (‘‘ˆ’’) character will be displayed immedi-
ately as a placeholder, but will be replaced by the next character.

<escape>
Resolve all text input into the file, and return to command mode.

<line erase>
Erase the current line.

<control-W>

Nvi/Nex Reference (Vi Commands) USD:13-33

<word erase>
Erase the last word. The definition of word is dependent on the altwerase and ttywerase
options.

<control-X>[0-9A-Fa-f]*
Insert a character with the specified hexadecimal value into the text.

<interrupt>
Interrupt text input mode, returning to command mode. If the <interrupt> character is
used to interrupt inserting text into the file, it is as if the <escape> character was used; all
text input up to the interruption is resolved into the file.

12. Ex Addressing

Addressing in ex (and when ex commands are executed from vi) relates to the current line. In
general, the current line is the last line affected by a command. The exact effect on the current line is
discussed under the description of each command. When the file contains no lines, the current line is
zero.

Addresses are constructed by one or more of the following methods:

(1) The address ‘‘.’’ refers to the current line.

(2) The address ‘‘$’’ refers to the last line of the file.

(3) The address ‘‘N’’, where N is a positive number, refers to the N-th line of the file.

(4) The address ‘‘’<character>’’ or ‘‘‘<character>’’ refers to the line marked with the
name <character>. (See the k or m commands for more information on how to mark
lines.)

(5) A regular expression (RE) enclosed by slashes (‘‘/’’) is an address, and it refers to the first
line found by searching forward from the line after the current line toward the end of the file,
and stopping at the first line containing a string matching the RE. (The trailing slash can be
omitted at the end of the command line.)

If no RE is specified, i.e. the pattern is ‘‘//’’, the last RE used in any command is used in the
search.

If the extended option is set, the RE is handled as an extended RE, not a basic RE. If the
wrapscan option is set, the search wraps around to the beginning of the file and continues up
to and including the current line, so that the entire file is searched.

The form ‘‘\/’’ is accepted for historic reasons, and is identical to ‘‘//’’.

(6) An RE enclosed in question marks (‘‘?’’) addresses the first line found by searching back-
ward from the line preceding the current line, toward the beginning of the file and stopping at
the first line containing a string matching the RE. (The trailing question mark can be omitted
at the end of a command line.)

If no RE is specified, i.e. the pattern is ‘‘??’’, the last RE used in any command is used in the
search.

If the extended option is set, the RE is handled as an extended RE, not a basic RE. If the
wrapscan option is set, the search wraps around from the beginning of the file to the end of
the file and continues up to and including the current line, so that the entire file is searched.

The form ‘‘\?’’ is accepted for historic reasons, and is identical to ‘‘??’’.

(7) An address followed by a plus sign (‘‘+’’) or a minus sign (‘‘-’’) followed by a number is an
offset address and refers to the address plus (or minus) the indicated number of lines. If the
address is omitted, the addition or subtraction is done with respect to the current line.

USD:13-34 Nvi/Nex Reference

(8) An address of ‘‘+’’ or ‘‘−’’ followed by a number is an offset from the current line. For
example, ‘‘−5’’ is the same as ‘‘.−5’’.

(9) An address ending with ‘‘+’’ or ‘‘-’’ has 1 added to or subtracted from the address, respec-
tively. As a consequence of this rule and of the previous rule, the address ‘‘−’’ refers to the
line preceding the current line. Moreover, trailing ‘‘+’’ and ‘‘−’’ characters have a cumula-
tive effect. For example, ‘‘++−++’’ refers to the current line plus 3.

(10) A percent sign (‘‘%’’) is equivalent to the address range ‘‘1,$’’.

Ex commands require zero, one, or two addresses. It is an error to specify an address to a
command which requires zero addresses.

If the user provides more than the expected number of addresses to any ex command, the first
addresses specified are discarded. For example, ‘‘1,2,3,5’’print prints lines 3 through 5, because
the print command only takes two addresses.

The addresses in a range are separated from each other by a comma (‘‘,’’) or a semicolon
(‘‘;’’). In the latter case, the current line (‘‘.’’) is set to the first address, and only then is the
second address calculated. This feature can be used to determine the starting line for forward and
backward searches (see rules (5) and (6) above). The second address of any two-address sequence
corresponds to a line that follows, in the file, the line corresponding to the first address. The first
address must be less than or equal to the second address. The first address must be greater than or
equal to the first line of the file, and the last address must be less than or equal to the last line of the
file.

13. Ex Description

The following words have special meanings for ex commands.

<end-of-file>
The end-of-file character is used to scroll the screen in the ex editor. This character is nor-
mally <control-D>, however, whatever character is set for the current terminal is used as
well as <control-D>.

line
A single-line address, given in any of the forms described in the section entitled ‘‘Ex Address-
ing’’. The default for line is the current line.

range
A line, or a pair of line addresses, separated by a comma or semicolon. (See the section enti-
tled ‘‘Ex Addressing’’ for more information.) The default for range is the current line only,
i.e. ‘‘.,.’’. A percent sign (‘‘%’’) stands for the range ‘‘1,$’’. The starting address must be
less than, or equal to, the ending address.

count
A positive integer, specifying the number of lines to be affected by the command; the default
is 1. Generally, a count past the end-of-file may be specified, e.g. the command ‘‘p 3000’’
in a 10 line file is acceptable, and will print from the current line through the last line in the
file.

flags
One or more of the characters ‘‘#’’, ‘‘p’’, and ‘‘l’’. When a command that accepts these flags
completes, the addressed line(s) are written out as if by the corresponding #, l or p commands.
In addition, any number of ‘‘+’’ or ‘‘−’’ characters can be specified before, after, or during the
flags, in which case the line written is not necessarily the one affected by the command, but
rather the line addressed by the offset address specified. The default for flags is none.

file
A pattern used to derive a pathname; the default is the current file. File names are subjected to

Nvi/Nex Reference (Ex Commands) USD:13-35

normal sh(1) word expansions.

Anywhere a file name is specified, it is also possible to use the special string ‘‘/tmp’’. This
will be replaced with a temporary file name which can be used for temporary work, e.g. ‘‘:e
/tmp’’ creates and edits a new file.

If both a count and a range are specified for commands that use either, the starting line for the
command is the last line addressed by the range, and count- subsequent lines are affected by the
command, e.g. the command ‘‘2,3p4’’ prints out lines 3, 4, 5 and 6.

When only a line or range is specified, with no command, the implied command is either a list,
number or print command. The command used is the most recent of the three commands to have
been used (including any use as a flag). If none of these commands have been used before, the print
command is the implied command. When no range or count is specified and the command line is a
blank line, the current line is incremented by 1 and then the current line is displayed.

Zero or more whitespace characters may precede or follow the addresses, count, flags, or com-
mand name. Any object following a command name (such as buffer, file, etc.), that begins with an
alphabetic character, should be separated from the command name by at least one whitespace char-
acter.

Any character, including <carriage-return>, ‘‘%’’ and ‘‘#’’ retain their literal value
when preceded by a backslash.

14. Ex Commands

The following section describes the commands available in the ex editor. In each entry below,
the tag line is a usage synopsis for the command.

Each command can be entered as the abbreviation (those characters in the synopsis command
word preceding the ‘‘[’’ character), the full command (all characters shown for the command word,
omitting the ‘‘[’’ and ‘‘]’’ characters), or any leading subset of the full command down to the abbre-
viation. For example, the args command (shown as ‘‘ar[gs]’’ in the synopsis) can be entered as
‘‘ar’’, ‘‘arg’’ or ‘‘args’’.

Each ex command described below notes the new current line after it is executed, as well as
any options that affect the command.

A comment. Command lines beginning with the double-quote character (‘‘"’’) are ignored.
This permits comments in editor scripts and startup files.

<control-D>

<end-of-file>
Scroll the screen. Write the next N lines, where N is the value of the scroll option. The com-
mand is the end-of-file terminal character, which may be different on different terminals.
Traditionally, it is the <control-D> key.

Historically, the eof command ignored any preceding count, and the <end-of-file> char-
acter was ignored unless it was entered as the first character of the command. This implemen-
tation treats it as a command only if entered as the first character of the command line, and oth-
erwise treats it as any other character.

Line: Set to the last line written.
Options: Affected by the scroll option.

! argument(s)
[range]! argument(s)

Execute a shell command, or filter lines through a shell command. In the first synopsis, the
remainder of the line after the ‘‘!’’ character is passed to the program named by the shell
option, as a single argument.

USD:13-36 Nvi/Nex Reference (Ex Commands)

Within the rest of the line, ‘‘%’’ and ‘‘#’’ are expanded into the current and alternate path-
names, respectively. The character ‘‘!’’ is expanded with the command text of the previous !
command. (Therefore, the command !! repeats the previous ! command.) The special mean-
ings of ‘‘%’’, ‘‘#’’, and ‘‘!’’ can be overridden by escaping them with a backslash. If no ! or
:! command has yet been executed, it is an error to use an unescaped ‘‘!’’ character. The !
command does not do shell expansion on the strings provided as arguments. If any of the
above expansions change the command the user entered, the command is redisplayed at the
bottom of the screen.

Ex then executes the program named by the shell option, with a −−c flag followed by the argu-
ments (which are bundled into a single argument).

The ! command is permitted in an empty file.

If the file has been modified since it was last completely written, the command will warn you.

A single ‘‘!’’ character is displayed when the command completes.

In the second form of the ! command, the remainder of the line after the ‘‘!’’ is passed to the
program named by the shell option, as described above. The specified lines are passed to the
program as standard input, and the standard and standard error output of the program replace
the original lines.

Line: Unchanged if no range was specified, otherwise set to the first line of the range.
Options: Affected by the shell and warn options.

[range] # [count] [flags]
[range] nu[mber] [count] [flags]

Display the selected lines, each preceded with its line number.

The line number format is ‘‘%6d’’, followed by two spaces.

Line: Set to the last line displayed.
Options: Affected by the list option.

@ buffer
* buffer

Execute a buffer. Each line in the named buffer is executed as an ex command. If no buffer is
specified, or if the specified buffer is ‘‘@’’ or ‘‘*’’, the last buffer executed is used.

[range] <[< ...] [count] [flags]
Shift lines left or right. The specified lines are shifted to the left (for the < command) or right
(for the > command), by the number of columns specified by the shiftwidth option. Only
leading whitespace characters are deleted when shifting left; once the first column of the line
contains a nonblank character, the shift command will succeed, but the line will not be
modified.

If the command character < or > is repeated more than once, the command is repeated once for
each additional command character.

Line: If the current line is set to one of the lines that are affected by the command, it is
unchanged. Otherwise, it is set to the first nonblank character of the lowest num-
bered line shifted.

Options: Affected by the shiftwidth option.

[line] = [flags]
Display the line number of line (which defaults to the last line in the file).

Nvi/Nex Reference (Ex Commands) USD:13-37

Line: Unchanged.
Options: None.

[range] >[> ...] [count] [flags]
Shift right. The specified lines are shifted to the right by the number of columns specified by
the shiftwidth option, by inserting tab and space characters. Empty lines are not changed.

If the command character ‘‘>’’ is repeated more than once, the command is repeated once for
each additional command character.

Line: Set to the last line modified by the command.
Options: Affected by the shiftwidth option.

ab[brev] lhs rhs
Add an abbreviation to the current abbreviation list. When inserting text in vi, each time a
non-word character is entered after a word character, a set of characters ending at the word
character are checked for a match with lhs. If a match is found, they are replaced with rhs.
The set of characters that are checked for a match are defined as follows, for inexplicable his-
torical reasons. If only one or two characters were entered before the non-word character that
triggered the check, and after the beginning of the insertion, or the beginning of the line or the
file, or the last <blank> character that was entered, then the one or the both characters are
checked for a match. Otherwise, the set includes both characters, as well as the characters that
precede them that are the same word class (i.e. word or non-word) as the second to last char-
acter entered before the non-word character that triggered the check, back to the first
<blank>character, the beginning of the insertion, or the beginning of the line or the file.

For example, the abbreviations:

:abbreviate abc ABC
:abbreviate #i #include
:abbreviate /*#i /*#include

will all work, while the abbreviations:

:abbreviate a#i A#include
:abbreviate /* /********************

will not work, and are not permitted by nvi.

To keep the abbreviation expansion from happening, the character immediately following the
lhs characters should be quoted with a <literal-next> character.

The replacement rhs is itself subject to both further abbreviation expansion and further map
expansion.

Line: Unchanged.
Options: None.

[line] a[ppend][!]
The input text is appended to the specified line. If line 0 is specified, the text is inserted at the
beginning of the file. Set to the last line input. If no lines are input, then set to line, or to the
first line of the file if a line of 0 was specified. Following the command name with a ‘‘!’’
character causes the autoindent option to be toggled for the duration of the command.

Line: Unchanged.

USD:13-38 Nvi/Nex Reference (Ex Commands)

Options: Affected by the autoindent and number options.

ar[gs]
Display the argument list. The current argument is displayed inside of ‘‘[’’ and ‘‘]’’ charac-
ters. The argument list is the list of operands specified on startup, which can be replaced using
the next command.

Line: Unchanged.
Options: None.

bg
Vi mode only. Background the current screen.

Line: Set to the current line when the screen was last edited.
Options: None.

[range] c[hange][!] [count]
Replace the lines with input text. Following the command name with a ‘‘!’’ character causes
the autoindent option to be toggled for the duration of the command.

Line: Set to the last line input, or, if no lines were input, set to the line before the target
line, or to the first line of the file if there are no lines preceding the target line.

Options: Affected by the autoindent and number options.

chd[ir][!] [directory]
cd[!] [directory]

Change the current working directory. The directory argument is subjected to sh(1) word
expansions. When invoked with no directory argument and the HOME environment variable is
set, the directory named by the HOME environment variable becomes the new current directory.
Otherwise, the new current directory becomes the directory returned by the getpwent(3) rou-
tine.

The chdir command will fail if the file has been modified since the last complete write of the
file. You can override this check by appending a ‘‘!’’ character to the command.

Line: Unchanged.
Options: Affected by the cdpath option.

[range] co[py] line [flags]
[range] t line [flags]

Copy the specified lines (range) after the destination line. Line 0 may be specified to insert the
lines at the beginning of the file.

Line: Unchanged.
Options: None.

[range] d[elete] [buffer] [count] [flags]
Delete the lines from the file. The deleted text is saved in the specified buffer, or, if no buffer
is specified, in the unnamed buffer. If the command name is followed by a letter that could be
interpreted as either a buffer name or a flag value (because neither a count or flags values
were given), ex treats the letter as a flags value if the letter immediately follows the com-
mand name, without any whitespace separation. If the letter is preceded by whitespace charac-
ters, it treats it as a buffer name.

Line: Set to the line following the deleted lines, or to the last line if the deleted lines were
at the end.

Nvi/Nex Reference (Ex Commands) USD:13-39

Options: None.

di[splay] b[uffers] | s[creens] | t[ags]
Display buffers, screens or tags. The display command takes one of three additional argu-
ments, which are as follows:

b[uffers] Display all buffers (including named, unnamed, and numeric) that contain text.
s[creens] Display the file names of all background screens.
t[ags] Display the tags stack.

Line: Unchanged.
Options: None.

e[dit][!] [+cmd] [file]
ex[!] [+cmd] [file]

Edit a different file. If the current buffer has been modified since the last complete write, the
command will fail. You can override this by appending a ‘‘!’’ character to the command
name.

If the ‘‘+cmd’’ option is specified, that ex command will be executed in the new file. Any ex
command may be used, although the most common use of this feature is to specify a line
number or search pattern to set the initial location in the new file.

Line: If you have previously edited the file, the current line will be set to your last posi-
tion in the file. If that position does not exist, or you have not previously edited the
file, the current line will be set to the first line of the file if you are in vi mode, and
the last line of the file if you are in ex.

Options: None.

exu[sage] [command]
Display usage for an ex command. If command is specified, a usage statement for that com-
mand is displayed. Otherwise, usage statements for all ex commands are displayed.

Line: Unchanged.
Options: None.

f[ile] [file]
Display and optionally change the file name. If a file name is specified, the current pathname
is changed to the specified name. The current pathname, the number of lines, and the current
position in the file are displayed.

Line: Unchanged.
Options: None.

fg [name]
Vi mode only. Foreground the specified screen. Swap the current screen with the specified
backgrounded screen. If no screen is specified, the first background screen is foregrounded.

Line: Set to the current line when the screen was last edited.
Options: None.

[range] g[lobal] /pattern/ [commands]
[range] v /pattern/ [commands]

Apply commands to lines matching (or not matching) a pattern. The lines within the given
range that match (‘‘g[lobal]’’), or do not match (‘‘v’’) the given pattern are selected.
Then, the specified ex command(s) are executed with the current line (‘‘.’’) set to each
selected line. If no range is specified, the entire file is searched for matching, or not matching,

USD:13-40 Nvi/Nex Reference (Ex Commands)

lines.

Multiple commands can be specified, one per line, by escaping each <newline> character
with a backslash, or by separating commands with a ‘‘|’’ character. If no commands are
specified, the command defaults to the print command.

For the append, change and insert commands, the input text must be part of the global com-
mand line. In this case, the terminating period can be omitted if it ends the commands.

The visual command may also be specified as one of the ex commands. In this mode, input is
taken from the terminal. Entering a Q command in vi mode causes the next line matching the
pattern to be selected and vi to be reentered, until the list is exhausted.

The global, v and undo commands cannot be used as part of these commands.

The editor options autoindent, autoprint and report are turned off for the duration of the glo-
bal and v commands.

Line: The last line modified.
Options: Affected by the ignorecase and magic options. Turns off the autoindent, auto-

print and report options.

he[lp]
Display a help message.

Line: Unchanged.
Options: None.

[line] i[nsert][!]
The input text is inserted before the specified line. Following the command name with a ‘‘!’’
character causes the autoindent option setting to be toggled for the duration of this command.

Line: Set to the last line input; if no lines were input, set to the line before the target line,
or to the first line of the file if there are no lines preceding the target line. Affected
by the autoindent and number options.

[range] j[oin][!] [count] [flags]
Join lines of text together.

A count specified to the command specifies that the last line of the range plus count sub-
sequent lines will be joined. (Note, this differs by one from the general rule where only
count- subsequent lines are affected.)

If the current line ends with a whitespace character, all whitespace is stripped from the next
line. Otherwise, if the next line starts with a open parenthesis (‘‘(’’), do nothing. Otherwise,
if the current line ends with a question mark (‘‘?’’), period (‘‘.’’) or exclamation point
(‘‘!’’), insert two spaces. Otherwise, insert a single space.

Appending a ‘‘!’’ character to the command name causes a simpler join with no white-space
processing.

Line: Unchanged.
Options: None.

[range] l[ist] [count] [flags]
Display the lines unambiguously. Tabs are displayed as ‘‘ˆI’’, and the end of the line is
marked with a ‘‘$’’ character.

Nvi/Nex Reference (Ex Commands) USD:13-41

Line: Set to the last line displayed.
Options: Affected by the number option.

map[!] [lhs rhs]
Define or display maps (for vi only).

If ‘‘lhs’’ and ‘‘rhs’’ are not specified, the current set of command mode maps are displayed.
If a ‘‘!’’ character is appended to to the command, the text input mode maps are displayed.

Otherwise, when the ‘‘lhs’’ character sequence is entered in vi, the action is as if the
corresponding ‘‘rhs’’ had been entered. If a ‘‘!’’ character is appended to the command
name, the mapping is effective during text input mode, otherwise, it is effective during com-
mand mode. This allows ‘‘lhs’’ to have two different macro definitions at the same time: one
for command mode and one for input mode.

Whitespace characters require escaping with a <literal-next> character to be entered in
the lhs string in visual mode.

Normally, keys in the rhs string are remapped (see the remap option), and it is possible to
create infinite loops. However, keys which map to themselves are not further remapped,
regardless of the setting of the remap option. For example, the command ‘‘:map n nz.’’
maps the ‘‘n’’ key to the n and z commands.

To exit an infinitely looping map, use the terminal <interrupt> character.

Line: Unchanged.
Options: Affected by the remap option.

[line] ma[rk] <character>
[line] k <character>

Mark the line with the mark <character>. The expressions ‘‘’<character>’’ and
‘‘‘<character>’’ can then be used as an address in any command that uses one.

Line: Unchanged.
Options: None.

[range] m[ove] line
Move the specified lines after the target line. A target line of 0 places the lines at the begin-
ning of the file.

Line: Set to the first of the moved lines.
Options: None.

mk[exrc][!] file
Write the abbreviations, editor options and maps to the specified file. Information is written in
a form which can later be read back in using the ex source command. If file already exists,
the mkexrc command will fail. This check can be overridden by appending a ‘‘!’’ character
to the command.

Line: Unchanged.
Options: None.

n[ext][!] [file ...]
Edit the next file from the argument list. The next command will fail if the file has been
modified since the last complete write. This check can be overridden by appending the ‘‘!’’
character to the command name. The argument list can optionally be replaced by specifying a
new one as arguments to this command. In this case, editing starts with the first file on the new

USD:13-42 Nvi/Nex Reference (Ex Commands)

list.

Line: Set as described for the edit command.
Options: Affected by the options autowrite and writeany.

[line] o[pen] /pattern/ [flags]
Enter open mode. Open mode is the same as being in vi, but with a one-line window. All the
standard vi commands are available. If a match is found for the optional RE argument, the
cursor is set to the start of the matching pattern.

This command is not yet implemented.

Line: Unchanged, unless the optional RE is specified, in which case it is set to the line
where the matching pattern is found.

Options: Affected by the open option.

pre[serve]
Save the file in a form that can later be recovered using the ex −−r option. When the file is
preserved, an email message is sent to the user.

Line: Unchanged.
Options: None.

prev[ious][!]
Edit the previous file from the argument list. The previous command will fail if the file has
been modified since the last complete write. This check can be overridden by appending the
‘‘!’’ character to the command name.

Line: Set as described for the edit command.
Options: Affected by the options autowrite and writeany. None.

[range] p[rint] [count] [flags]
Display the specified lines.

Line: Set to the last line displayed.
Options: Affected by the list and number option.

[line] pu[t] [buffer]
Append buffer contents to the current line. If a buffer is specified, its contents are appended to
the line, otherwise, the contents of the unnamed buffer are used.

Line: Set to the line after the current line.
Options: None.

q[uit][!]
End the editing session. If the file has been modified since the last complete write, the quit
command will fail. This check may be overridden by appending a ‘‘!’’ character to the com-
mand.

If there are more files to edit, the quit command will fail. Appending a ‘‘!’’ character to the
command name or entering two quit commands (i.e. wq, quit, xit or ZZ) in a row) will over-
ride this check and the editor will exit.

Line: Unchanged.
Options: None.

Nvi/Nex Reference (Ex Commands) USD:13-43

[line] r[ead][!] [file]
Read a file. A copy of the specified file is appended to the line. If line is 0, the copy is
inserted at the beginning of the file. If no file is specified, the current file is read; if there is no
current file, then file becomes the current file. If there is no current file and no file is
specified, then the read command will fail.

If file is preceded by a ‘‘!’’ character, file is treated as if it were a shell command, and
passed to the program named by the shell edit option. The standard and standard error outputs
of that command are read into the file after the specified line. The special meaning of the ‘‘!’’
character can be overridden by escaping it with a backslash (‘‘\’’) character.

Line: When executed from ex, the current line is set to the last line read. When executed
from vi, the current line is set to the first line read.

Options: None.

rec[over] file
Recover file if it was previously saved. If no saved file by that name exists, the recover
command behaves equivalently to the edit command.

Line: Set as described for the edit command.
Options: None.

res[ize] [+|-]size
Vi mode only. Grow or shrink the current screen. If size is a positive, signed number, the
current screen is grown by that many lines. If size is a negative, signed number, the current
screen is shrunk by that many lines. If size is not signed, the current screen is set to the
specified size. Applicable only to split screens.

Line: Unchanged.
Options: None.

rew[ind][!]
Rewind the argument list. If the current file has been modified since the last complete write,
the rewind command will fail. This check may be overridden by appending the ‘‘!’’ charac-
ter to the command.

Otherwise, the current file is set to the first file in the argument list.

Line: Set as described for the edit command.
Options: Affected by the autowrite and writeany options.

se[t] [option[=[value]] ...] [nooption ...] [option? ...] [all]
Display or set editor options. When no arguments are specified, the editor option term, and
any editor options whose values have been changed from the default settings are displayed. If
the argument all is specified, the values of all of editor options are displayed.

Specifying an option name followed by the character ‘‘?’’ causes the current value of that
option to be displayed. The ‘‘?’’ can be separated from the option name by whitespace char-
acters. The ‘‘?’’ is necessary only for Boolean valued options. Boolean options can be given
values by the form ‘‘set option’’ to turn them on, or ‘‘set nooption’’ to turn them
off. String and numeric options can be assigned by the form ‘‘set option=value’’. Any
whitespace characters in strings can be included literally by preceding each with a backslash.
More than one option can be set or listed by a single set command, by specifying multiple
arguments, each separated from the next by whitespace characters.

Line: Unchanged.

USD:13-44 Nvi/Nex Reference (Ex Commands)

Options: None.

sh[ell]
Run the shell program. The program named by the shell option is run with a −−i (for interac-
tive) flag. Editing is resumed when that program exits.

Line: Unchanged.
Options: Affected by the shell option.

so[urce] file
Read and execute ex commands from a file. Source commands may be nested.

Line: Unchanged.
Options: None.

sp[lit] [file ...]
Vi mode only. Split the screen. The current screen is split into two screens, of approximately
equal size. If the cursor is in the lower half of the screen, the screen will split up, i.e. the new
screen will be above the old one. If the cursor is in the upper half of the screen, the new
screen will be below the old one.

If file is specified, the new screen is editing that file, otherwise, both screens are editing the
same file, and changes in each will be be reflected in the other. The argument list for the new
screen consists of the list of files specified as arguments to this command, or, the current path-
name if no files are specified.

Line: If file is specified, set as for the edit command, otherwise unchanged.
Options: None.

[range] s[ubstitute] [/pattern/replace/] [options] [count] [flags]
[range] & [options] [count] [flags]
[range] ˜ [options] [count] [flags]

Make substitutions. Replace the first instance of pattern with the string replace on the
specified line(s). If the ‘‘/pattern/repl/’’ argument is not specified, the
‘‘/pattern/repl/’’ from the previous substitute command is used.

If options includes the letter ‘‘c’’ (confirm), you will be prompted for confirmation before
each replacement is done. An affirmative response (in English, a ‘‘y’’ character) causes the
replacement to be made. A quit response (in English, a ‘‘q’’ character) causes the substitute
command to be terminated. Any other response causes the replacement not to be made, and
the substitute command continues. If options includes the letter ‘‘g’’ (global), all nonover-
lapping instances of pattern in the line are replaced.

The & version of the command is the same as not specifying a pattern or replacement string to
the substitute command, and the ‘‘&’’ is replaced by the pattern and replacement information
from the previous substitute command.

The ˜ version of the command is the same as & and s, except that the search pattern used is the
last RE used in any command, not necessarily the one used in the last substitute command.

For example, in the sequence

s/red/blue/
/green
˜

the ‘‘˜’’ is equivalent to ‘‘s/green/blue/’’.

Nvi/Nex Reference (Ex Commands) USD:13-45

The substitute command may be interrupted, using the terminal interrupt character. All sub-
stitutions completed before the interrupt are retained.

Line: Set to the last line upon which a substitution was made.
Options: Affected by the ignorecase and magic option.

su[spend][!]
st[op][!]
<control-Z>

Suspend the edit session. Appending a ‘‘!’’ character to these commands turns off the
autowrite option for the command.

Line: Unchanged.
Options: Affected by the autowrite and writeany options.

ta[g][!] tagstring
Edit the file containing the specified tag. Search for the tagstring, which can be in a different
file. If the tag is in a different file, then the new file is edited. If the current file has been
modified since the last complete write, the tag command will fail. This check can be overrid-
den by appending the ‘‘!’’ character to the command name.

The tag command searches for tagstring in the tags file(s) specified by the option. (See
ctags(1) for more information on tags files.)

Line: Set to the line indicated by the tag.
Options: Affected by the autowrite, taglength, tags and writeany options.

tagp[op][!] [file | number]
Pop to the specified tag in the tags stack. If neither file or number is specified, the tagpop
command pops to the most recent entry on the tags stack. If file or number is specified, the
tagpop command pops to the most recent entry in the tags stack for that file, or numbered
entry in the tags stack, respectively. (See the display command for information on displaying
the tags stack.)

If the file has been modified since the last complete write, the tagpop command will fail. This
check may be overridden by appending a ‘‘!’’ character to the command name.

Line: Set to the line indicated by the tag.
Options: Affected by the autowrite and writeany options.

tagt[op][!]
Pop to the least recent tag on the tags stack, clearing the tags stack.

If the file has been modified since the last complete write, the tagtop command will fail. This
check may be overridden by appending a ‘‘!’’ character to the command name.

Line: Set to the line indicated by the tag.
Options: Affected by the autowrite and writeany options.

una[bbrev] lhs
Delete an abbreviation. Delete lhs from the current list of abbreviations.

Line: Unchanged.
Options: None.

u[ndo]
Undo the last change made to the file. Changes made by global, v, visual and map sequences

USD:13-46 Nvi/Nex Reference (Ex Commands)

are considered a single command. If repeated, the u command alternates between these two
states, and is its own inverse.

Line: Set to the last line modified by the command.
Options: None.

unm[ap][!] lhs
Unmap a mapped string. Delete the command mode map definition for lhs. If a ‘‘!’’ char-
acter is appended to the command name, delete the text input mode map definition instead.

Line: Unchanged.
Options: None.

ve[rsion]
Display the version of the ex/vi editor.

[line] vi[sual] [type] [count] [flags]
Ex mode only. Enter vi. The type is optional, and can be ‘‘−’’, ‘‘+’’ or ‘‘ˆ’’, as in the ex z
command, to specify the position of the specified line in the screen window. (The default is to
place the line at the top of the screen window.) A count specifies the number of lines that
will initially be displayed. (The default is the value of the window editor option.)

Line: Unchanged unless line is specified, in which case it is set to that line.
Options: None.

vi[sual][!] [+cmd] [file]
Vi mode only. Edit a new file. Identical to the ‘‘edit[!] [+cmd] [file]’’ command.

viu[sage] [command]
Display usage for a vi command. If command is specified, a usage statement for that com-
mand is displayed. Otherwise, usage statements for all vi commands are displayed.

Line: Unchanged.
Options: None.

[range] w[rite][!] [>>] [file]
[range] w[rite] [!] [file]
[range] wn[!] [>>] [file]
[range] wq[!] [>>] [file]

Write the file. The specified lines (the entire file, if no range is given) is written to file. If
file is not specified, the current pathname is used. If file is specified, and it exists, or if
the current pathname was set using the file command, and the file already exists, these com-
mands will fail. Appending a ‘‘!’’ character to the command name will override this check
and the write will be attempted, regardless.

Specifying the optional ‘‘>>’’ string will cause the write to be appended to the file, in which
case no tests are made for the file already existing.

If the file is preceded by a ‘‘!’’ character, the program named by the shell edit option is
invoked with file as its second argument, and the specified lines are passed as standard input to
that command. The ‘‘!’’ in this usage must be separated from command name by at least one
whitespace character. The special meaning of the ‘‘!’’ may be overridden by escaping it with
a backslash (‘‘\’’) character.

The wq version of the write command will exit the editor after writing the file, if there are no
further files to edit. Appending a ‘‘!’’ character to the command name or entering two
‘‘quit’’ commands (i.e. wq, quit, xit or ZZ) in a row) will override this check and the editor

Nvi/Nex Reference (Ex Commands) USD:13-47

will exit, ignoring any files that have not yet been edited.

The wn version of the write command will move to the next file after writing the file, unless
the write fails.

Line: Unchanged.
Options: Affected by the readonly and writeany options.

[range] x[it][!] [file]
Write the file if it has been modified. The specified lines are written to file, if the file has
been modified since the last complete write to any file. If no range is specified, the entire file
is written.

The xit command will exit the editor after writing the file, if there are no further files to edit.
Appending a ‘‘!’’ character to the command name or entering two ‘‘quit’’ commands (i.e.
wq, quit, xit or ZZ) in a row) will override this check and the editor will exit, ignoring any
files that have not yet been edited.

Line: Unchanged.
Options: Affected by the readonly and writeany options.

[range] ya[nk] [buffer] [count]
Copy the specified lines to a buffer. If no buffer is specified, the unnamed buffer is used.

Line: Unchanged.
Options: None.

[line] z [type] [count] [flags]
Adjust the window. If no type is specified, then count lines following the specified line are
displayed. The default count is the value of the window option. The type argument
changes the position at which line is displayed on the screen by changing the number of
lines displayed before and after line. The following type characters may be used:

− Place the line at the bottom of the screen.
+ Place the line at the top of the screen.
. Place the line in the middle of the screen.
ˆ Write out count lines starting count * 2 lines before line; the net effect of this

is that a ‘‘zˆ’’ command following a z command writes the previous page.
= Center line on the screen with a line of hyphens displayed immediately before

and after it. The number of preceding and following lines of text displayed are
reduced to account for those lines.

Line: Set to the last line displayed, with the exception of the type, where the current line
is set to the line specified by the command.

Options: Affected by the scroll option.

15. Set Options

There are a large number of options that may be set (or unset) to change the editor’s behavior.
This section describes the options, their abbreviations and their default values.

In each entry below, the first part of the tag line is the full name of the option, followed by any
equivalent abbreviations. (Regardless of the abbreviations, it is only necessary to use the minimum
number of characters necessary to distinguish an abbreviation from all other commands for it to be
accepted, in nex/nvi. Historically, only the full name and the official abbreviations were accepted by
ex/vi. Using full names in your startup files and environmental variables will probably make them
more portable.) The part in square brackets is the default value of the option. Most of the options
are boolean, i.e. they are either on or off, and do not have an associated value.

USD:13-48 Nvi/Nex Reference (Options)

Options apply to both ex and vi modes, unless otherwise specified.

For information on modifying the options or to display the options and their current values, see
the ‘‘set’’ command in the section entitled ‘‘Ex Commands’’.

altwerase [off]
Vi only. Change how vi does word erase during text input. When this option is set, text is
broken up into three classes: alphabetic, numeric and underscore characters, other nonblank
characters, and blank characters. Changing from one class to another marks the end of a word.
In addition, the class of the first character erased is ignored (which is exactly what you want
when erasing pathname components).

autoindent, ai [off]
If this option is set, whenever you create a new line (using the vi A, a, C, c, I, i, O, o, R, r, S,
and s commands, or the ex append, change, and insert commands) the new line is automati-
cally indented to align the cursor with the first nonblank character of the line from which you
created it. Lines are indented using tab characters to the extent possible (based on the value of
the tabstop option) and then using space characters as necessary. For commands inserting text
into the middle of a line, any blank characters to the right of the cursor are discarded, and the
first nonblank character to the right of the cursor is aligned as described above.

The indent characters are themselves somewhat special. If you do not enter more characters
on the new line before moving to another line, or entering <escape>, the indent character
will be deleted and the line will be empty. For example, if you enter <carriage-return>
twice in succession, the line created by the first <carriage-return> will not have any
characters in it, regardless of the indentation of the previous or subsequent line.

Indent characters also require that you enter additional erase characters to delete them. For
example, if you have an indented line, containing only blanks, the first <word-erase> char-
acter you enter will erase up to end of the indent characters, and the second will erase back to
the beginning of the line. (Historically, only the <control-D> key would erase the indent
characters. Both the <control-D> key and the usual erase keys work in nvi.) In addition,
if the cursor is positioned at the end of the indent characters, the keys ‘‘0<control-D>’’
will erase all of the indent characters for the current line, resetting the indentation level to 0.
Similarly, the keys ‘‘ˆ<control-D>’’ will erase all of the indent characters for the current
line, leaving the indentation level for future created lines unaffected.

Finally, if the autoindent option is set, the S and cc commands change from the first nonblank
of the line to the end of the line, instead of from the beginning of the line to the end of the line.

autoprint, ap [off]
Ex only. Cause the current line to be automatically displayed after the ex commands <, >,
copy, delete, join, move, put, t, Undo, and undo. This automatic display is suppressed during
global and v commands, and for any command where optional flags are used to explicitly
display the line.

autowrite, aw [off]
If this option is set, the vi !, ˆˆ, ˆ] and <control-Z> commands, and the ex edit, next, rewind,
stop, suspend, tag, tagpop, and tagtop commands automatically write the current file back to
the current file name if it has been modified since it was last written. If the write fails, the
command fails and goes no further.

Appending the optional force flag character ‘‘!’’ to the ex commands next, rewind, stop,
suspend, tag, tagpop, and tagtop stops the automatic write from being attempted.

(Historically, the next command ignored the optional force flag.) Note, the ex commands edit,
quit, shell, and xit are not affected by the autowrite option.

Nvi/Nex Reference (Options) USD:13-49

The autowrite option is ignored if the file is considered read-only for any reason.

backup [""]
If this option is set, it specifies a pathname used as a backup file, and, whenever a file is writ-
ten, the file’s current contents are copied to it. The pathname is ‘‘#’’, ‘‘%’’ and ‘‘!’’
expanded.

If the first character of the pathname is ‘‘N’’, a version number is appended to the pathname
(and the ‘‘N’’ character is then discarded). Version numbers are always incremented, and each
backup file will have a version number one greater than the highest version number currently
found in the directory.

Backup files must be regular files, owned by the real user ID of the user running the editor, and
not accessible by any other user.

beautify, bf [off]
If this option is set, all control characters that are not currently being specially interpreted,
other than <tab>, <newline>, and <form-feed>, are discarded from commands read in
by ex from command files, and from input text entered to vi (either into the file or to the colon
command line). Text files read by ex/vi are not affected by the beautify option.

cdpath [environment variable CDPATH, or current directory]
This option is used to specify a colon separated list of directories which are used as path
prefixes for any relative path names used as arguments for the cd command. The value of this
option defaults to the value of the environmental variable CDPATH if it is set, otherwise to the
current directory. For compatibility with the POSIX 1003.2 shell, the cd command does not
check the current directory as a path prefix for relative path names unless it is explicitly
specified. It may be so specified by entering an empty string or a ‘‘.’’ character into the
CDPATH variable or the option value.

columns, co [80]
The number of columns in the screen. Setting this option causes ex/vi to set (or reset) the
environmental variable COLUMNS. See the section entitled ‘‘Sizing the Screen’’ more infor-
mation.

comment [off]
Vi only. If the first non-empty line of the file begins with the string ‘‘/*’’, this option causes
vi to skip to the end of that C-language comment (probably a terribly boring legal notice)
before displaying the file.

directory, dir [environment variable TMPDIR, or /tmp]
The directory where temporary files are created. The environmental variable TMPDIR is used
as the default value if it exists, otherwise /tmp is used.

edcompatible, ed [off]
Remember the values of the ‘‘c’’ and ‘‘g’’ suffices to the substitute commands, instead of ini-
tializing them as unset for each new command. Specifying pattern and replacement strings to
the substitute command unsets the ‘‘c’’ and ‘‘g’’ suffices as well.

errorbells, eb [off]
Ex only. Ex error messages are normally presented in inverse video. If that is not possible for
the terminal, setting this option causes error messages to be announced by ringing the terminal
bell.

exrc, ex [off]
If this option is turned off in the system or $HOME startup files, the local startup files are
never read (unless they are the same as the system or $HOME startup files). Turning it on has

USD:13-50 Nvi/Nex Reference (Options)

no effect, i.e. the normal checks for local startup files are performed, regardless. See the sec-
tion entitled ‘‘Startup Information’’ for more information.

extended [off]
This option causes all regular expressions to be treated as POSIX 1003.2 Extended Regular
Expressions (which are similar to historic egrep(1) style expressions).

flash [on]
This option causes the screen to flash instead of beeping the keyboard, on error, if the terminal
has the capability.

hardtabs, ht [8]
This option defines the spacing between hardware tab settings, i.e. the tab expansion done by
the operating system and/or the terminal itself. As nex/nvi never writes <tab> characters to
the terminal, unlike historic versions of ex/vi, this option does not currently have any affect.

ignorecase, ic [off]
This option causes regular expressions, both in ex commands and in searches, to be evaluated
in a case-insensitive manner.

keytime [6]
The 10th’s of a second ex/vi waits for a subsequent key to complete a key mapping.

leftright [off]
Vi only. This option causes the screen to be scrolled left-right to view lines longer than the
screen, instead of the traditional vi screen interface which folds long lines at the right-hand
margin of the terminal.

lines, li [24]
Vi only. The number of lines in the screen. Setting this option causes ex/vi to set (or reset) the
environmental variable LINES. See the section entitled ‘‘Sizing the Screen’’ for more infor-
mation.

lisp [off]
Vi only. This option changes the behavior of the vi (,), {, }, [[and]] commands to match the
Lisp language. Also, the autoindent option’s behavior is changed to be appropriate for Lisp.

This option is not yet implemented.

list [off]
This option causes lines to be displayed in an unambiguous fashion. Specifically, tabs are
displayed as control characters, i.e. ‘‘ˆI’’, and the ends of lines are marked with a ‘‘$’’ char-
acter.

lock [on]
This option causes the editor to attempt to get an exclusive lock on any file being edited, read
or written. Reading or writing a file that cannot be locked produces a warning message, but no
other effect. Editing a file that cannot be locked results in a read only edit session, as if the
readonly edit option were set.

magic [on]
This option is on by default. Turning the magic option off causes all regular expression char-
acters except for ‘‘ˆ’’ and ‘‘$’’, to be treated as ordinary characters. To re-enable characters
individually, when the magic option is off, precede them with a backslash ‘‘\’’ character. See
the section entitled ‘‘Regular Expressions and Replacement Strings’’ for more information.

Nvi/Nex Reference (Options) USD:13-51

matchtime [7]
Vi only. The 10th’s of a second vi pauses on the matching character when the showmatch
option is set.

mesg [on]
This option allows other users to contact you using the talk(1) and write(1) utilities, while you
are editing. Ex/vi does not turn message on, i.e. if messages were turned off when the editor
was invoked, they will stay turned off. This option only permits you to disallow messages for
the edit session. See the mesg(1) utility for more information.

msgcat [./]
This option selects a message catalog to be used to display error and informational messages in
a specified language. If the value of this option ends with a ’/’, it is treated as the name of a
directory that contains a message catalog ‘‘vi_XXXX’’, where ‘‘XXXX’’ is the value of the
LANG environmental variable, if it’s set, or the value of the LC_MESSAGES environmental
variable if it’s not. If neither of those environmental variables are set, or if the option doesn’t
end in a ’/’, the option is treated as the full path name of the message catalog to use.

If any messages are missing from the catalog, the backup text (English) is used instead.

See the distribution file catalog/README for additional information on building and instal-
ling message catalogs.

modelines, modeline [off]
If the modelines option is set, ex/vi has historically scanned the first and last five lines of each
file as it is read for editing, looking for any ex commands that have been placed in those lines.
After the startup information has been processed, and before the user starts editing the file, any
commands embedded in the file are executed.

Commands were recognized by the letters ‘‘e’’ or ‘‘v’’ followed by ‘‘x’’ or ‘‘i’’, at the begin-
ning of a line or following a tab or space character, and followed by a ‘‘:’’, an ex command,
and another ‘‘:’’.

This option is a security problem of immense proportions, and should not be used under any
circumstances.

This option will never be implemented.

number, nu [off]
Precede each line displayed with its current line number.

octal [off]
Display unknown characters as octal numbers, instead of the default hexadecimal.

open [on]
Ex only. If this option is not set, the open and visual commands are disallowed.

optimize, opt [on]
Vi only. Throughput of text is expedited by setting the terminal not to do automatic carriage
returns when printing more than one (logical) line of output, greatly speeding output on termi-
nals without addressable cursors when text with leading white space is printed.

This option is not yet implemented.

paragraphs, para [IPLPPPQPP LIpplpipbp]
Vi only. Define additional paragraph boundaries for the { and } commands. The value of this
option must be a character string consisting of zero or more character pairs.

USD:13-52 Nvi/Nex Reference (Options)

In the text to be edited, the character string <newline>.<char-pair>, (where <char-
pair> is one of the character pairs in the option’s value) defines a paragraph boundary. For
example, if the option were set to LaA<space>##, then all of the following additional para-
graph boundaries would be recognized:

<newline>.La
<newline>.A<space>
<newline>.##

prompt [on]
Ex only. This option causes ex to prompt for command input with a ‘‘:’’ character; when it is
not set, no prompt is displayed.

readonly, ro [off]
This option causes a force flag to be required to attempt to write the file back to the original file
name. Setting this option is equivalent to using the −−R command line option, or editing a file
which lacks write permission.

recdir [/var/tmp/vi.recover]
The directory where recovery files are stored.

If you change the value of recdir, be careful to choose a directory whose contents are not reg-
ularly deleted. Bad choices include directories in memory based filesystems, or /tmp, on
most systems, as their contents are removed when the machine is rebooted.

Public directories like /usr/tmp and /var/tmp are usually safe, although some sites
periodically prune old files from them. There is no requirement that you use a public direc-
tory, e.g. a sub-directory of your home directory will work fine.

Finally, if you change the value of recdir, you must modify the recovery script to operate in
your chosen recovery area.

See the section entitled ‘‘Recovery’’ for further information.

redraw, re [off]
Vi only. The editor simulates (using great amounts of output), an intelligent terminal on a
dumb terminal (e.g. during insertions in vi the characters to the right of the cursor are
refreshed as each input character is typed).

This option is not yet implemented.

remap [on]
If this option is set, it is possible to define macros in terms of other macros. Otherwise, each
key is only remapped up to one time. For example, if ‘‘A’’ is mapped to ‘‘B’’, and ‘‘B’’ is
mapped to ‘‘C’’, The keystroke ‘‘A’’ will be mapped to ‘‘C’’ if the remap option is set, and to
‘‘B’’ if it is not set.

report [5]
Set the threshold of the number of lines that need to be changed or yanked before a message
will be displayed to the user. For everything but the yank command, the value is the largest
value about which the editor is silent, i.e. by default, 6 lines must be deleted before the user is
notified. However, if the number of lines yanked is greater than or equal to the set value, it is
reported to the user.

ruler [off]
Vi only. Display a row/column ruler on the colon command line.

Nvi/Nex Reference (Options) USD:13-53

scroll, scr [(environment variable LINES - 1) / 2]
Set the number of lines scrolled by the ex <control-D> and <end-of-file> commands.

Historically, the ex z command, when specified without a count, used two times the size of the
scroll value; the POSIX 1003.2 standard specified the window size, which is a better choice.

sections, sect [NHSHH HUnhsh]
Vi only. Define additional section boundaries for the [[and]] commands. The sections option
should be set to a character string consisting of zero or more character pairs. In the text to be
edited, the character string <newline>.<char-pair>, (where <char-pair> is one of
the character pairs in the option’s value), defines a section boundary in the same manner that
paragraph option boundaries are defined.

shell, sh [environment variable SHELL, or /bin/sh]
Select the shell used by the editor. The specified path is the pathname of the shell invoked by
the vi ! shell escape command and by the ex shell command. This program is also used to
resolve any shell meta-characters in ex commands.

shellmeta [˜{[*?$‘’"\]
The set of characters that ex checks for when doing file name expansion. If any of the
specified characters are found in the file name arguments to the ex commands, the arguments
are expanded using the program defined by the shell option. The default set of characters is a
union of meta characters from the Version 7 and the Berkeley C shell.

shiftwidth, sw [8]
Set the autoindent and shift command indentation width. This width is used by the autoindent
option and by the <, >, and shift commands.

showmatch, sm [off]
Vi only. This option causes vi, when a ‘‘}’’ or ‘‘)’’ is entered, to briefly move the cursor the
matching ‘‘{’’ or ‘‘(’’. See the matchtime option for more information.

showmode [off]
Vi only. This option causes vi to display a string identifying the current editor mode on the
colon command line. The string is preceded by an asterisk (‘‘*’’) if the file has been modified
since it was last completely written,

sidescroll [16]
Vi only. Sets the number of columns that are shifted to the left or right, when vi is doing left-
right scrolling and the left or right margin is crossed. See the leftright option for more infor-
mation.

slowopen, slow [off]
This option affects the display algorithm used by vi, holding off display updating during input
of new text to improve throughput when the terminal in use is slow and unintelligent.

This option is not yet implemented.

sourceany [off]
If this option is turned on, vi historically read startup files that were owned by someone other
than the editor user. See the section entitled ‘‘Startup Information’’ for more information.
This option is a security problem of immense proportions, and should not be used under any
circumstances.

This option will never be implemented.

USD:13-54 Nvi/Nex Reference (Options)

tabstop, ts [8]
This option sets tab widths for the editor display.

taglength, tl [0]
This option sets the maximum number of characters that are considered significant in a tag
name. Setting the value to 0 makes all of the characters in the tag name significant.

tags, tag [tags /var/db/libc.tags /sys/kern/tags]
Sets the list of tags files, in search order, which are used when the editor searches for a tag.

term, ttytype, tty [environment variable TERM]
Set the terminal type. Setting this option causes ex/vi to set (or reset) the environmental vari-
able TERM.

terse [off]
This option has historically made editor messages less verbose. It has no effect in this imple-
mentation. See the verbose option for more information.

tildeop
Modify the ˜ command to take an associated motion.

timeout, to [on]
If this option is set, ex/vi waits for a specific period for a subsequent key to complete a key
mapping (see the keytime option). If the option is not set, the editor waits until enough keys
are entered to resolve the ambiguity, regardless of how long it takes.

ttywerase [off]
Vi only. This option changes how vi does word erase during text input. If this option is set,
text is broken up into two classes, blank characters and nonblank characters. Changing from
one class to another marks the end of a word.

verbose [off]
Vi only. Vi historically bells the terminal for many obvious mistakes, e.g. trying to move past
the left-hand margin, or past the end of the file. If this option is set, an error message is
displayed for all errors.

w300 [no default]
Vi only. Set the window size if the baud rate is less than 1200 baud. See the window option
for more information.

w1200 [no default]
Vi only. Set the window size if the baud rate is equal to 1200 baud. See the window option
for more information.

w9600 [no default]
Vi only. Set the window size if the baud rate is greater than 1200 baud. See the window
option for more information.

warn [on]
Ex only. This option causes a warning message to the terminal if the file has been modified,
since it was last written, before a ! command.

window, w, wi [environment variable LINES - 1]
This option determines the default number of lines in a screenful, as displayed by the z com-
mand. It also determines the number of lines scrolled by the vi commands <control-B> and
<control-F>, and the default number of lines scrolled by the vi commands <control-D> and
<control-U>. The value of window can be unrelated to the real screen size, although it starts

Nvi/Nex Reference (Options) USD:13-55

out as the number of lines on the screen. See the section entitled ‘‘Sizing the Screen’’ for
more information. Setting the value of the window option is the same as using the −−w com-
mand line option.

If the value of the window option (as set by the window, w300, w1200 or w9600 options) is
smaller than the actual size of the screen, large screen movements will result in displaying only
that smaller number of lines on the screen. (Further movements in that same area will result in
the screen being filled.) This can provide a performance improvement when viewing different
places in one or more files over a slow link.

Resetting the window size does not reset the default number of lines scrolled by the <control-
D> and <control-U> commands.

wraplen, wl [0]
This option is identical to the wrapmargin option, with the exception that it specifies the
number of columns from the left margin before the line splits, not the right margin. If both
wraplen and wrapmargin are set, the wrapmargin value is used.

wrapmargin, wm [0]
Vi only. If the value of the wrapmargin option is non-zero, vi will split lines so that they end
at least that number of columns before the right-hand margin of the screen. (Note, the value of
wrapmargin is not a text length. In a screen that is 80 columns wide, the command ‘‘:set
wrapmargin=8’’ attempts to keep the lines less than or equal to 72 columns wide.)

Lines are split at the previous whitespace character closest to the number. Any trailing whi-
tespace characters before that character are deleted. If the line is split because of an inserted
<space> or <tab> character, and you then enter another <space> character, it is dis-
carded.

If wrapmargin is set to 0, or if there is no blank character upon which to split the line, the line
is not broken.

wrapscan, ws [on]
This option causes searches to wrap around the end or the beginning of the file, and back to the
starting point. Otherwise, the end or beginning of the file terminates the search.

writeany, wa [off]
If this option is set, file-overwriting checks that would usually be made before the write and
xit commands, or before an automatic write (see the autowrite option), are not made. This
allows a write to any file, provided the file permissions allow it.

16. Additional Features in Nex/Nvi

There are a few features in nex/nvi that are not found in historic versions of ex/vi. Some of
the more interesting of these are as follows:

8-bit clean data, large lines, files
Nex/nvi will edit any format file. Line lengths are limited by available memory, and file sizes
are limited by available disk space. The vi text input mode command <control-X> can insert
any possible character value into the text.

Split screens
The split command divides the screen into multiple editing regions. The <control-W> com-
mand rotates between the foreground screens. The resize command can be used to grow or
shrink a particular screen.

USD:13-56 Nvi/Nex Reference

Background and foreground screens
The bg command backgrounds the current screen, and the fg command foregrounds back-
grounded screens. The display command can be used to list the background screens.

Tag stacks
Tags are now maintained in a stack. The <control-T> command returns to the previous tag
location. The tagpop command returns to the most recent tag location by default, or, option-
ally to a specific tag number in the tag stack, or the most recent tag from a specified file. The
display command can be used to list the tags stack. The tagtop command returns to the top of
the tag stack.

New displays
The display command can be used to display the current buffers, the backgrounded screens,
and the tags stack.

Infinite undo
Changes made during an edit session may be rolled backward and forward. A . command
immediately after a u command continues either forward or backward depending on whether
the u command was an undo or a redo.

Usage information
The exusage and viusage commands provide usage information for all of the ex and vi com-
mands by default, or, optionally, for a specific command or key.

Message Catalogs
It is possible to display informational and error messages in different languages by providing a
catalog of messages. See the msgcat option and the file catalog/README for more infor-
mation.

Extended Regular Expressions
The extended option causes Regular Expressions to be interpreted as as Extended Regular
Expressions, (i.e. egrep(1) style Regular Expressions).

Word search
The <control-A> command searches for the word referenced by the cursor.

Number increment
The # command increments or decrements the number referenced by the cursor.

Previous file
The previous command edits the previous file from the argument list.

Left-right scrolling
The leftright option causes nvi to do left-right screen scrolling, instead of the traditional vi
line wrapping.

Nvi/Nex Reference USD:13-57

17. Index

. 19
! 16, 35
"" 35
17, 36
$ 17
% 17
& 18, 44
(18
) 18
* 36
+ 14
, 19
/RE/ 19
0 20
0<control-D> 32
: 20
; 21
< 21, 36
<carriage-return> 9
<control-A> 12
<control-B> 13
<control-D> 13, 32, 35
<control-E> 13
<control-F> 13
<control-G> 13
<control-H> 13, 32
<control-J> 14
<control-L> 14
<control-M> 14
<control-N> 14
<control-P> 14
<control-R> 14
<control-T> 14, 32
<control-U> 15
<control-W> 15, 32
<control-X> 33
<control-Y> 15
<control-Z> 15, 45
<control-]> 15
<control-ˆ> 16
<end-of-file> 34, 35
<erase> 32
<escape> 15, 32
<interrupt> 8, 31, 33
<line erase> 32
<literal-next> 8, 32
<newline> 9
<nul> 32
<space> 16
<word erase> 32
= 36
> 21, 37
?RE? 19
@ 21, 36
A 21

B 21
C 22
D 22
E 22
F 22
G 22
H 23
I 23
J 23
L 23
M 23
N 19
O 24
P 24
Q 24
R 24
S 24
T 24
U 25
W 25
X 25
Y 25
ZZ 25
[[26
− 19
]] 26
ˆ 26
ˆ<control-D> 32
_ 26
‘<character> 18
a 26
abbrev 37
alternate pathname 8
altwerase 48
append 37
args 38
autoindent 48
autoprint 48
autowrite 48
b 27
backup 49
beautify 49
bg 38
bigword 12
buffer 8
c 27
cd 38
cdpath 49
change 38
chdir 38
columns 49
comment 49
copy 38
count 11, 34
current pathname 8

d 27
delete 38
directory 49
display 39
e 27
edcompatible 49
edit 39
errorbells 49
exrc 49
extended 50
exusage 39
f 27
fg 39
file 34, 39
flags 34
flash 50
global 39
hardtabs 50
help 40
i 28
ignorecase 50
insert 40
j 14
join 40
k 14, 41
keytime 50
l 16
leftright 50
line 34
lines 50
lisp 50
list 40, 50
lock 50
m 28
magic 50
map 41
mark 41
matchtime 50
mesg 51
mkexrc 41
modelines 51
motion 11
move 41
msgcat 51
n 19
next 41
number 36, 51
o 28
octal 51
open 42, 51
optimize 51
p 28
paragraph 12
paragraphs 51
preserve 42

USD:13-58 Nvi/Nex Reference

previous 42
previous context 10
print 42
prompt 52
put 42
quit 42
r 28
range 34
read 42
readonly 52
recdir 52
recover 43
redraw 52
remap 52
report 52
resize 43
rewind 43
ruler 52
s 28
scroll 52
section 12
sections 53
sentence 12
set 43
shell 44, 53
shellmeta 53
shiftwidth 53
showmatch 53
showmode 53
sidescroll 53
slowopen 53
source 44
sourceany 53
split 44
stop 45
substitute 44
suspend 45
t 29, 38
tabstop 53
tag 45
taglength 54
tagpop 45
tags 54
tagtop 45
term 54
terse 54
tildeop 54
timeout 54
ttywerase 54
u 29
unabbrev 45
undo 45
unmap 46
unnamed buffer 9
v 39
verbose 54
version 46

visual 46
viusage 46
w 29
w1200 54
w300 54
w9600 54
warn 54
whitespace 9
window 54
wn 46
word 11
wq 46
wraplen 55
wrapmargin 55
wrapscan 55
write 46
writeany 55
x 29
xit 47
y 29
yank 47
z 30, 47
{ 30
| 30
} 30
˜ 31, 44

USD:13-2 Nvi/Nex Reference

Table of Contents

Description .. 3
Startup Information ... 3
Recovery .. 3
Sizing the Screen ... 5
Character Display .. 6
Multiple Screens .. 6
Regular Expressions and Replacement Strings ... 7
General Editor Description ... 7
Vi Description ... 9
Vi Commands .. 12
Vi Text Input Commands .. 31
Ex Addressing ... 33
Ex Description ... 34
Ex Commands ... 35
Set Options .. 47
Additional Features in Nex/Nvi .. 55
Index .. 57

