Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
JuliaEconomics/Tutorials/tutorial_6_noglobals.jl
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
153 lines (125 sloc)
4.51 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Bradley J. Setzler | |
# JuliaEconomics.com | |
# Tutorial 6: Kalman Filter for Panel Data and MLE in Julia | |
# Passed test on Julia 0.4, but is now much slower | |
using DataFrames | |
using Distributions | |
using Optim | |
function unpackParams(params,stateDim,obsDim) | |
place = 0 | |
A = reshape(params[(place+1):(place+stateDim^2)],(stateDim,stateDim)) | |
place += stateDim^2 | |
V = diagm(exp(params[(place+1):(place+stateDim)])) | |
place += stateDim | |
Cparams = params[(place+1):(place+stateDim*(obsDim-1))] | |
C = zeros(stateDim*obsDim,stateDim) | |
for j in [1:stateDim] | |
C[(1+obsDim*(j-1)):obsDim*j,j] = [1,Cparams[(1+(obsDim-1)*(j-1)):(obsDim-1)*j]] | |
end | |
place += (obsDim-1)*stateDim | |
W = diagm(exp(params[(place+1):(place+obsDim*stateDim)])) | |
return ["A"=>A,"V"=>V,"C"=>C,"W"=>W] | |
end | |
function KalmanDGP(params,stateDim,obsDim,N,T,init_exp,init_var) | |
# initialize data | |
data = zeros(N,stateDim*obsDim*T+1) | |
# parameters | |
unpacked = unpackParams(params,stateDim,obsDim) | |
A = unpacked["A"] | |
V = unpacked["V"] | |
C = unpacked["C"] | |
W = unpacked["W"] | |
# draw from DGP | |
for i=1:N | |
# data of individual i | |
iData = ones(stateDim*obsDim*T+1) | |
current_state = rand(MvNormal(reshape(init_exp,(stateDim,)),init_var)) | |
iData[1:stateDim*obsDim] = rand(MvNormal(eye(obsDim*stateDim))) | |
for t=2:T | |
current_state = A*current_state + rand(MvNormal(V)) | |
iData[((t-1)*stateDim*obsDim+1):(t*stateDim*obsDim)] = C*current_state + rand(MvNormal(W)) | |
end | |
# add individual to data | |
data[i,:] = iData | |
end | |
return data | |
end | |
function incrementKF(params,post_exp,post_var,new_obs,stateDim,obsDim) | |
# unpack parameters | |
unpacked = unpackParams(params,stateDim,obsDim) | |
A = unpacked["A"] | |
V = unpacked["V"] | |
C = unpacked["C"] | |
W = unpacked["W"] | |
# predict | |
prior_exp = A*post_exp | |
prior_var = A*post_var*A' + V | |
obs_prior_exp = C*prior_exp | |
obs_prior_var = C*prior_var*C' + W | |
# update | |
residual = new_obs - obs_prior_exp | |
obs_prior_cov = prior_var*C' | |
kalman_gain = obs_prior_cov*inv(obs_prior_var) | |
post_exp = prior_exp + kalman_gain*residual | |
post_var = prior_var - kalman_gain*obs_prior_cov' | |
# step likelihood | |
dist = MvNormal(reshape(obs_prior_exp,(length(obs_prior_exp),)),obs_prior_var) | |
log_like = logpdf(dist,new_obs) | |
return ["post_exp"=>post_exp,"post_var"=>post_var,"log_like"=>log_like] | |
end | |
function indivKF(params,df,obsDict,init_exp,init_var,stateDim,obsDim,T,i) | |
iData = df[i,:] | |
# initialization | |
post_exp = init_exp | |
post_var = init_var | |
init_obs = array(iData[obsDict[1]])' | |
dist = MvNormal(eye(length(init_obs))) | |
log_like=logpdf(dist,init_obs) | |
for t = 1:(T-1) | |
# predict and update | |
new_obs = array(iData[obsDict[t+1]])' | |
new_post = incrementKF(params,post_exp,post_var,new_obs,stateDim,obsDim) | |
# replace | |
post_exp = new_post["post_exp"] | |
post_var = new_post["post_var"] | |
# contribute | |
log_like += new_post["log_like"] | |
end | |
return log_like | |
end | |
function sampleKF(params,df,obsDict,init_exp,init_var,stateDim,obsDim,T) | |
log_like = 0.0 | |
N = size(df,1) | |
for i in 1:N | |
log_like += indivKF(params,df,obsDict,init_exp,init_var,stateDim,obsDim,T,i) | |
end | |
neg_avg_log_like = -log_like/N | |
println("current average negative log-likelihood: ",neg_avg_log_like) | |
return neg_avg_log_like[1] | |
end | |
function estimateKF() | |
srand(2) | |
params0 = [1.,0.,0.,1.,0.,0.,.5,-.5,.5,-.5,0.,0.,0.,0.,0.,0.] | |
stateDim = 2 | |
obsDim = 3 | |
T = 4 | |
N = 1000 | |
init_exp = zeros(stateDim) | |
init_var = eye(stateDim) | |
data=KalmanDGP(params0,stateDim,obsDim,N,T,init_exp,init_var) | |
data = DataFrame(data) | |
names!(data, [:one_1,:one_2,:one_3,:one_4,:one_5,:one_6,:two_1,:two_2,:two_3,:two_4,:two_5,:two_6,:three_1,:three_2,:three_3,:three_4,:three_5,:three_6,:four_1,:four_2,:four_3,:four_4,:four_5,:four_6,:outcome]) | |
obsDict = {[:one_1,:one_2,:one_3,:one_4,:one_5,:one_6],[:two_1,:two_2,:two_3,:two_4,:two_5,:two_6],[:three_1,:three_2,:three_3,:three_4,:three_5,:three_6],[:four_1,:four_2,:four_3,:four_4,:four_5,:four_6]} | |
function wrapLoglike(params) | |
print("current parameters: ",params) | |
return sampleKF(params,data,obsDict,init_exp,init_var,stateDim,obsDim,T) | |
end | |
tic() | |
MLE = optimize(wrapLoglike,params0,method=:cg,ftol=1e-8) | |
toc() | |
optimParams = unpackParams(MLE.minimum,stateDim,obsDim) | |
return optimParams | |
end | |
tic() | |
optimParams0 = estimateKF() | |
toc() | |