
Computer-Aided Design 101 (2018) 12–22

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

FeatureNet: Machining feature recognition based on 3D Convolution
Neural Network✩

Zhibo Zhang, Prakhar Jaiswal, Rahul Rai *
Manufacturing and Design (MAD) Lab, Department of Mechanical and Aersopace Engineering, University at Buffalo (UB)-SUNY, 318 Jarvis Hall, Buffalo,
NY-14260, United States

a r t i c l e i n f o

Article history:
Received 21 August 2017
Accepted 21 March 2018

Keywords:
Machining feature recognition
Convolution neural network
Deep learning
Computer aided process planning (CAPP)

a b s t r a c t

Automatedmachining feature recognition, a sub-discipline of solid modeling, has been an active research
area for last three decades and is a critical component in digital manufacturing thread for detecting
manufacturing information from computer aided design (CAD) models. In this paper, a novel framework
using Deep 3D Convolutional Neural Networks (3D-CNNs) termed FeatureNet to learnmachining features
from CAD models of mechanical parts is presented. FeatureNet learns the distribution of complex
manufacturing feature shapes across a large 3D model dataset and discovers distinguishing features that
help in recognition process automatically. To train FeatureNet, a large-scale mechanical part datasets of
3D CAD models with labeled machining features is automatically constructed. The proposed framework
can recognize manufacturing features from the low-level geometric data such as voxels with a very high
accuracy. The developed framework can also recognize planar intersecting features in the 3D CADmodels.
Extensive numerical experiments show that FeatureNet enables significant improvements over the state-
of-the-artsmanufacturing feature detection techniques. The developed data-driven framework can easily
be extended to identify a large variety of machining features leading to a sound foundation for real-time
computer aided process planning (CAPP) systems.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We are in the era of digital manufacturing and design. Globally,
the methods by which products are designed and manufactured
are advancing at a rapid pace just before our very eyes. Manufac-
turers are increasingly turning to digital manufacturing paradigm
tomeet the growing demands of increased product quality, greater
product variability, shorter product lifecycle, and reduced cost. All
things that are manufactured are conceptualized using processes
such as sketching and brainstorming, and then converted into
computer aided design (CAD, digital) models. CAD models are a
great way to validate complex ideas. They capture form, fit, and
function of a product and gives you confidence that a given idea is
going to work. Once fully developed, CAD models and engineering
drawings are handed over tomanufacturing department, who take
this information to make the physical product using computer
aided machining (CAM). In this current paradigm of designing and
making things, there is a disconnect between the digital and the
physical environments, that is, most of the information created
at digital CAD model is lost during the physical fabrication phase
(CAM phase).

✩ This paper has been recommended for acceptance by William Regli.

* Corresponding author.
E-mail address: rahulrai@buffalo.edu (R. Rai).

Computer aided process planning (CAPP) plays a key role in the
digital manufacturing pipeline by acting as a nexus between CAD
and CAM. CAPP is focused on generating a set of manufacturing
operations to fabricate a given part specified by its CAD model.
To reason about the fabrication instructions, CAPP has to interpret
a given CAD model in terms of features. Features are semantically
higher level geometric elements such as a hole, a slot, and a pocket
and are different from pure geometric elements (such as ribs, pins,
etc.) typically used in CAD systems. Features have application-
context meaning, and specific set of features needs to be recog-
nized fromaCADmodel depending on the intendedmanufacturing
process that will be used to fabricate the part. Machining feature
(interchangeably termed Manufacturing features) have received
the most attention in the existing literature. This paper focuses on
machining feature recognition that involves recognizing different
features in the CAD model of a given part.

There exists significant research literature spanning last three
decades in the domain of machining feature recognition (see
Section 2 for a detailed discussion). Existing feature recogni-
tion techniques are beset with the following problematic issues:
1. Inability to learn and generalize, 2. Lack of tolerance to noise in
the input CADmodels, 3. Computationally intensive and inflexible,
4. Focused on specific types of CAD representation and thus not
generalizable in cases where interoperability between different

https://doi.org/10.1016/j.cad.2018.03.006
0010-4485/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cad.2018.03.006
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2018.03.006&domain=pdf
mailto:rahulrai@buffalo.edu
https://doi.org/10.1016/j.cad.2018.03.006


Z. Zhang et al. / Computer-Aided Design 101 (2018) 12–22 13

geometric representation is required, and 5. Limited in ability to
handle feature variations.

In this paper, a novel application of Deep 3DConvolutional Neu-
ral Networks (3D-CNNs) in recognizing machining features from
CAD models is outlined. To address the abovementioned issues,
instead of relying on existing heuristic and hand-coded features
based approach, a data-driven approach that learns features of
features to identify the machining features from raw 3D data is the
core focus of this paper.

The contribution of this paper is threefold: (1) a novel frame-
work using Deep 3D-CNNs to learnmachining features from a CAD
model of mechanical parts is presented, (2) to train the developed
3D deep learning model, a large-scale machining feature dataset
with 3DCADmodels, termed FeatureNet database, is automatically
constructed, and (3) the strength of our learned deep learning
model at recognizing complex machining features in various 3D
CAD model is demonstrated.

This paper is organized as follows: Section 2 reflects on some
of the recent related works. Section 3 provides an overview of the
overall methodology. Section 4 outlines the process for automatic
creating of large-scale 3Dmodel dataset. Section 5 provides details
involving the architecture of the developed 3DCNNs. The effective-
ness of the developed framework is demonstrated on various 3D
CAD models in Section 6. Section 7 concludes with a summary of
the framework, its effectiveness, and some possible future works.

2. Related work

2.1. Feature recognition

During the past three decades’ researchers have proposed dif-
ferent types of feature recognition techniques to recognize ma-
chining feature including graph-based approach, neuron network
based approach, volume decomposition based approach, cell based
approach, hint based approach, rule based approach, and hybrid
based approach [1]. All these methods have their pros and cons.

Graph based approach is often regarded as the most successful
method. In this method, a B-Rep model of the part is translated
into a graph, which has nodes and arcs to represent faces and
edges [2]. The concept adjacency attributed graph (AAG), as first
formal graph based approach, is usually used to represent B-Rep
of part [3]. In AAG, nodes store surface information such as the
type of face. And the edges between the adjacency faces can be
represented as arcs in AAG. The attributes assigned to arcs include
the convexity and concavity. The parts are then decomposed into
subgraphs using following heuristic: a face whose incident edges
are all convex does not form part of the feature and is deleted
from the part graph. Ultimately, the subgraphs are used to match
the existing feature graph to provide feature recognition results.
This method is computationally expensive as subgraph matching
is an NP-complete problem and graph matching is a quasipoly-
nomial problem [4]. Furthermore, AAG is a non-unique structure
for representing features. Graph based approach has been quite
successful in recognizing isolated features, but it faces difficulty
while dealingwith overlapping features. A lot of effort has been put
to tackle the feature interaction problem. Marefat and Kashyap [5]
proposed a concept of a virtual link to restore missing link lost
in interaction features. Gao and Shah [6] proposed extended-AAG
(EAAG), a revised AAG containing more information, which can
help to recognize interacting features. Ibrahim andMcCormack [7]
presented MAAG that generates multiple interpretations using
hints instead of exact pattern matching to handle interacting fea-
tures. Huang and Yip-Hoi [8] developed a feature relation graph to
organize high-level features.

Artificial Neural Networks (ANNs) have been applied in the
field of feature recognition since 1990s [9]. Prabhakar and Hen-
derson [10] used ANN to recognize features from solid models.

However, their method can just recognize a prime face and several
secondary faces. Hwang [11] proposed an approach to use eight-
element face score vector as input to ANN system. This method
can recognize a large number of different features. Nezis and Vos-
niakos [12] generate a feedforward ANN to recognize planar and
simple curve faces. Lankalapalli et al. [13] used a nine-element face
score vector as an input of ART2 neuron network. Onwubolu [14]
used the same input but proposed a different network, which is a
multi-layer feed-forward back-propagation network. All of these
methods can recognize only a limited number of features. Sunil
and Pande [15] proposed a 12-node vector scheme to represent
features. This approach can recognize a wide range of complex
features variations in topology and geometry but fails to deal
with interacting feature problem. To some degree, the ANN based
approaches still use information extracted from B-Rep model and
are based on AAG concepts. Existing feature recognition tech-
niques suffer from the several problematic issues (also discussed in
Section 1). Cell based methods are computationally expensive due
to combinatorial explosion of number of ways of combining cells
into meaningful features. Rule basedmethods suffer from scalabil-
ity issues.

2.2. 2D convolution neuron network

In 1998, LeCun proposed LeNet [16] that led to the beginning of
modern CNN. His five layers’ network, including convolution layers
and pooling layers, recognized large image dataset efficiently. Re-
stricted by the performance of CPU and GPU, CNN fell into silence
for ten years. After 2012,with the progressing of GPU performance,
AlexNet was proposed by Krizhevsky et al. [17]. They used ReLU as
activation function and addeddrop-out layer that greatly increased
the accuracy and speed of CNN. In the next few years, deeper
networks were proposed, such as VGG [18] and GoogleLeNet [19].
All these networks enhanced the performance of object classifica-
tion. But they only work on single feature problems. Meanwhile,
object detection problem became a prevalent topic with the surge
in online database and repositories. Girshick et al. [20] proposed
an R-CNN to detect and recognize a feature in images. Following
this, fast R-CNN [21] and faster R-CNN [22] improved the structure
making object detection problemmore efficient and accurate [23].
Most of the 2D CNNs techniqueswork on images and are not suited
to 3D geometric datasets.

2.3. 3D convolution neuron network

With the successful advancement of 2D CNN, some researchers
have expanded CNN based framework to solve 3D geometric prob-
lems. Wu et al. [24] constructed ModelNet 3D dataset that has
more than 150,000 3D models belonging to 660 categories. They
proposed a five layer CNN to achieve good classification results.
Maturana and Scherer [25] used volumetric occupancy grid to deal
with point cloud data from LiDAR and RGBD cameras, and they
created a three layers CNN as their classifier. Qi et al. [26] used
point cloud data as their input to the CNN and proposed PointNet
to perform classification and segmentation. Brock et al. [27] imple-
mented auto-encoder to address challenges unique to voxel-based
representation, and their network demonstrated a fifty percent
improvement on ModelNet dataset. Hegde and Zadeh combined
3DCNNand 2DCNN [28]. They combined both representations and
exploited them to learn new features that proved to be a better
classifier than using either of the representations in isolation. Balu
et al. [29] presented an application of 3D CNN in the manufac-
turing area. None of the existing work in the area of 3D CNN has
focused on machining feature recognition, and to the best of our



14 Z. Zhang et al. / Computer-Aided Design 101 (2018) 12–22

Fig. 1. A set of 24 machining features used in our experimentation (see Appendix for details).

knowledge, the outlined work is the first attempt to apply 3D CNN
framework to study machining feature recognition problem.

3. Overview

Machining feature recognition is an important step in trans-
forming CAD design into a machined component. Because of
tremendous diversity in the types and shapes of machining fea-
tures, automatic feature recognition is a hard problem. Several
approaches, including rule-based, graph-based, and volume de-
composition based, have been proposed in the past (see Section 2).
However, most of these approaches fail in recognizing complex
features and are limited to recognizing a small set of features only.
We propose a deep learning approach that can handle a large set of
complex feature recognition. The proposeddeep learning approach
uses multiple convolution layers to learn a robust and accurate
model for recognizing 3D machining features. The performance of
anymachine learning system is highly dependent on the quality of
the dataset used. Therefore, we generate a large dataset of different
classes of features in different sizes and orientation. The proposed
data-centric deep convolution neural network is trainable, i.e. us-
ing a different dataset, it would be possible to re-train the network
to recognize a different set of features.

The synthetic machining feature dataset created consists of 24
unique and commonly occurring machining features. For each fea-
ture, 6000 different samples were generated. Randomly sampled
sizes and all six orientations were used to generate the feature
dataset. The variability in the dataset makes the trained model
more robust and accurate. More details about the generation of the
dataset are provided in Section 4. A Deep 3D Convolutional Neural
Network (3D-CNN) was trained to recognize machining features
using the generated dataset. The proposed 3D-CNN, termed Fea-
tureNet, consists of eight layers — an input layer, four convolution
layers, a pooling layer, a fully connected layer, and a final softmax
classification layer. The network architecture is described in more
detail in Section 5.

TensorFlow library [30] was used to implement and train the
CNN network. About 34 million parameters of the network were
learned using 144,000 3Dmodels in themachining feature dataset.
The feature recognition accuracy obtained was 96.7%. Detailed re-
sults are presented in Section 6. The proposed network only recog-
nizes non-intersecting features that are the only feature on the CAD
model. However, in general, CAD models contain several features
that are often overlapping with each other as well. To recognize
multiple features on a CAD model, we segment the features using

watershed segmentation algorithm. Each segmented feature is
then passed through the trained model for recognition. Several
examples of multi-feature CADmodels and the feature recognition
results are also presented in Section 6.

4. Database creation

There is a large number of variations in the machining fea-
tures that commonly occur in industrial products. Researchers
and engineers have attempted in classifying features into groups
and types. However, none of the existing classification schemes
encompasses all the possible features due to the vastness of the
variability in feature geometry and topology. In this paper, we
have selected a set of 24 commonly occurring features to develop
a feature recognition module. These features are shown in Fig. 1.
Our method is independent of the selected set of features. The
same approach could be used to train and classify a different set
of features, provided that a sufficient number of training samples
for each feature is used to learn the parameters of the 3D-CNN.

An accurate and robustmachine learning algorithm for recogni-
tion and classification requires a large and encompassing training
dataset. The dataset is usually acquired from single or multiple
sources or is synthetically generated. To train our 3D-CNN net-
work to classify the selected set of features, a synthetic dataset
of machining features was generated. For each of the 24 features,
1000 models were generated using CAD modeling software in
automatized fashion. A cubic raw stock of 10 cm side length was
used to create all the models. The features were generated by ran-
domly selecting feature specific parameter values in a predefined
range, and removing the volume from the raw stock. For instance,
to create models with blind hole features, four parameters were
randomly sampled — R, Cx, Cy, and D, where R is the radius of the
blind hole, (Cx, Cy) are the center coordinates, and D is the depth.
Randomvectors of these four parameter valueswere sampled from
the ranges given in Table 1. Parameters of all the 24 machining
features and their ranges are presented in Appendix. A random-
valued vector for the parameters of a feature creates one instance
of the feature. Hence, to generate 1000 models of the feature,
the parameter ranges were uniformly sampled for obtaining 1000
random vectors for each feature.

It should be noted that the raw stock resided completely in
the first octant (all positive axes) with one of its corners at the
origin and three of its faces aligned with the principal planes —
XY , YZ , and ZX . Note that the database examples were restricted
to the first octant just for simplicity. The proposed approach is



Z. Zhang et al. / Computer-Aided Design 101 (2018) 12–22 15

Fig. 2. (a) Cubic raw stock with side length of 10 cm, (b) Six rotations to get features on each of the six faces of the cube, (c) An example of voxelized model.

Fig. 3. The proposed architecture of the CNN network trained to recognize machining features on 3D CAD models.

Table 1
Parameters for defining a blind hole feature on a cubic raw stock with side length
of 10 cm and the range of values used for each parameter.

Parameters Ranges (in cm)

Radius (R) [1.0, 4.5]
Center x-coordinate (Cx) [R + 0.5, 9.5 − R]
Center y-coordinate (Cy) [R + 0.5, 9.5 − R]
Depth (D) [1.0, 9.0]

invariant to translation in 3D space and can recognize feature at
any location. Also, the features and their parameters were defined
concerning the TOP face of the raw stock that lies on z = 10
plane (see Fig. 2(a)). However, to make our method orientation-
invariant, each model was rotated to generate six different models
with the same feature appearing on each of the six faces of the
raw stock cube (see Fig. 2(b)). Therefore, in total, the dataset
consisted of 6000 models for each of the 24 selected features
resulting in 144,000 models. The overall dataset generated for this
study can be located at https://github.com/madlabub/Machining-
feature-dataset.

The 3D shape representation used for model creation using
CAD modeling software is boundary representation (B-rep). In
B-rep, the 3D shape is represented by its boundary surface patches.
However, this representation is not convenient for training and
using in a CNN network. Therefore, the database models were con-
verted from B-rep to spatial occupancy enumeration, also known
as voxels. In this scheme, a 3D shape is represented as a binary
valued 3D voxel grid, where 1 indicates that the voxel is inside the
shape, and 0 indicates that it is outside. A 3Dmesh voxelizer library
called binvox [31] was used to obtain the voxelized models. Binvox
incorporates the parity countmethod and the ray stabbingmethod
for voxelization [32]. The voxel grid size used in our experiments

was 64 × 64 × 64. An example of voxelized model is depicted in
(Fig. 2(c)).

A complimentary benefit of discretizing the input 3D models
is attenuation of noise in the input models. Noise is a critical
factor that affects the performance of existing feature recognition
algorithms. Due to discretization of inputmodels into voxels, small
noise has little to no effect on the performance of our system.
However, discretization itself introduces stair-stepping noise and
can lead to incorrect classification in some cases. The discretization
error can be mitigated by increasing the resolution.

5. FeatureNet: 3D convolution neural network

Convolution neural networks (CNN) have been very success-
ful in image recognition, classification, and object detection. The
success of the CNNs can be attributed to the publicly available
large image repositories, such as ImageNet, and high performance
computing systems, such as clusters and GPUs. Local spatial fil-
ters learned by the CNN architecture allow them to exploit the
spatial structure of the discrete pixels in the images. They encode
complex distinguishing features of images at multiple hierarchies
to help with the recognition and classification tasks. In our case
of 3D voxels representing CAD machining features, CNNs are a
promising technique. They can utilize the spatial structures of the
voxels to learn 3D local filters to encode simple spatial structures,
like planes, edges, and corners. By stacking multiple convolution
layers, more intricate and sophisticated structures can be encoded
hierarchically. It would allow the network to recognize complex
machining features on CAD models. The proposed CNN network,
called FeatureNet, was used to recognize single features on a raw
stock and consists of eight layers — one input layer, four convolu-
tion layers, one max-pooling, one fully connected layer, and one
classification output layer (Fig. 3).

https://github.com/madlabub/Machining-feature-dataset
https://github.com/madlabub/Machining-feature-dataset
https://github.com/madlabub/Machining-feature-dataset


16 Z. Zhang et al. / Computer-Aided Design 101 (2018) 12–22

Fig. 4. (a) and (b) show the comparison of two optimizers — SGD and Adam for validation dataset loss and accuracy (SGDLR performed very similar to SGD and hence is
omitted from the plot for clarity). (c) and (d) show the convergence of loss and accuracy for both training and validation dataset using Adam optimizer.

Fig. 5. Confusion matrix of 24 features in the test dataset classification using the
learned model.

The input layer admits the 3D voxelized model of fixed size
P×Q ×R. In our experiments, P = Q = R = 64. The binary-valued
voxel models were normalized before they were fed into the input
layer. The normalizationwas performed by subtracting 0.5 from all
voxel cells and multiplying by 2. This transforms the voxel values
from {0, 1} to {−1, 1}, respectively. This normalization process is
termed zero-centering. Zero-centering has been shown to improve
performance and result in faster convergence by eliminating bias
in the data [33].

Following the input layer, there are four convolution layers.
The parameters of the convolution layers are shape of each filter
(d × d × d), number of feature maps (input f ′ and output f ), and
spatial strides (s). These layers accept four-dimensional input —
three spatial dimensions and one featuremap dimension. f feature
maps are created by convolving the input with the filters applied
at the spatial stride of s. The convolution results are then processed
through an activation function called rectified linear units (ReLU)
given by the following expression:

ReLU(x) = max(x, 0). (1)

The f , d, and s parameter values of the four convolution layers
used in our approach were set to (32, 7, 2), (32, 5, 1), (64, 4, 1),
and (64, 3, 1). The f ′ parameter value for each layer is the number
of output feature maps in the previous layer (input layer passes
on only one feature map). The fourth convolution layer is followed
by a pooling layer. Pooling layer down-samples the feature maps
along the spatial dimension. The pooling layer used was max-
pooling, i.e. they replace blocks of input with their maximum.
The parameters of the pooling layers are the shape of the block
(q × q × q) and the spatial stride (s). A value of 2 was used for
both q and s in our approach. Therefore, each non-overlapping
block of size 2 ×2 ×2 was replaced by the maximum value in the
corresponding block.

The penultimate layer, before the classification output layer, is
a fully connected layer withm output neurons. A value of 128 was
used for m in our approach. Each output neuron was obtained by
applying ReLU on linear combination of all inputs and a bias term.
The kth neuron output u(k) is given by the following expression:

u(k)
= ReLU(w(k)

· x + b(k)) (2)

where, x is the vector of all outputs from the previous pooling layer,
w(k) is the weight vector for kth neuron, and b(k) is its bias term.
Note that the ReLU(·) function was applied element-wise.



Z. Zhang et al. / Computer-Aided Design 101 (2018) 12–22 17

Fig. 6. Classification results for multi-feature 3D CAD models with varying complexity levels. All features on cases I and II, with low- and medium-level complexity, were
recognized correctly. 10 out of 11 features were recognized correctly for high-level complexity in case III. The feature #8 (highlighted in yellow) was classified as ‘‘chamfer’’,
instead of the correct ‘‘round’’ feature. This was due to the low voxel resolution of the input model.

The classification output layer consists of n = 24 outputs, one
for each of the 24 classes. It was computed by applying softmax ac-
tivation function on linear combinations of outputs from previous
layers. The kth output y(k) is given by the following expression:

y(k) = softmax(v)(k) =
exp(v(k))∑
j exp(v(j))

(3)

where, v(k) is the linear combination of all the penultimate layer
output (u) and a bias term. It is given by the expressionw(k)

o ·u+b(k)o .
The softmax activation function normalizes and converts the linear
combinations of the inputs (u) into predicted probabilities for each
class.

FeatureNet consists of about 34 million parameters. To learn
these parameters, we experimented with three different optimiz-
ers — stochastic gradient descent, stochastic gradient descent with
learning rate decay, and Adam optimizer [34]. The objective func-
tion minimized by the optimizers was cross-entropy between the

predicted probabilities and the true labels. The cross-entropy cost
function for a sample input is defined as:

H(y, ȳ) = −
1
n

n∑
k=1

(
ȳ(k) log y(k) + (1 − ȳ(k)) log(1 − y(k))

)
(4)

where, y is the vector of softmax predicted probabilities from the
final classification layer and ȳ is the one-hot encoded true class
label vector.

6. Results and discussion

6.1. Single feature recognition

The dataset of 144,000 models, each with a single feature,
was split into three subsets — training, validation, and testing
datasets. The split percentages were 70%, 15%, and 15%, respec-
tively. TensorFlow library [30] was used for implementation of



18 Z. Zhang et al. / Computer-Aided Design 101 (2018) 12–22

Fig. 7. Feature recognition on ten complex and real industrial components using our approach. It can be noticed that our approach involving segmentation of overlapping
feature followed to single feature classification using CNN is quite robust. The overall percentage of correctly classified features in these ten complex examples is 94.21%.

Table 2
Effect of voxel resolution on computation time and classification accuracy.

Voxel resolution Training time
(min)

Classification
time (ms)

Classification
accuracy (%)

16 × 16 × 16 7.5 1.27 83.2
32 × 32 × 32 54 5.05 93.7
64 × 64 × 64 390 33.04 97.4

FeatureNet. It was trained using the training datasets and validated
using validation dataset. The batch size used during training was
set to 40. About 34 million parameters of the proposed network
were learned. The experiment was independently performed for
three different optimizers — stochastic gradient descent (SGD),
stochastic gradient descent with learning rate decay (SGDLR), and
Adam optimizer. The initial learning rate was set to 0.001 for
all three optimizers. Results from SGD and Adam are compared
in Figs. 4(a) and 4(b) for validation loss and validation accuracy,
respectively. The SGDLR produced results very similar to SGD.
Hence, it is not depicted in the figure for clarity. It can be observed
that the Adam optimizer converged much more quickly than the
SGD optimizer. Hence, we selected Adam optimizer for all further
tests and experiments. The learned model produces a training and
validation accuracy of 99.95% and 97.46%, respectively, in 20,000
steps. A graph showing the convergence of loss function and accu-
racy with steps is shown in Figs. 4(c) and 4(d), respectively. The
graph presents results for both training and validation datasets.
The test dataset accuracy obtained using the learned model was
96.70%. A confusion matrix of the classification results among the
24 machining features is shown in Fig. 5. Notice that the confusion
matrix is very close to diagonalmatrix illustrating the effectiveness
and accuracy of our learned model. The largest confusion occurs in
feature #9 (rectangular blind slot) and feature #21 (vertical circu-
lar end blind slot), which are very similar in shape. The confusion
can be mitigated by using a higher resolution voxelization.

6.2. Effects of voxel resolution

To use the FeatureNet, the input 3Dmodels are discretized into
binary voxel models. The resolution of voxels is a key parameter
that affects both computational efficiency and the classification

accuracy of our system. Higher resolution voxels provide better
accuracy compared to lower resolution voxels. However, they per-
form exponentially worse with respect to computation time. To
demonstrate the extent of effect of voxel resolution on FeatureNet
performance, experiments were conducted at three different res-
olutions — 16 × 16 × 16, 32 × 32 × 32, and 64 × 64 × 64. For
this study, we selected a subset of our database with 7 machining
features and 2,400 examples for each feature. Each example was
voxelized at three resolutions to generate three separate datasets.
The dataset for each resolution was divided into 75% training and
25% testing data. The network was trained at the three resolutions
independently using Adam optimizer and tested using the corre-
sponding test data. The time and accuracy results are shown in
Table 2. The experiment was conducted on a PC with quad-core
Intel i7 processor (2.60 GHz), Windows 10 operating system, 16GB
RAM, and NVIDIA GeForce GTX 960M graphics card. The training
time is the total amount of time taken by each network to con-
verge and learn the optimal parameters for the network using the
training dataset. The classification time is the average time taken
by the trainednetwork in classifying a single examplemodel. Itwas
computed by averaging over classification of 4200 example mod-
els. The classification accuracy is the percentage accuracy of the
trained network over corresponding test dataset. As expected, the
computation performance worsens exponentially with increasing
voxel resolution, whereas the classification accuracy improves.

6.3. Multi-feature recognition

A typical CAD component usually has multiple machining fea-
tures. Often, some of those features are overlapping. But the Fea-
tureNet was trained to identify component with single feature
only. Therefore, to enhance the utility of the proposed network
and to recognize multiple overlapping features, it was augmented
with a segmentation technique. First, the input CAD component is
voxelized using the binvox library as discussed before. The discon-
nected features or disconnected subset of features are separated
fromeach other in the voxelizedmodel by using connected compo-
nent labeling algorithm provided in the scikit-image package [35]
for Python. Next, each disconnected subset of features is segmented
into single individual features using watershed segmentation al-
gorithm [36]. Finally, the single segmented features are passed as
input into the trained CNN model for classification.



Z. Zhang et al. / Computer-Aided Design 101 (2018) 12–22 19

Table A.1
A list of 24 machining features used in our study. The parameters and parameter ranges used for generating samples of these features
are also provided.

(continued on next page)

As an initial experiment, three examples of CAD components
with multiple features of varying complexity were tested, and
the results are demonstrated in Fig. 6. It can be noticed that our

approach performed well and correctly recognized all machining
features on low- and medium-level complexity parts. For high-
level complexity, 10 of the 11machining features were recognized



20 Z. Zhang et al. / Computer-Aided Design 101 (2018) 12–22

Table A.1 (continued)

(continued on next page)

correctly. Furthermore, the incorrect recognition of a round feature
as a chamfer feature is due to the low resolution of voxelization
used. We also tested our system on ten highly complex and real
industrial components. The results are presented in Fig. 7. 179
out of 190 features (94.21%) were correctly segmented and clas-
sified. In future, we plan to test and develop more sophisticated
segmentation algorithms and train the network at higher res-
olution to further improve the accuracy and robustness of our
approach.

7. Conclusion

To recognize machining features in 3D CAD models, this paper
develops a 3D CNN based framework that operates on a 3D voxel
grid. To train this 3D deep learning model, termed FeatureNet,
a large-scale 3D CAD model dataset with labeled machining
features is automatically constructed. Our 3D CNN model signifi-
cantly outperforms existing approaches on a variety of machining
feature recognition tasks, and it is also a promising approach for
recognizing planar intersecting machining features. To the best of



Z. Zhang et al. / Computer-Aided Design 101 (2018) 12–22 21

Table A.1 (continued)

our knowledge, this is the first application of deep learning for
machining feature recognition application.

The same framework can be easily extended to learn a
large variety of machining features from a variety of different
manufacturing processes. In addition, the same framework can be
used to identify non-manufacturable features in additively manu-
factured parts. Multiple trained 3D CNNs could be simultaneously
combined to reason about manufacturability of a given 3D CAD
model using different manufacturing processes. A promising di-
rection of future work is to integrate the tasks of segmentation
and classification. By restructuring the deep CNN architecture and
training on large multi-feature dataset, both of these tasks can be
performed simultaneously by the CNN.

Appendix. Machining feature set and their parameters

See Table A.1.

References

[1] Han J, PrattM, RegliWC.Manufacturing feature recognition from solidmodels:
a status report. IEEE Trans Robot Autom 2000;16(6):782–96.

[2] VermaAK, Rajotia S. A reviewofmachining feature recognitionmethodologies.
Int J Comput Integr Manuf 2010;23(4):353–68.

[3] Joshi S, Chang T-C. Graph-based heuristics for recognition of machined fea-
tures from a 3D solid model. Comput Aided Des 1988;20(2):58–66.

[4] Babai L. Graph isomorphism in quasipolynomial time. In: Proceedings of the
forty-eighth annual ACM symposium on theory of computing. ACM; 2016.
p. 684–97.

[5] Marefat M, Kashyap RL. Automatic construction of process plans from solid
model representations. IEEE Trans Syst Man Cybern 1992;22(5):1097–115.

[6] Gao S, Shah JJ. Automatic recognition of interacting machining features based
on minimal condition subgraph. Comput Aided Des 1998;30(9):727–39.

[7] Ibrhim R, McCormack A. Process planning using adjacency-based feature ex-
traction. Int J Adv Manuf Technol. 2002;20(11):817–23.

[8] Huang Z, Yip-Hoi D. High-level feature recognition using feature relationship
graphs. Comput Aided Des 2002;34(8):561–82.

[9] HendersonM, Srinath G, Stage R,Walker K, RegliW. Boundary representation-
based feature identification. Manuf Res Technol 1994;20: 15–15.

[10] Prabhakar S, HendersonMR. Automatic form-feature recognitionusingneural-
network-based techniques on boundary representations of solid models.
Comput Aided Des 1992;24(7):381–93.

[11] Hwang J-L. Applying the perceptron to three-dimensional feature recognition
[Ph.D. thesis], Tempe, AZ, USA: Arizona State University; 1992 UMI Order No.
GAX92-10388.

http://refhub.elsevier.com/S0010-4485(18)30134-9/sb1
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb1
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb1
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb1
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb1
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb1
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb1
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb1
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb2
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb2
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb2
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb2
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb2
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb2
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb2
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb2
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb3
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb3
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb3
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb3
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb3
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb3
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb3
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb3
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb4
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb5
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb5
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb5
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb5
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb5
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb5
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb5
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb5
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb5
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb5
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb6
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb6
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb6
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb6
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb6
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb6
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb6
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb6
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb6
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb6
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb7
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb7
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb7
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb7
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb7
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb7
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb7
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb7
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb7
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb7
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb8
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb8
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb8
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb8
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb8
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb8
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb8
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb8
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb8
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb8
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb9
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb9
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb9
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb9
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb9
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb9
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb9
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb9
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb9
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb9
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb10
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb10
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb10
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb10
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb10
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb10
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb10
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb10
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb10
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb10
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb10
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb10
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb11
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb11
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb11
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb11
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb11
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb11
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb11
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb11
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb11
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb11
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb11
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb11
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb11


22 Z. Zhang et al. / Computer-Aided Design 101 (2018) 12–22

[12] Nezis K, Vosniakos G. Recognizing 212d shape features using a neural network
and heuristics. Comput Aided Des 1997;29(7):523–39.

[13] Lankalapalli K, Chatterjee S, Chang T. Feature recognition using ART2: a self-
organizing neural network. J Intell Manuf 1997;8(3):203–14.

[14] Onwubolu GC. Manufacturing features recognition using backpropagation
neural networks. J Intell Manuf 1999;10(3–4):289–99.

[15] Sunil V, Pande S. Automatic recognition of machining features using artificial
neural networks. Int J Adv Manuf Technol 2009;41(9):932–47.

[16] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to
document recognition. Proc IEEE 1998;86(11):2278–324.

[17] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing
systems. 2012. p. 1097–105.

[18] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale
image recognition; 2014. ArXiv preprint arXiv:1409.1556.

[19] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke
V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE
conference on computer vision and pattern recognition; 2015. p. 1–9.

[20] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate
object detection and semantic segmentation. In: Proceedings of the IEEE
conference on computer vision and pattern recognition; 2014. p. 580–7.

[21] Girshick R. Fast r-cnn. In: Proceedings of the IEEE international conference on
computer vision; 2015; p. 1440–8.

[22] Ren S, HeK, Girshick R, Sun J. Faster R-CNN: Towards real-timeobject detection
with region proposal networks. In: Advances in neural information processing
systems. 2015. p. 91–9.

[23] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44.
[24] Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J. 3d shapenets: A deep

representation for volumetric shapes. In: Proceedings of the IEEE conference
on computer vision and pattern recognition; 2015. p. 1912–1920.

[25] Maturana D, Scherer S. Voxnet: A 3d convolutional neural network for real-
time object recognition. In: Intelligent robots and systems, 2015 IEEE/RSJ
international conference on. IEEE; 2015. p. 922–8.

[26] Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for 3d
classification and segmentation; 2016. ArXiv preprint arXiv:1612.00593.

[27] Brock A, Lim T, Ritchie JM, Weston N. Generative and discriminative voxel
modeling with convolutional neural networks; 2016. ArXiv preprint arXiv:
1608.04236.

[28] Hegde V, Zadeh R. Fusionnet: 3d object classification using multiple data
representations; 2016. ArXiv preprint arXiv:1607.05695.

[29] Balu A, Lore KG, Young G, Krishnamurthy A, Sarkar S. A deep 3d convolutional
neural network based design for manufacturability framework; 2016. ArXiv
preprint arXiv:1612.02141.

[30] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis
A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia
Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S,
Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker
P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg
M, Wicke M, Yu Y, Zheng X. Tensorflow: Large-scale machine learning on
heterogeneous systems. Software available from tensorflow.org; 2015. http:
//tensorflow.org/.

[31] Min P. Binvox: 3d mesh voxelizer. Retrieved July 24, 2017. http://www.
patrickmin.com/binvox/.

[32] Nooruddin FS, Turk G. Simplification and repair of polygonal models using
volumetric techniques. IEEE Trans Vis Comput Graphics 2003;9(2):191–205.

[33] Schraudolph NN. Centering neural network gradient factors. In: Neural net-
works: Tricks of the trade. Springer; 1998. p. 207–26.

[34] Kingma D, Ba J. Adam: a method for stochastic optimization; 2014. ArXiv
preprint arXiv:1412.6980.

[35] Van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD,
Yager N, Gouillart E, Yu T. scikit-image: image processing in Python. PeerJ
2014;2:e453.

[36] Neubert P, Protzel P. Compact watershed and preemptive SLIC: On improving
trade-offs of superpixel segmentation algorithms. In: Pattern recognition,
2014 22nd international conference on. IEEE; 2014. p. 996–1001.

http://refhub.elsevier.com/S0010-4485(18)30134-9/sb12
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb12
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb12
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb12
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb12
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb12
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb12
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb12
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb12
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb12
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb12
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb13
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb13
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb13
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb13
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb13
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb13
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb13
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb13
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb13
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb13
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb13
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb14
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb14
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb14
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb14
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb14
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb14
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb14
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb14
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb15
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb15
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb15
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb15
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb15
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb15
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb15
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb15
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb16
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb16
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb16
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb16
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb16
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb16
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb16
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb16
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb17
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb17
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb17
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb17
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb17
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb17
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb17
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb17
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb17
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb17
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb17
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb17
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb17
http://arxiv.org/1409.1556
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb22
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb22
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb22
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb22
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb22
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb22
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb22
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb22
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb22
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb22
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb22
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb22
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb22
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb23
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb23
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb23
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb23
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb23
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb23
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb23
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb25
http://arxiv.org/1612.00593
http://arxiv.org/1608.04236
http://arxiv.org/1608.04236
http://arxiv.org/1608.04236
http://arxiv.org/1607.05695
http://arxiv.org/1612.02141
http://tensorflow.org/
http://tensorflow.org/
http://tensorflow.org/
http://www.patrickmin.com/binvox/
http://www.patrickmin.com/binvox/
http://www.patrickmin.com/binvox/
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb32
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb32
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb32
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb32
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb32
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb32
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb32
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb32
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb32
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb32
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb33
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb33
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb33
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb33
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb33
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb33
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb33
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb33
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb33
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb33
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb33
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb33
http://arxiv.org/1412.6980
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb35
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36
http://refhub.elsevier.com/S0010-4485(18)30134-9/sb36

	FeatureNet: Machining feature recognition based on 3D Convolution Neural Network
	Introduction
	Related work
	Feature recognition
	2D convolution neuron network
	3D convolution neuron network

	Overview
	Database creation
	FeatureNet: 3D convolution neural network
	Results and discussion
	Single feature recognition
	Effects of voxel resolution
	Multi-feature recognition

	Conclusion
	Machining feature set and their parameters
	References


