
Similar Sentence Detection Using Locality Sensitive
Hashing Technique on Wikipedia∗

Samet Ayhan
University of Maryland

Dept. of Computer Science
sayhan@cs.umd.edu

Joshua Bradley
University of Maryland

Dept. of Computer Science
jgbrad1@cs.umd.edu

Sarah Weissman
University of Maryland

College of Information Studies
sew@umd.edu

ABSTRACT
The growth of Internet has enabled collaboration and coop-
eration on a large scale, resulting in an abundant number of
near-duplicate web documents. The range of near-duplicate
occurrences is even more evident within Wikipedia articles,
due to its editing largely being open to the online community.
Except for particularly sensitive and/or vandalism-prone
pages that are ”protected” to some degree from editing, the
reader of an article can edit the text by copying from an-
other article without prior approval. There is no current
automated mechanism for truth validation. Although we are
not inspired to measure the quality of Wikipedia articles,
we are interested in finding near-duplicate occurrences at
various granularity levels.

In this paper, we describe a novel similarity detection algo-
rithm that utilizes a locality sensitive hashing (LSH) tech-
nique on the MapReduce framework. The algorithm has
been designed and implemented to detect similar articles us-
ing large Wikipedia dumps. Experimental results appear to
support that our method is able to efficiently and effectively
detect similar articles across Wikipedia.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: [Informa-
tion Search and Retrieval]

General Terms
Algorithms, Design, MapReduce

1. INTRODUCTION
The online encyclopedia Wikipedia is a multilingual, free
resource with its 26 million articles. All these articles, with
over 4.2 million in English alone, are written collaboratively
by volunteer contributors around the world. Most articles

∗This effort is part of the CMSC828G, Data Intensive Com-
puting with MapReduce, class project.

can be edited by anyone with internet access, thus there are
currently approximately 100,000 active contributors. In light
of these facts, it is clear that the unprecedented example of
such a large-scale collaboration effort may result in duplicate
or near duplicate articles at various granular levels, such as
sentence-level or multi-gram granularity [1]

Furthermore, Wikipedia has a history of generating contro-
versy over editorial quality and factual correctness. Although
some studies have found Wikipedia’s accuracy to rival that of
traditional encyclopedias, other studies have found numerous
factual errors. Since Wikipedia may be edited anonymously,
information is often freely copied between web sources and
even between Wikipedia articles. Additionally, many articles
in Wikipedia lack citations. There is little mechanism for
detecting and correcting such errors. One potential source
of error on Wikipedia is factual information that varies over
time and is not updated. Wilkinson found that the dis-
tribution of article edits has a long tail, meaning that a
small number of articles have many edits while most articles
have few, and that the number of edits is directly related
to article quality. Articles with low edits and low editorial
attention, are less likely to be updated when new information
is available [12].

As a step toward identifying factual errors, we investigated
the problem of finding near duplicate sentences on Wikipedia.
Such near duplicate sentences may reflect factual information
that has been updated in one article and not another, or
merely inconsistencies that should be flagged and addressed.

In order to come up with a novel algorithm that would
allow us to detect near-duplicate sentences within Wikipedia
articles, we decided that we needed to answer the following
questions, first:

• How effectively does Minhashing approximate edit dis-
tance? Edit distance seems like a reasonable metric for
near duplicate sentences, however LSH does not map
naturally to the edit distance metric.
• What is the appropriate granularity for analysis? Is

comparing multiple consecutive sentences more effective
than comparing single sentences? Similarly, what is
the best shingle size?
• How well do techniques for detecting near duplicate

documents work when applied at the sentence level?
• Do near duplicate sentences correspond to factual er-

rors? Can these errors be automatically detected and/or

corrections suggested?

Along with these questions, we also considered the scalability
and efficiency issues due to the large size of Wikipedia. To
address these issues, we used the MapReduce computing
framework and LSH techniques to group sentences with the
same signatures and identify near duplicates.

The rest of this paper is organized as follows: In Section 2, we
present related work, in Section 3, we explain the algorithm
utilizing locality sensitive hashing, in Section 4, we discuss
parameter tuning for Minhash. In Section 5, we present the
working application within the MapReduce framework. In
Section 6, we discuss our experiments with various Wikipedia
datasets. The final section contains concluding remarks and
future work.

2. RELATED WORK
A number of techniques have been implemented to identify
similarity between documents in the literature. These tech-
niques usually differ in terms of corpus of interest, signature
representing the document, feature-set determined by the
system, and the end goal. In addition to these differences,
one can also consider the efficiency and scalability of the
system, overall.

In this section, we will go over some of theses techniques
offered in the literature. Additionally, we will highlight our
novel contribution.

Broder et al. introduced shingling to compute document
similarity and containment. They also presented methods
for using a subset of shingles while still allowing similarity
and containment computations [3].

Seo et al. defined a general framework for text reuse detec-
tion. They introduced Discrete Cosine Transform (DCT)
fingerprinting for general or local text reuse detection with
high accuracy and efficiency [11].

Zhang et al. presented partial duplicate detection algorithm
using sequence matching that transforms partial-duplicate
detection task into three MapReduce jobs: 1.Indexing, 2.Se-
quence Duplicate Detection, 3.Sequence Matching [13].

Hajishirzi et al. introduced an adaptive near-duplicate de-
tection (ANDD) method by extending term-weighting frame-
work to learn k-gram vectors. Provided that each document
was represented by an informative real k-gram vector, simi-
larity measures were computed to come up with predicted
values of near-duplicates [6].

Lin described three MapReduce algorithms for computing
pairwise similarity on document collections [8].

1. Based on brute force.
2. Treated as large-scale ad hoc retrieval.
3. Based on Cartesian product of postings lists.

Manku et al. used Charikar’s fingerprinting technique for
developing near-duplicate detection system. They presented
an algorithmic technique for identifying existing f-bit fin-
gerprints that differ from a given fingerprint in at most k

bit-positions, for small k. They demonstrated that their sys-
tem is useful not only for batch but also for online processing
[9].

Bendersky et al. examined two information flow representa-
tions: the timeline and the link graph. They proposed several
simple unsupervised techniques for timeline construction link
graph analysis [2].

In order to handle large Wikipedia dumps with the order of
tens or hundreds of gigabytes and even a few terabytes, we
used MapReduce framework in this work, that was introduced
by Dean and Ghemawat [5]. The implementation is able to
stream the compressed bz2 dumps and feed into mappers
and reducers for further processing, which will be detailed in
the following sections.

3. ALGORITHM UTILIZING LOCALITY
SENSITIVE HASHING

In order to measure document similarity we use a common
LSH technique known as MinHash ([3]). A minhash signature
on a text document is calculated using a parametrized family
of hash functions Fi, 1 ≤ i ≤ N . In our case, we denote
”documents” to mean sentences found within the content
of Wikipedia articles. Each sentence is broken up into n-
gram “shingles”. For each shingle set S we calculate the set
{mins∈S(Fi(s)} of minimum hashes over the hash family.
The signature on a document d is represented as a vector
of K minhashes, chosen from the set {mins∈S(Fi(s)} of
minimum hashes. In order to minimize false negatives we
apply a technique sometimes known as “banding” [10] where
multiple signatures are produced for each input document.

3.1 Design
Many signature techniques such as LSH are embarrassingly
parallel. In our project, we designed our algorithm around
the MapReduce framework.

Because the minhash technique is parametrized by several
variables, including shingle length, signature size, and number
of signatures to be calculated per document, these values can
also be considered as inputs for the MapReduce algorithm.

3.2 Implementation Details
Our implementation is built on top of the Apache Hadoop
MapReduce framework, using utilities from the Cloud9 li-
brary (https://github.com/lintool/Cloud9) for parsing
Wikipedia page text from the Wikipedia XML dump format.
Sentences are parsed out over each document using a reg-
ular expression. Sentences that are too large or too small
are discarded. The family of hash functions is implemented
using a “Multiply Shift” (http://en.wikipedia.org/wiki/
Universal_hashing) hashing scheme and is generated from
a random seed using the Java Random class. The hash family
is also parametrized by hash output key size and this value
can be configured to affect the size of the output signatures.

4. PARAMETER TUNING
As mentioned above the minhash algorithm is parametrized
by several values, including shingle length, length of hash
vectors, number of hash bands, and hash output size. Each

Algorithm 1 Minhash MapReduce Pseudocode

function initialize
F ← hash family;
L← shingle length;
K ← vector length;
N ← number of signatures to emit;

end function
function map(docid d, wikipage p)

sentencect ← 0
while s← nextSentence(p) do

shingles ← shingleSet(s,L);
minhashes = new List(|F|);
for i← 1 . . . |F | do

minhashes[i] ←∞;
end for
for g ∈ shingles do

for i← 1 . . . |F | do
minhashes[i] ← min(Fi(g),minhashes[i]);

end for
end for
for i← 1 . . . N do

sig = select(K, minhahses);
emit(sig,(docid,sentencect));

end for
sentencect++;

end while
end function
function reduce(signature sig, sentenceids S)

if |S| > 1 then
emit(sig, S);

end if
end function

of these parameters has an impact on the error rates in the
minhash output.

4.1 Jaccard Similarity and Edit Distance
Jaccard similarity is a measure of set similarity while our
stated goal is to find sentences in Wikipedia that have been
copied from one article to another and possibly edited. A
more natural measure to use for this application is edit
distance, but there is no known good locality sensitive hashing
family for edit distance [7].

In order to estimate Jaccard similarity of sentences X and Y
in terms of edit distance we assume that X and Y are both of
length N and that their shingle sets are of maximum size (i.e.
all shingles are unique). Also assume that X and Y have edit
distance e. We limit type of edits to changing characters in
place. Additionally, to simplify our calculations, we assume
that edits are localized so that no shingle overlaps more than
one edit.

(WLOG) Let S be the set of shingles for X and let So be
the set of shingles of X that overlap edits. The maximum
number of unique shingles for a sentence of length N is
N − L + 1 = |S|. Also, we can see that e ≤ |So| ≤ e + L− 1.
Since edits at the start or end of the sentence will overlap
with fewer shingles than edit mid-sentence.

Now we can define |X ∪ Y | and |X ∩ Y | in terms S and So

as follows:

|X ∩ Y | = |S| − |So|
|X ∪ Y | = 2 ∗ |So|+ |X ∩ Y |

= |So|+ |S|

Plugging in the values above for |So| and |S| we get:

E + N − L + 1 ≤ |X ∪ Y | ≤ E + N

N − L + 1− E ≥ |X ∩ Y | ≥ N − 2L− E + 2

N − L− E + 1

N − L + e + 1
>= J(X,Y) >=

N − 2L− E + 2

N + E

Note that, at least under this set of assumptions, the Jac-
card similarity is always less than the “edit similarity” (1 -
normalized edit distance):

J(X,Y) <=
N − E

E + N − L + 1
− L− 1

E + N − L + 1

<=
N − E

N

= 1− E

N

Finally we can divide through the equations for J(X,Y) by
N, which gives us:

Figure 1: Jaccard Similarity vs. normalized edit
distance.

1− l − e

1− l + e
>= J(X,Y) >=

1− 2l − e

1 + e

where l is relative shingle size and e is normalized edit dis-
tance.

Note that as relative shingle size goes to 0 there is a nice
convergence for Jaccard similarity:

lim
l−>0

J(X,Y) =
1− e

1 + e

As we would expect, Jaccard similarity decreases as edit
distance increases, but it also decreases as shingle length
increases. Figure 1 shows Jaccard Similarity plotted against
edit distance for l = .05 and l = .2. At l = .05 and e = .2
our estimate for Jaccard similarity has already fallen to the
range [0.58,0.65]. Clearly setting l too high can increase the
false positive rate, but setting l too low will increase the false
positive rate, since it will increase the size of the intersection
of the shingle sets.

4.2 False positives
In order to estimate the affect of shingle length on false
positive rate we ran a number of experiments for a 1 G
collection of wikipedia documents. For fixed N = 10 we ran
experiments for three values of K = {8, 9, 10} and 5 ≤ L ≤ 15.
Setting a normalized edit distance threshold of e = .25, we
calculated the total number of ”good” (e <= .25) and ”bad”
(e > .25) (unique) sentence pairs as well as the false positive
rate (# bad pairs divided by the total number of sentences).
Results are presented in Figure 2.

We can see from the graphs in Figure 2 that all three statistics
hit a low at shingle length 12 or 13. This means that in
order to achieve the lowest false positive rate we should use
parameter settings around N = 10,K = 10 and L = 12
or L = 13. However the number of good pairs also hits a
minimum at L = 12, which means that while overall the
output is more precise, we are also missing output pairs.

Another feature of the graphs in Figure 2 that stands out is

10 12 14 16

0.05

0.10

0.15

FP Rate

10 12 14 16

5000

10 000

15 000

20 000

Bad Pairs

10 12 14 16

80 000

100 000

120 000

140 000

160 000

180 000

Good Pairs

k=8

k=9

k=10

Figure 2: False Positive Rate, Good Count, Bad
Count for N = 10,K ∈ {8, 9, 10}, 5 ≤ L ≤ 15

that while the false positive rate and total number of bad
pairs bottoms out at around L = 12, for L > 12 the output
quality actually decreases. This is counter to our intuition
that output quality increases as the length of the shingle
increases. One would expect larger shingles to correspond to
closer edit distance scores, since larger shingles correspond
to longer consecutive sequences of identical text. One expla-
nation for these counter-intuitive results could be limitations
of the underlying hash family. If longer shingle lengths lead
to greater hash collisions this could explain the increased
numbers of bad pairs. Improving the hash function to reduce
collisions could improve results.

Since minimizing the false positive rate also means minimiz-
ing reducing good pairs, another option is to let parame-
ters to maximize good output and use edit distance as a
secondary filter. With this approach our experimental re-
sults suggest that the best parameter combination would be
N = 10,K = 8, L = 10.

5. WORKING APPLICATION

While the Minhash signature code provides the raw similar-
ity scores, it is one part of a larger framework composed of
several pieces, described below. The input to the process
is an XML dump format. (See http://en.wikipedia.org/

wiki/Wikipedia:Database_download for details.) The out-
put of the process is a list of sentence clusters containing
the original article title and sentence text. Decomposing the
sentence clustering into several pieces allows us to minimize
the amount of raw text that gets passed between mappers
and reducers, thus improving scalability.

The process can be summarized as follows:

1. Preprocess Wikipedia Pages - Using a utility from
the Cloud9 library, preprocess the raw Wikipedia dump
into a SequenceFile format. Working with Sequence-
Files gives the option to use block or record compressed
input compatible with the MapReduce framework.

2. Minhash Wikipedia Sentences - Reads processed
Wikipedia input, and uses a regular expression to match
sentences in the article text. Outputs a file of signature
“buckets” organized by signature. Each output sentence
is represented by a (docid,sentenceid) pair.

3. Dedup Sentence Buckets - Because multiple sen-
tences may occur in each bucket, a second MapReduce
job is used to map from buckets to raw sentence pairs,
removing duplicates.

4. Compute Sentence Clusters - Performs a local (i.e.,
non-MapReduce) connected component analysis on the
dedup-ed pairs to form sentence clusters.

5. Get Sentence Text - Maps clustered sentences (rep-
resented by (docid,sentenceid) pairs) back to sentence
text by streaming over the Wikipedia input a second
time and recovering the corresponding sentences by ID.

6. Edit Distance Filter - (optional) For each output
cluster and filter all pairs within the cluster by desired
edit distance threshold.

5.1 Limitations to Our Approach
In addition to the aforementioned hash issue there are other
limitations in our implementation and improvements that
could be made.

Data cleanliness - The Cloud9 utilities that process Wikipedia
code do some preprocessing of non-text elements from Wikipedia
pages. However there is still improvements that could be
made. Section headings can confuse our regular expression
mapping, causing pieces of extraneous text to be appended
to sentences. Parsing page text with a better understand-
ing of how Wikipedia articles are structured could improve
our input data. Additionally, keeping track of the order in
which sentences occur on a page could improve analysis. For
example, references and external links are typically found at
the bottom of a Wikipeda page. More carefully filtering text
based on sentence depth could improve results.

Sentence matching - Since Wikipedia data is not chunked by
sentence, we rely on regular expression matching to break
up input text into sentences. Since sentences have recursive

structure, our regular expression can lead to stack over-
flow exceptions from the underlying recursive pattern match
search. Setting bounds on the sentence structure nesting
could provide more reliable results. The encyclopedic style of
Wikipedia may lend itself to simpler sentence structures that
don’t require a general purpose sentence matching algorithm.

Large clusters - Since we rely on a connected component
analysis to compute the final sentence clusters, our large
clusters can be a bottleneck. Unfortunately, the Wikipedia
data does contain large clusters of similar sentences (see
the discussion of templatification below). Since our initial
experimental results suggest that more interesting clusters
(for example, sentence clusters representing copied data with
factual errors) are much smaller (on the order of 2 or 3
sentences per cluster), we set a limit on maximum bucket
size and only consider the first n sentences in any bucket up
to that limit. Setting a limit on cluster size helps ensure more
predictable runtime and discards large portions of relatively
uninteresting clusters, making output data more manageable.

Non-determinism - Our current implementation of Minhash
suffers from a yet unidentified source of non-determinism.
This affects the number of output records produced from the
Minhashing stage of our implementation from one run to the
next and has unknown effects on output quality.

6. EXPERIMENTS AND DISCUSSION
We performed several analyses to provide more insight into
the occurence of duplicate sentences. In particular, we were
interested in detecting similar sentences that arose from
copying text from one article to another since such instances
would represent content that is either redundant, or content
that has diverged in the sense that either the original or
the copy was edited for clarification of factual correctness
and the other was not. Such instances give insight into the
Wikipedia editing process, and also represent an opportunity
to improve article quality on Wikipedia by identifying places
where further editing or article merging may be needed.

All of our experiments were run against an XML dump of
current English-language Wikipedia (enwiki) articles (as of
4/2013) obtained from dumps.wikimedia.org. The enwiki
dump is approximately 40G in size and contains 4,113,785
articles (after excluding certain non-article page types). Run-
ning the first four steps of our application (up to but not
including the final edit distance filtering pass) against the
enwiki dump on a shared cluster of 16 nodes with (15 GB
RAM and 4 cores each) took ≈ 2 hours.

After minhashing and deduplification, we found a total of
9,465,881 similar article/sentence pairs. After clustering
these pairs, the total number of similar sentence clusters was
415,936, including 1,792,748 unique article/sentence pairs
over 759,297 article titles. The total number of unique sen-
tences over all cluster was 1,305,359.

Cluster sizes ranged from 2 to 28,008. (See Figure 3 for a
breakdown of counts by cluster size.) Most sentence clusters
are small, but the distribution of cluster sizes exhibits a long
tail. As a result, while 99% of our clusters have size below or
equal to 30, about 1/3 of the output sentence/article pairs
fall into clusters with size greater than 30. One explanation

Figure 3: Histogram of Cluster Sizes (for cluster size
< 300, log scale).

for this distribution of sentences is the phenomenon we call
”templatification,” which we describe in more detail below.

6.1 Similar Sentence Types
Manual inspection of cluster output reveals several different
similar sentence types. These types can be summarized as
follows:

• Templatification

• References

• Direct Copying

• Direct Copying with Copy Editing

• Direct Copying with Factual Drift

Templatification occurs when one sentence is an exact du-
plicate of another sentence, but the main topic has been
changed by only a few pieces of key information having been
modified. For example, it could be said that the following
two sentences follow a particular template.

• Bush had an approval rating of 22% by the end of his
term in 2008.
• Obama had an approval rating of 56% by the end of

his term in 2012.

From the perspective of editing/writing Wikipedia articles,
this is a strong indicator that the author copied the original
sentence and modified the relevant information to pertain
to a different topic. What remains shared between both
sentences though is the inherent structure.

Direct Copying occurs when the same sentence has been
copied into another (or possibly the same) article. This can
happen for many reasons, including articles that deal with
similar subjects, or articles that are subtopics of other topics
Similarly, Direct Copying with Copy Editing occurs when the
same sentence has been copied into another article and then
one or both sentences has been edited for style or clarity. For
example:

Table 1: Sentence Breakdown Counts
Not Similar 3
Factual Drift 65
Template 52
Reference 23
Copy Edit 214
Other 12
Identical 455

• Bush had an approval rating of 22% by the end of his
term in 2008.
• Bush, a US President, had an approval rating of 22%

by the end of his term in 2008.

Factual drift most notably occurs when the same sentence
has been copied and a piece of factual information about the
same topic has changed. For example, factual drift can be
seen in the following two sentences.

• Obama had an approval rating of 56% by the end of
his term in 2012.
• Obama had an approval rating of 46% by the end of

his term in 2012.

Although factual drift is similar to copy editing and may
occur along with copy editing, we distinguish the two cases
since factual errors are more severe than style issues.

References refers to citations, typically occurring at the end
of a Wikipedia article. Since Wikipedia does not adhere to
one single citation style, the same work may be referenced
on multiple pages in different styles. Similarly different por-
tions of the same work may be referenced in different articles.
Although citation errors might be harder to distinguish from
factual errors, errors in citation are arguably no less im-
portant. (It would also be interesting to compare whether
articles that share similar sentences also share similar cita-
tions.)

• Neotropical Ichthyology 11 (1): 73-80.
• Neotropical Ichthyology 10 (2): 245-253.

6.1.1 Break down of sentence types
By manually counting a small sample of 824 output clusters,
we came up with a breakdown of sentence types in Table 1.

6.2 Sentence Similarity as a Measure of Arti-
cle Similarity

Based on our preliminary analysis, templatification tends
to occur most often between articles that maintain large
lists of information related to the same general sub-theme
of different topics. For example, of the top 10 pairs of
articles with the highest similarity count, one article pair
was the articles titled ”List of birds of Zambia” and ”List of
birds of Tanzania”. With both countries sharing the same
geographic region, it is not unexpected that their respective
wikipedia articles on the countrys’ bird species would be
highly comparable. For clarity purposes, we define similarity
count as simply the total number of sentences between two
articles that were found to share the same hash signature.
Using the output of the minhashing routine, we performed

Figure 4: Top 10 Similarity Counts

Table 2: Top 10 Article Pair Titles
Article ID Title
21986867 2000 New Year Honours
21986897 1999 New Year Honours
3951586 Instruments of the United Kingdom, 1994
3951664 Instruments of the United Kingdom, 1995
1903966 Management of baldness
38088660 Management of androgenic alopecia
1503105 Jayne Torvill
1503115 Christopher Dean
184843 Henry VI, Part 1
184846 Henry VI, Part 2
184847 Henry VI, Part 3
10701462 List of birds of Zambia
10930255 List of birds of Zimbabwe
10930111 List of birds of Mozambique
48711 Oregon Trail
31518964 History of the Oregon Trail

a pairwise similarity count across all articles that shared
similar sentences. Overall, we found ≈ 6500 wikipedia article
pairs that had a similarity count greater than 50.

Looking at the distribution of cluster sizes in Figure 3, we can
see the expected behavior of decreasing number of clusters
of size k as k grows large. What is unusual though is the
number of relatively large clusters in the size range of [25, 65].
Based on the fact that we found ≈ 6500 article pairs with
a similarity count greater than 50, this would indicate that
there are collections of articles that have a large number of
near-duplicate sentences in common. As can be seen in the
Top 10 similarity counts, there can even be chains of articles
that share large portions of their content with each other (a
chain of 3 is demonstrated in Figure 4).

7. CONCLUSION AND FUTURE WORK
This paper presents our work on near-duplicate detection
of Wikipedia articles at the sentence-granularity level using
MinHash, a LSH technique. Our novel MapReduce algorithm
tackles the problem by transforming it into more manageable
pieces where each piece is handled in parallel. Our unique
contribution includes empirical analysis of signatures belong-
ing to Wikipedia articles at the sentence level. Experimental
results verify that the proposed method is able to effectively

and efficiently detect similar articles.

In the future, we would like to investigate revision histories
of these articles, correlate them with their timestamps, and
better relate similarities based on temporal dimensions.

8. ACKNOWLEDGMENTS
We would especially like to thank Dr. Jimmy Lin for his
advise and directions.

9. REFERENCES
[1] Wikipedia.

https://en.wikipedia.org/wiki/Wikipedia, 2013.

[2] M. Bendersky and W. B. Croft. Finding text reuse on
the web. In Proceedings of the Second ACM
International Conference on Web Search and Data
Mining, pages 262–271, 2009.

[3] A. Z. Broder. On the resemblance and containment of
documents. In In Compression and Complexity of
Sequences (SEQUENCESâĂŹ97), pages 21–29, 1997.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. Commun. ACM,
51(1):107–113, January 2008.

[5] H. Hajishirzi, W. tau Yih, and A. Kolcz. Adaptive
near-duplicate detection via similarity learning. In
Proceedings of the 33rd international ACM SIGIR
conference on Research and development in information
retrieval, pages 419–426, 2010.

[6] A. Kirsch and M. Mitzenmacher. Distance-sensitive
bloom filters. In In Proceedings of the Eighth Workshop
on Algorithm Engineering and Experiments (ALENEX,
2006.

[7] J. Lin. Brute force and indexed approaches to pairwise
document similarity comparisons with mapreduce. In
Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information
retrieval, pages 155–162, 2009.

[8] G. S. Manku, A. Jain, and A. D. Sarma. Detecting
near-duplicates for web crawling. In Proceedings of the
16th international conference on World Wide Web,
pages 141–150, 2007.

[9] A. Rajaraman, J. Leskovec, and J. D. Ullman. Mining
of Massive Datasets. January 2011.

[10] J. Seo and B. W. Croft. Local text reuse detection. In
Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 571–578, 2008.

[11] D. M. Wilkinson and B. A. Huberman. Assessing the
value of cooperation in wikipedia. First Monday, 12(4),
April 2007.

[12] Q. Zhang, Y. Zhang, H. Yu, and X. Huang. Efficient
partial-duplicate detection based on sequence matching.
In Proceedings of the 33rd international ACM SIGIR
conference on Research and development in information
retrieval, pages 675–682, 2010.

