Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

182 lines (148 sloc) 4.96 kb
# c: 07.05.2007, r: 25.06.2008
from sfepy import data_dir
filename_mesh = data_dir + '/meshes/2d/special/circle_in_square.mesh'
dim = 2
field_1 = {
'name' : 'a_harmonic_field',
'dtype' : 'real',
'shape' : 'scalar',
'region' : 'Omega',
'approx_order' : 1,
}
variables = {
't': ('unknown field', 'a_harmonic_field', 0),
's': ('test field', 'a_harmonic_field', 't'),
}
regions = {
'Omega' : ('all', {}),
'Left' : ('nodes in (x < 0.001) & (y < 0.001)', {}),
'Right' : ('nodes in (x > 0.999)', {}),
'Gamma' : ('nodes of surface', {}),
}
ebcs = {
't_left' : ('Gamma', {'t.0' : 'ebc'}),
# 't_right' : ('Right', {'t.0' : 'ebc'}),
}
integral_1 = {
'name' : 'i1',
'kind' : 'v',
'order' : 2,
}
coef = 2.0
materials = {
'coef' : ({'val' : coef},),
'rhs' : 'rhs',
}
equations = {
'Temperature' :
"""dw_laplace.i1.Omega( coef.val, s, t )
= - dw_volume_lvf.i1.Omega( rhs.val, s )""",
}
solutions = {
'sincos' : ('t', 'sin( 3.0 * x ) * cos( 4.0 * y )',
'-25.0 * %s * sin( 3.0 * x ) * cos( 4.0 * y )' % coef),
'poly' : ('t', '(x**2) + (y**2)', '4.0 * %s' % coef),
'polysin' : ('t', '((x - 0.5)**3) * sin( 5.0 * y )',
'%s * (6.0 * (x - 0.5) * sin( 5.0 * y ) - 25.0 * ((x - 0.5)**3) * sin( 5.0 * y ))' % coef),
}
solver_0 = {
'name' : 'ls',
'kind' : 'ls.scipy_direct',
}
solver_1 = {
'name' : 'newton',
'kind' : 'nls.newton',
'i_max' : 1,
'eps_a' : 1e-10,
'eps_r' : 1.0,
'macheps' : 1e-16,
'lin_red' : 1e-2, # Linear system error < (eps_a * lin_red).
'ls_red' : 0.1,
'ls_red_warp' : 0.001,
'ls_on' : 1.1,
'ls_min' : 1e-5,
'check' : 0,
'delta' : 1e-6,
'is_plot' : False,
'problem' : 'nonlinear', # 'nonlinear' or 'linear' (ignore i_max)
}
import numpy as nm
from sfepy.base.testing import TestCommon
from sfepy.base.base import debug, pause, assert_
output_name = 'test_msm_laplace_%s.vtk'
##
# c: 07.05.2007, r: 09.05.2008
solution = ['']
def ebc(ts, coor, **kwargs):
expression = solution[0]
val = TestCommon.eval_coor_expression( expression, coor )
return nm.atleast_1d( val )
def rhs(ts, coor, mode=None, expression=None, **kwargs):
if mode == 'qp':
if expression is None:
expression = '0.0 * x'
val = TestCommon.eval_coor_expression( expression, coor )
val.shape = (val.shape[0], 1, 1)
return {'val' : val}
functions = {
'ebc' : (ebc,),
'rhs' : (rhs,),
}
##
# c: 07.05.2008
class Test( TestCommon ):
##
# c: 07.05.2007, r: 07.05.2008
def from_conf( conf, options ):
from sfepy.fem import ProblemDefinition
problem = ProblemDefinition.from_conf( conf )
test = Test( problem = problem,
conf = conf, options = options )
return test
from_conf = staticmethod( from_conf )
##
# c: 09.05.2007, r: 25.06.2008
def _build_rhs( self, sols ):
for sol in sols.itervalues():
assert_( len( sol ) == 3 )
return sols
##
# c: 07.05.2007, r: 09.05.2008
def test_msm_laplace( self ):
import os.path as op
problem = self.problem
variables = problem.get_variables()
materials = problem.get_materials()
sols = self._build_rhs( self.conf.solutions )
ok = True
for sol_name, sol in sols.iteritems():
self.report( 'testing', sol_name )
var_name, sol_expr, rhs_expr = sol
self.report( 'sol:', sol_expr )
self.report( 'rhs:', rhs_expr )
globals()['solution'][0] = sol_expr
materials['rhs'].function.set_extra_args(expression=rhs_expr)
problem.time_update()
state = problem.solve()
coor = variables[var_name].field.get_coor()
ana_sol = self.eval_coor_expression( sol_expr, coor )
num_sol = state(var_name)
ana_norm = nm.linalg.norm( ana_sol, nm.inf )
ret = self.compare_vectors( ana_sol, num_sol,
allowed_error = ana_norm * 1e-2,
label1 = 'analytical %s' % var_name,
label2 = 'numerical %s' % var_name,
norm = nm.inf )
if not ret:
self.report( 'variable %s: failed' % var_name )
fname = op.join( self.options.out_dir, self.conf.output_name )
out = {}
astate = state.copy()
astate.set_full(ana_sol)
aux = astate.create_output_dict()
out['ana_t'] = aux['t']
aux = state.create_output_dict()
out['num_t'] = aux['t']
problem.domain.mesh.write( fname % sol_name, io = 'auto', out = out )
ok = ok and ret
return ok
Jump to Line
Something went wrong with that request. Please try again.