statistics of the Markowitz portfolio
Switch branches/tags
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
R
docker
inst
m4
man-roxygen
man
nodist
rpkg_make @ 9acf5ab
tests
vignettes
.Rbuildignore
.Rinstignore
.codecov_token
.gitattributes
.gitignore
.gitmodules
.travis.yml
ChangeLog
DESCRIPTION
LICENSE
Makefile
NAMESPACE
README.Rmd
README.md
rebuildTags.sh

README.md

MarkowitzR

Build Status codecov.io CRAN Downloads Total

A number of utilities for dealing with the Markowitz portfolio.

-- Steven E. Pav, shabbychef@gmail.com

Installation

This package may be installed from CRAN; the latest version may be found on github via devtools:

if (require(devtools)) {
    # latest greatest
    install_github(repo = "MarkowitzR", username = "shabbychef", 
        ref = "master")
}

Basic Usage

Inference on the Markowitz Portfolio

The (negative) Markowitz portfolio appears in the inverse of the uncentered second moment matrix of the 'augmented' vector of returns. Via the Central Limit Theorem and the delta method the asymptotic distribution of the Markowitz portfolio can be found. From this, Wald statistics on the individual portfolio weights can be computed.

Fake Data

First for unconditional returns:

set.seed(1001)
X <- matrix(rnorm(1000 * 3), ncol = 3)
ism <- mp_vcov(X, fit.intercept = TRUE)
walds <- ism$W/sqrt(diag(ism$What))
print(t(walds))
##             X1    X2   X3
## Intercept 0.83 -0.15 -1.8

Now for conditional expectation:

# generate data with given W, Sigma
Xgen <- function(W, Sigma, Feat) {
    Btrue <- Sigma %*% W
    Xmean <- Feat %*% t(Btrue)
    Shalf <- chol(Sigma)
    X <- Xmean + matrix(rnorm(prod(dim(Xmean))), ncol = dim(Xmean)[2]) %*% 
        Shalf
}

n.feat <- 3
n.ret <- 5
n.obs <- 2000
set.seed(101)
Feat <- matrix(rnorm(n.obs * n.feat), ncol = n.feat)
Wtrue <- 5 * matrix(rnorm(n.feat * n.ret), ncol = n.feat)
Sigma <- cov(matrix(rnorm(100 * n.ret), ncol = n.ret))
Sigma <- Sigma + diag(seq(from = 1, to = 3, length.out = n.ret))
X <- Xgen(Wtrue, Sigma, Feat)
ism <- mp_vcov(X, feat = Feat, fit.intercept = TRUE)

walds <- ism$W/sqrt(diag(ism$What))
print(t(walds))
##               X1    X2     X3     X4    X5
## Intercept  -0.61   0.4   0.11   0.61   0.2
## Feat1       0.30 -20.7  14.56 -10.70 -24.6
## Feat2     -14.82  -4.0  12.01  29.75  -1.8
## Feat3      16.62  -5.3 -30.41   0.83   3.5
# results are not much changed when using robust
# s.e.
library(sandwich)

ism.rse <- mp_vcov(X, feat = Feat, vcov.func = sandwich::vcovHAC, 
    fit.intercept = TRUE)
walds.rse <- ism.rse$W/sqrt(diag(ism.rse$What))
print(t(walds.rse))
##               X1    X2     X3     X4     X5
## Intercept  -0.61   0.4   0.11   0.60   0.19
## Feat1       0.29 -20.4  14.43 -10.66 -24.45
## Feat2     -14.49  -3.9  11.88  29.60  -1.80
## Feat3      16.37  -5.3 -29.85   0.83   3.48
# errors should be asymptotically normal with the
# given covariance.
n.feat <- 5
n.ret <- 15
n.obs <- 3000
set.seed(101)

Feat <- matrix(rnorm(n.obs * n.feat), ncol = n.feat)
Wtrue <- 5 * matrix(rnorm(n.feat * n.ret), ncol = n.feat)
Sigma <- cov(matrix(rnorm(100 * n.ret), ncol = n.ret))
Sigma <- Sigma + diag(seq(from = 1, to = 3, length.out = n.ret))
X <- Xgen(Wtrue, Sigma, Feat)
ism <- mp_vcov(X, feat = Feat, fit.intercept = TRUE)

Wcomp <- cbind(0, Wtrue)
errs <- ism$W - Wcomp
dim(errs) <- c(length(errs), 1)
Zerr <- solve(t(chol(ism$What)), errs)
print(summary(Zerr))
##        V1       
##  Min.   :-2.05  
##  1st Qu.:-0.55  
##  Median : 0.14  
##  Mean   : 0.20  
##  3rd Qu.: 1.00  
##  Max.   : 2.49
library(ggplot2)
ph <- ggplot(data.frame(Ze = Zerr), aes(sample = Ze)) + 
    stat_qq() + geom_abline(slope = 1, intercept = 0, 
    colour = "red")
print(ph)

plot of chunk marko-ism

# qqnorm(Zerr) qqline(Zerr,col=2)

Fama French data

Now load the Fama French 3 factor portfolios.

if (!require(aqfb.data, quietly = TRUE) && require(devtools)) {
    # get the 10 industry data
    devtools::install_github("shabbychef/aqfb_data")
}
library(aqfb.data)
# fama
data(mff4)

# will not matter, but convert pcts:
ff.data <- 0.01 * mff4

# risk free rate:
rfr <- ff.data[, "RF"]

# subtract risk free from Mkt, HML and SMB:
ff.ret <- ff.data[, c("Mkt", "HML", "SMB")] - rep(rfr, 
    2)

Now analyze the Markowitz portfolio on them.

ism <- mp_vcov(ff.ret, fit.intercept = TRUE)
walds <- ism$W/sqrt(diag(ism$What))
print(t(walds))
##           Mkt  HML SMB
## Intercept   4 0.32  -2
# now consider the hedging constraint: no
# covariance with the market:
Gmat <- matrix(c(1, 0, 0), nrow = 1)
ism <- mp_vcov(ff.ret, fit.intercept = TRUE, Gmat = Gmat)
walds <- ism$W/sqrt(diag(ism$What))
print(t(walds))
##           Mkt  HML SMB
## Intercept 1.5 0.32  -2