A Matlab implementation of the paper "Accelerated Quadratic Proxy for Geometric Optimization"
Matlab C++
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
code
data
mex
toolbox
.gitattributes
.gitignore
README.md
compileAllMex.m
example_deformation_2d_bar_ARAP.m
example_deformation_2d_gecko_IsoDist.m
example_deformation_3d_boy_ARAP.m
example_parameterization_cow_IsoDist.m
initialize.m

README.md

Accelerated Quadratic Proxy for Geometric Optimization

A Matlab implementation of the paper "Accelerated Quadratic Proxy for Geometric Optimization".


The class OptimSolverAcclQuadProx.m implements the accelerated quadratic proxy optimization algorithm described in the paper for the minimization of geometric energies.

This package includes a few examples:

  • example_deformation_2d_gecko_IsoDist.m demonstrates the minimization of the Isometric Distortion energy for shape deformation (Figure 1 in the paper).
  • example_parameterization_cow_IsoDist.m demonstrates the minimization of the Isometric Distortion energy for parameterization (the cow of Figure 12 in the paper).
  • example_deformation_2d_bar_ARAP.m and example_deformation_3d_boy_ARAP.m demonstrate the minimization of the As-Rigid-As-Possible energy for shape deformation (see https://goo.gl/skatVH and https://goo.gl/iYXJaP for video clips).

Compatibility and dependencies: The code was tested with Matlab (2015a). The code depends on a few MEX functions. Windows (x64) binaries are included; they are compiled with Intel C++ Composer XE 2016 with Microsoft Visual Studio 2013; compilation requires Eigen; fast implementation of As-Rigid-As-Possible also relies on libigl. The source code is provided under the mex/ folder; run compileAllMex.m to compile all mex files (only tested under windows).

Disclaimer: The code is provided as-is for academic use only and without any guarantees. Please contact the authors to report any bugs. Written by Shahar Kovalsky and Meirav Galun.