
pkg-config(1) pkg-config(1)

NAME
pkg-config − Return metainformation about installed libraries

SYNOPSIS
pkg-config [−−modversion] [−−version] [−−help] [−−atleast-pkgconfig-version=VERSION] [−−print-
errors] [−−short-errors] [−−silence-errors] [−−errors-to-stdout] [−−debug] [−−cflags] [−−libs] [−−libs-only-
L] [−−libs-only-l] [−−cflags-only-I] [−−libs-only-other] [−−cflags-only-other] [−−variable=VARIABLE-
NAME] [−−define-variable=VARIABLENAME=VARIABLEVALUE] [−−print-variables] [−−uninstalled]
[−−exists] [−−atleast-version=VERSION] [−−exact-version=VERSION] [−−max-version=VERSION]
[−−validate] [−−list−all] [−−print-provides] [−−print-requires] [−−print-requires-private] [LIBRARIES...]

DESCRIPTION
The pkg-config program is used to retrieve information about installed libraries in the system. It is typically
used to compile and link against one or more libraries. Here is a typical usage scenario in a Makefile:

program: program.c
cc program.c ‘pkg-config --cflags --libs gnomeui‘

pkg-config retrieves information about packages from special metadata files. These files are named after the
package, and has a .pc extension. On most systems, pkg-config looks in /usr/lib/pkgconfig, /usr/share/pkg-
config, /usr/local/lib/pkgconfig and /usr/local/share/pkgconfig for these files. It will additionally look in the
colon-separated (on Windows, semicolon-separated) list of directories specified by the PKG_CON-
FIG_PATH environment variable.

The package name specified on the pkg-config command line is defined to be the name of the metadata file,
minus the .pc extension. If a library can install multiple versions simultaneously, it must give each version
its own name (for example, GTK 1.2 might have the package name "gtk+" while GTK 2.0 has "gtk+-2.0").

In addition to specifying a package name on the command line, the full path to a given .pc file may be given
instead. This allows a user to directly query a particular .pc file.

OPTIONS
The following options are supported:

--modversion
Requests that the version information of the libraries specified on the command line be displayed.
If pkg-config can find all the libraries on the command line, each library’s version string is printed
to stdout, one version per line. In this case pkg-config exits successfully. If one or more libraries is
unknown, pkg-config exits with a nonzero code, and the contents of stdout are undefined.

--version
Displays the version of pkg-config and terminates.

--atleast-pkgconfig-version=VERSION
Requires at least the given version of pkg-config.

--help Displays a help message and terminates.

--print-errors
If one or more of the modules on the command line, or their dependencies, are not found, or if an
error occurs in parsing a .pc file, then this option will cause errors explaining the problem to be
printed. With "predicate" options such as "--exists" pkg-config runs silently by default, because it’s
usually used in scripts that want to control what’s output. This option can be used alone (to just
print errors encountered locating modules on the command line) or with other options. The
PKG_CONFIG_DEBUG_SPEW environment variable overrides this option.

--short-errors
Print short error messages.

--silence-errors
If one or more of the modules on the command line, or their dependencies, are not found, or if an
error occurs in parsing a a .pc file, then this option will keep errors explaining the problem from
being printed. With "predicate" options such as "--exists" pkg-config runs silently by default,

1

sa

pkg-config(1) pkg-config(1)

because it’s usually used in scripts that want to control what’s output. So this option is only useful
with options such as "--cflags" or "--modversion" that print errors by default. The PKG_CON-
FIG_DEBUG_SPEW environment variable overrides this option.

--errors-to-stdout
If printing errors, print them to stdout rather than the default stderr

--debug
Print debugging information. This is slightly different than the PKG_CONFIG_DEBUG_SPEW
environment variable, which also enable "--print-errors".

The following options are used to compile and link programs:

--cflags This prints pre-processor and compile flags required to compile the packages on the command
line, including flags for all their dependencies. Flags are "compressed" so that each identical flag
appears only once. pkg-config exits with a nonzero code if it can’t find metadata for one or more of
the packages on the command line.

--cflags-only-I
This prints the -I part of "--cflags". That is, it defines the header search path but doesn’t specify
anything else.

--cflags-only-other
This prints parts of "--cflags" not covered by "--cflags-only-I".

--libs This option is identical to "--cflags", only it prints the link flags. As with "--cflags", duplicate flags
are merged (maintaining proper ordering), and flags for dependencies are included in the output.

--libs-only-L
This prints the -L/-R part of "--libs". That is, it defines the library search path but doesn’t specify
which libraries to link with.

--libs-only-l
This prints the -l part of "--libs" for the libraries specified on the command line. Note that the
union of "--libs-only-l" and "--libs-only-L" may be smaller than "--libs", due to flags such as -rdy-
namic.

--libs-only-other
This prints the parts of "--libs" not covered by "--libs-only-L" and "--libs-only-l", such as
"--pthread".

--variable=VARIABLENAME
This returns the value of a variable defined in a package’s .pc file. Most packages define the vari-
able "prefix", for example, so you can say:

$ pkg-config --variable=prefix glib-2.0
/usr/

--define-variable=VARIABLENAME=VARIABLEVALUE
This sets a global value for a variable, overriding the value in any .pc files. Most packages define
the variable "prefix", for example, so you can say:

$ pkg-config --print-errors --define-variable=prefix=/foo \
--variable=prefix glib-2.0

/foo

--print-variables
Returns a list of all variables defined in the package.

--uninstalled
Normally if you request the package "foo" and the package "foo-uninstalled" exists, pkg-config
will prefer the "-uninstalled" variant. This allows compilation/linking against uninstalled packages.
If you specify the "--uninstalled" option, pkg-config will return successfully if any "-uninstalled"

2

pkg-config(1) pkg-config(1)

packages are being used, and return failure (false) otherwise. (The PKG_CONFIG_DIS-
ABLE_UNINSTALLED environment variable keeps pkg-config from implicitly choosing "-unin-
stalled" packages, so if that variable is set, they will only have been used if you pass a name like
"foo-uninstalled" on the command line explicitly.)

--exists

--atleast-version=VERSION

--exact-version=VERSION

--max-version=VERSION
These options test whether the package or list of packages on the command line are known to pkg-
config, and optionally whether the version number of a package meets certain constraints. If all
packages exist and meet the specified version constraints, pkg-config exits successfully. Otherwise
it exits unsuccessfully. Only the first VERSION comparing option will be honored. Subsequent
options of this type will be ignored.

Rather than using the version-test options, you can simply give a version constraint after each
package name, for example:
$ pkg-config --exists ’glib-2.0 >= 1.3.4 libxml = 1.8.3’

Remember to use −−print-errors if you want error messages. When no output options are supplied
to pkg-config, −−exists is implied.

--validate
Checks the syntax of a package’s .pc file for validity. This is the same as −−exists except that
dependencies are not verified. This can be useful for package developers to test their .pc file prior
to release:
$ pkg-config --validate ./my-package.pc

--msvc-syntax
This option is available only on Windows. It causes pkg-config to output -l and -L flags in the form
recognized by the Microsoft Visual C++ command-line compiler, cl. Specifically, instead of
-Lx:/some/path it prints /libpath:x/some/path, and instead of -lfoo it prints foo.lib. Note that the
--libs output consists of flags for the linker, and should be placed on the cl command line after a
/link switch.

--define-prefix
--dont-define-prefix These options control whether pkg-config overrides the value of the variable
prefix in each .pc file. With −−define-prefix, pkg-config uses the installed location of the .pc file to
determine the prefix. −−dont-define-prefix prevents this behavior. The default is usually −−define-
prefix.

When this feature is enabled and a .pc file is found in a directory named pkgconfig, the prefix for
that package is assumed to be the grandparent of the directory where the file was found, and the
prefix variable is overridden for that file accordingly.

If the value of a variable in a .pc file begins with the original, non-overridden, value of the prefix
variable, then the overridden value of prefix is used instead. This allows the feature to work even
when the variables have been expanded in the .pc file.

--prefix-variable=PREFIX
Set the name of the variable that pkg-config overrides instead of prefix when using the −−define-
prefix feature.

--static Output libraries suitable for static linking. That means including any private libraries in the out-
put. This relies on proper tagging in the .pc files, else a too large number of libraries will ordinar-
ily be output.

3

pkg-config(1) pkg-config(1)

--list-all
List all modules found in the pkg-config path.

--print-provides
List all modules the given packages provides.

--print-requires
List all modules the given packages requires.

--print-requires-private
List all modules the given packages requires for static linking (see --static).

ENVIRONMENT VARIABLES
PKG_CONFIG_PATH

A colon-separated (on Windows, semicolon-separated) list of directories to search for .pc files.
The default directory will always be searched after searching the path; the default is
libdir/pkgconfig:datadir/pkgconfig where libdir is the libdir for pkg-config and datadir is the
datadir for pkg-config when it was installed.

PKG_CONFIG_DEBUG_SPEW
If set, causes pkg-config to print all kinds of debugging information and report all errors.

PKG_CONFIG_TOP_BUILD_DIR
A value to set for the magic variable pc_top_builddir which may appear in .pc files. If the environ-
ment variable is not set, the default value ’$(top_builddir)’ will be used. This variable should refer
to the top builddir of the Makefile where the compile/link flags reported by pkg-config will be
used. This only matters when compiling/linking against a package that hasn’t yet been installed.

PKG_CONFIG_DISABLE_UNINSTALLED
Normally if you request the package "foo" and the package "foo-uninstalled" exists, pkg-config
will prefer the "-uninstalled" variant. This allows compilation/linking against uninstalled packages.
If this environment variable is set, it disables said behavior.

PKG_CONFIG_SYSTEM_INCLUDE_PATH
A path variable containing system directories searched by the compiler. This is normally
/usr/include.

CPATH
C_INCLUDE_PATH CPLUS_INCLUDE_PATH Additional paths to append to PKG_CON-
FIG_SYSTEM_INCLUDE_PATH . These correspond to environment variables used by many com-
pilers to affect the header search path. These are ignored on Windows builds when −−msvc-syntax
is in use.

INCLUDE
Additional paths to append to PKG_CONFIG_SYSTEM_INCLUDE_PATH on Windows builds
when −−msvc-syntax is in use. This corresponds to the environment variable used by MSVC to
add directories to the include file search path.

PKG_CONFIG_ALLOW_SYSTEM_CFLAGS
Don’t strip system paths out of Cflags. See PKG_CONFIG_SYSTEM_INCLUDE_PATH for the
definition of system paths.

PKG_CONFIG_SYSTEM_LIBRARY_PATH
A path variable containing system directories searched by the linker. This is normally /usr/lib:/lib
but is dependent on the pkg-config build and can contain other directories such as /usr/lib64.

PKG_CONFIG_ALLOW_SYSTEM_LIBS
Don’t strip system paths out of Libs. See PKG_CONFIG_SYSTEM_LIBRARY_PATH for the defi-
nition of system paths.

PKG_CONFIG_SYSROOT_DIR
Modify -I and -L to use the directories located in target sysroot. this option is useful when cross-
compiling packages that use pkg-config to determine CFLAGS and LDFLAGS. -I and -L are

4

pkg-config(1) pkg-config(1)

modified to point to the new system root. this means that a -I/usr/include/libfoo will become
-I/var/target/usr/include/libfoo with a PKG_CONFIG_SYSROOT_DIR equal to /var/target (same
rule apply to -L)

PKG_CONFIG_LIBDIR
Replaces the default pkg-config search directory, usually /usr/lib/pkgconfig: /usr/share/pkgconfig.

PKG_CONFIG_$PACKAGE_$VARIABLE
Overrides the variable VARIABLE in the package PACKAGE. The environment variable should
have the package name and package variable upper cased with non-alphanumeric characters con-
verted to underscores. For example, setting PKG_CONFIG_GLADEUI_2_0_CATALOGDIR will
override the variable "catalogdir" in the "gladeui-2.0" package.

PKG-CONFIG DERIVED VARIABLES
pkg-config sets a few metadata variables that can be used in .pc files or queried at runtime.

pc_path
The default search path used by pkg-config when searching for .pc files. This can be used in a
query for the pkg-config module itself itself:
$ pkg-config --variable pc_path pkg-config

pcfiledir
The installed location of the .pc file. This can be used to query the location of the .pc file for a par-
ticular module, but it can also be used to make .pc files relocatable. For instance:
prefix=${pcfiledir}/../..
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
includedir=${prefix}/include

pc_sysrootdir
The sysroot directory set by the user. When the sysroot directory has not been set, this value is / .
See the PKG_CONFIG_SYSROOT_DIR environment variable for more details.

pc_top_builddir
Location of the user’s top build directory when calling pkg-config. This is useful to dynamically
set paths in uninstalled .pc files. See the PKG_CONFIG_TOP_BUILD_DIR environment variable
for more details.

WINDOWS SPECIALITIES
The pkg-config default search path is ignored on Windows. Instead, the search path is constructed by using
the installed directory of pkg-config and then appending lib\pkgconfig and share\pkgconfig. This can be
augmented or replaced using the standard environment variables described above.

AUTOCONF MACROS
PKG_CHECK_MODULES(VARIABLE-PREFIX, MODULES [,ACTION-IF-FOUND [,ACTION-IF-NOT-
FOUND]])

The macro PKG_CHECK_MODULES can be used in configure.ac to check whether modules
exist. A typical usage would be:
PKG_CHECK_MODULES([MYSTUFF], [gtk+-2.0 >= 1.3.5 libxml = 1.8.4])

This would result in MYSTUFF_LIBS and MYSTUFF_CFLAGS substitution variables, set to the
libs and cflags for the given module list. If a module is missing or has the wrong version, by
default configure will abort with a message. To replace the default action, specify an
ACTION-IF-NOT-FOUND. PKG_CHECK_MODULES will not print any error messages if you
specify your own ACTION-IF-NOT-FOUND. However, it will set the variable
MYSTUFF_PKG_ERRORS, which you can use to display what went wrong.

Note that if there is a possibility the first call to PKG_CHECK_MODULES might not happen, you
should be sure to include an explicit call to PKG_PROG_PKG_CONFIG in your configure.ac.

5

pkg-config(1) pkg-config(1)

Also note that repeated usage of VARIABLE-PREFIX is not recommended. After the first suc-
cessful usage, subsequent calls with the same VARIABLE-PREFIX will simply use the _LIBS and
_CFLAGS variables set from the previous usage without calling pkg-config again.

PKG_PREREQ(MIN-VERSION)
Checks that the version of the pkg-config autoconf macros in use is at least MIN-VERSION. This
can be used to ensure a particular pkg-config macro will be available.

PKG_PROG_PKG_CONFIG([MIN-VERSION])

Defines the PKG_CONFIG variable to the best pkg-config available, useful if you need pkg-config
but don’t want to use PKG_CHECK_MODULES.

If the first call to PKG_PROG_PKG_CONFIG is conditional, then it will not work correctly in all
cases. Since many of the other macros such as PKG_CHECK_MODULES require
PKG_PROG_PKG_CONFIG to know which pkg-config program to run,
PKG_PROG_PKG_CONFIG may be run for the first time from a conditional from one of these
macros. Therefore, if any of the pkg-config macros will be used under a conditional, it’s best to
run PKG_PROG_PKG_CONFIG before any of the other macros are used.

PKG_CHECK_MODULES_STATIC(VARIABLE-PREFIX, MODULES [,ACTION-IF-FOUND [,ACTION-
IF-NOT-FOUND]])

Enables static linking through --static prior to calling PKG_CHECK_MODULES.

PKG_CHECK_EXISTS(MODULES, [ACTION-IF-FOUND], [ACTION-IF-NOT-FOUND])

Check to see whether a particular set of modules exists. Similar to PKG_CHECK_MODULES(),
but does not set variables or print errors.

Similar to PKG_CHECK_MODULES, make sure that the first instance of this or
PKG_CHECK_MODULES is called, or make sure to call PKG_PROG_PKGCONFIG manually.

PKG_INSTALLDIR(DIRECTORY)

Substitutes the variable pkgconfigdir as the location where a module should install pkg-config .pc
files. By default the directory is $libdir/pkgconfig, but the default can be changed by passing
DIRECTORY. The user can override through the --with-pkgconfigdir parameter.

PKG_NOARCH_INSTALLDIR(DIRECTORY)

Substitutes the variable noarch_pkgconfigdir as the location where a module should install arch-
independent pkg-config .pc files. By default the directory is $datadir/pkgconfig, but the default can
be changed by passing DIRECTORY. The user can override through the --with-noarch-pkgcon-
figdir parameter.

PKG_CHECK_VAR(VARIABLE, MODULE, CONFIG-VARIABLE, [ACTION-IF-FOUND], [ACTION-IF-
NOT-FOUND])

Retrieves the value of the pkg-config variable CONFIG-VARIABLE from MODULE and stores it
in VARIABLE. Note that repeated usage of VARIABLE is not recommended as the check will be
skipped if the variable is already set.

METADAT A FILE SYNTAX
To add a library to the set of packages pkg-config knows about, simply install a .pc file. You should install
this file to libdir/pkgconfig.

Here is an example file:

6

pkg-config(1) pkg-config(1)

This is a comment
prefix=/home/hp/unst # this defines a variable
exec_prefix=${prefix} # defining another variable in terms of the first
libdir=${exec_prefix}/lib
includedir=${prefix}/include

Name: GObject # human-readable name
Description: Object/type system for GLib # human-readable description
Version: 1.3.1
URL: http://www.gtk.org
Requires: glib-2.0 = 1.3.1
Conflicts: foobar <= 4.5
Libs: -L${libdir} -lgobject-1.3
Libs.private: -lm
Cflags: -I${includedir}/glib-2.0 -I${libdir}/glib/include

You would normally generate the file using configure, so that the prefix, etc. are set to the proper values.
The GNU Autoconf manual recommends generating files like .pc files at build time rather than configure
time, so when you build the .pc file is a matter of taste and preference.

Files have two kinds of line: keyword lines start with a keyword plus a colon, and variable definitions start
with an alphanumeric string plus an equals sign. Keywords are defined in advance and have special mean-
ing to pkg-config; variables do not, you can have any variables that you wish (however, users may expect to
retrieve the usual directory name variables).

Note that variable references are written "${foo}"; you can escape literal "${" as "$${".

Name: This field should be a human-readable name for the package. Note that it is not the name passed as
an argument to pkg-config.

Description:
This should be a brief description of the package

URL: An URL where people can get more information about and download the package

Version:
This should be the most-specific-possible package version string.

Requires:
This is a comma-separated list of packages that are required by your package. Flags from depen-
dent packages will be merged in to the flags reported for your package. Optionally, you can spec-
ify the version of the required package (using the operators =, <, >, >=, <=); specifying a version
allows pkg-config to perform extra sanity checks. You may only mention the same package one
time on the Requires: line. If the version of a package is unspecified, any version will be used with
no checking.

Requires.private:
A list of packages required by this package. The difference from Requires is that the packages
listed under Requires.private are not taken into account when a flag list is computed for dynami-
cally linked executable (i.e., when −−static was not specified). In the situation where each .pc file
corresponds to a library, Requires.private shall be used exclusively to specify the dependencies
between the libraries.

Conflicts:
This optional line allows pkg-config to perform additional sanity checks, primarily to detect bro-
ken user installations. The syntax is the same as Requires: except that you can list the same pack-
age more than once here, for example "foobar = 1.2.3, foobar = 1.2.5, foobar >= 1.3", if you have
reason to do so. If a version isn’t specified, then your package conflicts with all versions of the
mentioned package. If a user tries to use your package and a conflicting package at the same time,
then pkg-config will complain.

7

pkg-config(1) pkg-config(1)

Libs: This line should give the link flags specific to your package. Don’t add any flags for required
packages; pkg-config will add those automatically.

Libs.private:
This line should list any private libraries in use. Private libraries are libraries which are not
exposed through your library, but are needed in the case of static linking. This differs from
Requires.private in that it references libraries that do not have package files installed.

Cflags: This line should list the compile flags specific to your package. Don’t add any flags for required
packages; pkg-config will add those automatically.

AUTHOR
pkg-config was written by James Henstridge, rewritten by Martijn van Beers, and rewritten again by Havoc
Pennington. Tim Janik, Owen Taylor, and Raja Harinath submitted suggestions and some code. gnome-
config was written by Miguel de Icaza, Raja Harinath and various hackers in the GNOME team. It was
inspired by Owen Taylor’s gtk-config program.

BUGS
pkg-config does not handle mixing of parameters with and without = well. Stick with one.

Bugs can be reported at http://bugs.freedesktop.org/ under the pkg-config component.

8

