
12 Rules to
Learn to Code

After teaching a million students, here are the
best ways to learn programming

Dr. Angela Yu
Senior Developer &

Lead Instructor at The App Brewery

A Publication of

NE
W
!

Table of
Contents

Trick Your Brain with the 20 minute Rule

Code for a Purpose

There is No “Perfect” Language to Learn

Understand What You’re Writing

It’s Ok to Not Know

Be a Copycat

Be Accountable

Keep Learning

Play Foosball

Get a Mentor

Get into the Habit of Chunking

Break someone else's code
2

RULE ONE

Trick Your Brain
with the 20 minute

Rule

1

Learning to code is a bit like
going to the gym.

Even if you max out and spend a whole weekend at the
gym, you will not see a visible difference in your body. The
more regularly you learn to code, the more likely it is that
you’ll start seeing your ripped coding muscles. 💪 (The
irony is not lost on me).

But the problem is where do you find the time? Between
working your full-time job, spending time with your family
and life admin, when are you supposed to sit down and
practice this “daily coding”?

While I was working as a doctor, I spent about 12 hours at
the hospital, 1-hour commuting and approximately 2 hours
on general life-sustaining stuff, such as eating. So that left
me with only 9 hours remaining in my day. Theoretically, 2
hours could be allocated to coding practice and 7 hours on
sleep. But there is nothing more difficult than trying to
convince your work-saturated brain to sit down and learn
when you could be watching Game of Thrones with a tub of
ice cream.

Copyright © The App Brewery

www.appbrewery.com

4

Learning to code is a bit like
going to the gym.

But then I found a trick.

As humans, we have a lot of inertia. This can be bad for us -
I’m looking at you, “24” box set. However, we can also turn
it to our advantage. I found that once I started coding and
making things, I got so absorbed into the project that I no
longer cared about TV, food or sleep. There were quite a
few weekends when I coded until sunrise.

So how do we take advantage of this inertia?

First, you must understand that task-switching is very
difficult. It requires a lot of motivation. If as soon as you
get home, you slump on the sofa and switch on the TV,
you’ve already lost that evening. This is because the
amount of motivation required to task-switch and do
something not driven by evolution like eating or sleeping is
a Herculean task.

This is why the moment you enter the door and change to a
new environment is the most crucial. If at this moment,
you tell yourself that you are just going to do 20 minutes of
coding practice, you will most likely succeed and use your
inertia to end up learning for an hour or more. No brain
will perceive a 20-minute task as a lot of effort and you end
up tricking your brain to take advantage of your evening.

Copyright © The App Brewery

www.appbrewery.com

5

Learning to code is a bit like
going to the gym.

The next step is to develop a habit. Research suggests that
to develop a new habit, you have to carry out the task daily
for a month. I’ve used this next trick for loads of different
things, from exercising to coding, it invariably works like a
charm. To preface this trick, I want you to imagine a wall
with five paintings hanging on it, four of which are
perfectly aligned, perfectly horizontal, but one is crooked.

Now really imagine it, is there a part of you that wants to
fix it?

Now let’s imagine a monthly calendar with boxes
representing individual days. If you nurture that new habit
on a particular day, then you make a line through that day.
If you continue your streak the next day then you extend
that line and so forth. There is something about not
breaking a continuous line that motivates most people to
continue to develop a habit. As strange as it sounds, there
are many times when I would have given up, but was
compelled to continue because of a long, continuous line.

Copyright © The App Brewery

www.appbrewery.com

6

RULE TWO

Code for a Purpose

2

When I first started learning
how to code,

there were countless times when I picked it up then gave
up, again and again. This is a common story amongst
self-taught coders. Looking back, after teaching so many
students, I finally realise what’s going on. A lot of
beginners start learning to code by picking an arbitrary
language and following along with a bunch of tutorials.
Copying code, line by line, sometimes writing code to work
out prime numbers, other times to find all the even
numbers.

But you know what? I can find prime numbers a lot faster
by Googling for it and picking out even numbers is not all
that interesting.

Here’s the truth. If you are learning to code for the sake of
learning to code, it’ll be pretty difficult for you to get good
at it. Skills that require a lot of time to hone, like
programming, will eat into your pool of internal
motivation. Something from within that makes you forget
to eat and sleep. I can honestly say that coding on my own
projects is one of the most enjoyable things I do.

Copyright © The App Brewery

www.appbrewery.com

8

Learning to code is a bit like
going to the gym.

It combines logical thinking with creativity, and at the end,
you will have made something. In most cases, something
that the world has never seen. Something that could make
your life easier or more enjoyable. Something that could
make loads of people's lives easier and more enjoyable. It’s
like making a crazy-beautiful custom motorbike in your
garage, without needing the garage or spending a cent on
the components.

This is what motivates most people. The creating part. The
making part. So I urge you to start learning to code by
following a tutorial that makes something, anything.

Of course, it’s unlikely that at the beginning, you'll be able
to code up Clash of Clans or League of Legends. But you’ll
be able to make something interesting. It could be a dice
game or a flash-card app. But as long at the end of the
tutorial, you’ll have made something you can use and play
with, then you’ll be far more motivated to code to the end.

During all our courses, we always tell our students to think
up a simple app that they want to make. Something that
uses the skills that they’ve learned during the course but
will also stretch them a little because they have to find out
how to include some new functionality.

We had a student who went on to make an app that wakes

Copyright © The App Brewery

www.appbrewery.com

9

Learning to code is a bit like
going to the gym.

them up a minute earlier every day to ease the transition to
an earlier waking time. There’s a student who made a
custom slideshow app as a mother’s day present. Someone
else made an app that is a timer for making perfect steaks
based on their weight and thickness.

There are no limits on your imagination. It will be difficult
when you start working on your own app because there are
no step-by-step instructions, but it will also bring about the
biggest improvement in your coding ability.

Copyright © The App Brewery

www.appbrewery.com

“ You don’t hire for skills, you
hire for attitude. You can
always teach skills.

Simon Sinek

“

10

RULE THREE

There is No “Perfect”
Language to Learn

3

Whenever I do large talks,

there will always be one person who asks me “which
programming language should I start learning first”?

There is this common perception that somewhere out there
lies a perfect language for beginner programmers. Some
argue it’s Python, some say it’s Javascript.

But I say they’re all wrong.

A programming language is simply a tool. It is no different
from any other tool in your hardware box. If you want to
hammer a nail, you should be using a hammer. If you want
to fix your water pipes, you’ll probably need a spanner.

Yes, it’s possible to hammer in a nail using the side of the
spanner and the same programming language can be used
to solve different types of problems. The carpenter will tell
you that his favourite tool is a hammer and the plumber
will say it’s the spanner, but it still doesn’t make it the “best
tool to fix things”.

Copyright © The App Brewery

www.appbrewery.com

12

Learning to code is a bit like
going to the gym.

A web developer will tell you that JavaScript is the best
language to learn for a beginner. A statistician will advise
you that you’ll be best served with the R programming
language. But at the end of the day, all that matters is what
you are trying to do with your tool. If you want to make iOS
apps, then learn Swift. If you want to make websites, you’ll
need JavaScript.

But the good news is the core programming concepts:
loops, conditionals, functions, etc. they’re all the same. The
difference is mostly syntactical.

In English, we have werewolves, in German they have
Werwölfe. It’s still the same shirt-ripping mammal that
comes out during a full moon, it’s just spelt differently.

Printing to the console in Swift:
print(“Hello Werewolves”)

Printing to the console in Java:
println(“Hello Werwölfe”)

So, decide on the task that you are trying to accomplish,
then pick the best tool for that task.

Copyright © The App Brewery

www.appbrewery.com

13

RULE FOUR

Understand What
You’re Writing

4

I have an issue with the way
that most programming

tutorials are written.

There are far too many tutorials where you see the “this is
how you draw an owl” phenomenon.

Copyright © The App Brewery

www.appbrewery.com

15

Learning to code is a bit like
going to the gym.

It’s almost as if the programmer had good intentions and
started by showing you how to do everything step-by-step.
But then, at some point, he realises that he has embarked
on a Sisyphean task and gives up. I’ve seen tutorials where
the author starts with an excruciating level of detail then
mid-way reverts to “now you simply set up a cloud
database”. Bearing in mind that this is a tutorial aimed at
beginners!

This leads to several problems. The most common problem
is a student who just copies the code in the tutorial and has
no clue what any of it does. Why did he add that extra line
after parsing the JSON? Why is he making this dictionary
differently from the last one?

It’s very easy to get knees deep in one of these types of
tutorials because it promises to teach you how to build
“Flappy Bird” or “Candy Crush”. But two-thirds of the way
in, none of the things you’re typing makes sense and you
start seeing red all over the screen. Bugs. Loads of them.
Why? No idea. Nothing runs. The last 3 hours were spent
copying code and you learnt nothing other than maybe that
coding sucks.

Don’t get into this trap. If you see a tutorial that has jumps
from beginner to advanced after line 3 or uses the word
“simply” too liberally or doesn’t explain any of their code,
then stop. Leave that tutorial.

Copyright © The App Brewery

www.appbrewery.com

16

Learning to code is a bit like
going to the gym.

There’s plenty of fish in the sea.

Other times, the author does try to explain what they’re
doing. But you still don’t understand a thing that they’re
saying, then you’re in an advanced tutorial that won’t
improve your programming. It can be tempting to build
grand things, especially when the blog is promising that
anyone can make it. But if you can’t work out what’s going
on, you’re be better served by building a better foundation.

Copyright © The App Brewery

www.appbrewery.com

17

Learning to code is a bit like
going to the gym.

The key to learning to code is all about ramping. You want
to be stretched over and over again and for knowledge to
be built on previous knowledge. If that ramp is too steep,
you’ll get lost. If that ramp is too shallow, you’ll get bored.
The right gradient is different for everyone. That’s why we
encourage students to use the speed change functionality
liberally on our tutorials.

This way, you can listen at double speed if you’re
comfortable with the concepts and slow down to half speed
if it’s something unfamiliar and you need time to
understand and absorb.

Copyright © The App Brewery

www.appbrewery.com

“ You don’t need more recipes.
You need to learn to cook
without them.

Tim Ferriss

“

18

RULE FIVE

It’s Ok to Not Know

5

Software engineers are
purportedly the profession

that has the largest
population of Imposter

Syndrome sufferers

Imposter Syndrome is a psychological phenomenon where
people feel like frauds and massively underestimate their
own skills and abilities.

Copyright © The App Brewery

www.appbrewery.com

20

Learning to code is a bit like
going to the gym.

Programmers tend to be self-critical and constantly feel
that everyone else is better at programming than they.

If you’ve ever felt this way, you’re not alone, as studies
show that a massive 70 percent of people have imposter
syndrome.

I recently saw a post on the Q&A site Quora where
somebody asked: “Would I get fired at Google (or another
big tech firm if I got caught using StackOverflow as a
reference?”

He got a bunch of really great answers from engineers
working at Google, Amazon and other major tech
companies. Anybody who has worked as a software
engineer will tell you that not looking at references is far
more frowned upon. I challenge you to find a single Google
programmer who has not used Stack Overflow. (If you’re
not familiar, StackOverflow is a collaborative Q&A site for
programmers).

A lot of new programmers are afraid that by checking
references and asking people for help, they will out
themselves as a fraud who doesn’t know to code. Nobody
can hold all the relevant information in their head.

Copyright © The App Brewery

www.appbrewery.com

21

https://www.researchgate.net/publication/320566690_THE_IMPOSTOR_SYNDROME_AKA_FAKE_IT_UNTIL_YOU_MAKE_IT_A_Case_Study
https://www.researchgate.net/publication/320566690_THE_IMPOSTOR_SYNDROME_AKA_FAKE_IT_UNTIL_YOU_MAKE_IT_A_Case_Study
https://www.quora.com/Would-I-get-fired-at-Google-or-another-big-tech-firm-if-I-got-caught-using-Stack-Overflow-as-a-reference

Learning to code is a bit like
going to the gym.

For example, this is the name of an iOS method:

- (id)initWithBitmapDataPlanes:(unsigned char **)planes pixelsWide:(NSInteger)width

pixelsHigh:(NSInteger)height bitsPerSample:(NSInteger)bps

samplesPerPixel:(NSInteger)spp hasAlpha:(BOOL)alpha isPlanar:(BOOL)isPlanar

colorSpaceName:(NSString *)colorSpaceName

bitmapFormat:(NSBitmapFormat)bitmapFormat bytesPerRow:(NSInteger)rowBytes

bitsPerPixel:(NSInteger)pixelBits;

It’s almost 400 characters!

In iOS programming, there are over 800 classes, 9000
methods and growing. In web development, there’s a new
framework every week. No one will expect you to be able to
remember the code. This is the precise reason why we are
programmers, we can get the computer to do the boring
stuff for us. For example, the code for recording sound is
only a short search away, why would you need to memorise
it?

The skill that most employers look for when recruiting is
the ability to think. Knowledge is valued in a world where
information is hard to come by. In the 1800s, only the rich
had access to good books and good teachers. Now,
everyone has all the information they had and more at the
tap of a mouse. Information is losing value, the ability to
think is the stock to buy. So don’t be afraid to search, ask
on StackOverflow or find resources to help you solve your

Copyright © The App Brewery

www.appbrewery.com

22

Learning to code is a bit like
going to the gym.

 issues. The best programmers do it.

The skill you need to hone is in asking good questions and
understanding the answer. There is no point in
copy-pasting code from a StackOverflow answer if you
have no clue how it works. Because StackOverflow works
on a reputation system, it’s in their interest to be as clear as
possible in their answer to be marked as correct and collect
upvotes.

In most cases, it doesn’t make sense to start searching
StackOverflow whenever you get stuck. The first option
should always be trying to figure it out yourself. So your
program doesn’t do what you expected it to, but before I
typed the last 3 lines of code, it was working fine. So let’s
figure out what in those last 3 lines broke my app?

If you really can’t figure it out, start with Google. Search for
your query or if you have a bug paste the error codes and
the error message. The chances are that as a beginner, your
programming woes will be very common, and somebody
might have even taken the time to write a clear and concise
tutorial to help you understand your bug. As you grow
more skilled in programming, the problems you’ll
encounter get more and more obscure, but hopefully, if you
followed the other 11 rules, you will also be a more capable
programmer and figure it out yourself or know exactly
where to get help.

Copyright © The App Brewery

www.appbrewery.com

23

Learning to code is a bit like
going to the gym.

The other reason why you should start with Google is that
StackOverflow’s search algorithm organises questions and
answers by recency and not popularity. A lot of the
problems you will encounter while starting out will have
been asked and answered years ago but are still massively
popular.

So ask wisely and you will reap the benefits from the
community. One day when you yourself become a code
master, you’ll be giving back to that same community and
helping the next generation of programmers.

Copyright © The App Brewery

www.appbrewery.com

“
Don't be afraid to ask for help
when you need it. Asking for
help isn't a sign of weakness,
it's a sign of strength. It shows
you have the courage to admit
when you don't know
something, and to learn
something new.
Barack Obama

“

24

RULE SIX

Be a Copycat

6

At the beginning of my
coding journey,

I thought the way to learn to code was to read a whole
bunch of books. I bought books on C++, C#, Java and
loads more. You name it, I had it. But they didn’t do very
much other than make me confused.

I read. I highlighted. I forgot. I fell asleep.

Books are good as references. If you want to dive deep into
delegates and protocols, read the chapter on that. But if
you want to learn, make something.

But what do you make?

Lacking in ideas? Be a copycat. Make your own notepad,
make your own MSPaint, make your own piano. If you’re
into games, make minesweeper, make Tetris, make Flappy
Bird. Not only will they be sort of useful, but they’ll also be
the perfect opportunity for you to figure out how to do
things and get experience in finding help. Something that
is brand new to the world like holographic smartphone

Copyright © The App Brewery

www.appbrewery.com

26

Learning to code is a bit like
going to the gym.

projections, no one will be able to help you with. By
making copycat apps or programs, you’ll be treading in the
path that many have walked before you. This way you
maximise the chances that someone will be able to offer
you help and advice when you get stuck.

Copyright © The App Brewery

www.appbrewery.com

“ Good artists borrow, great
artists steal.

Pablo Picasso

“

27

RULE SEVEN

Be Accountable

7

Be accountable to someone.
Show your work.

The biggest problem with online coding courses is the lack
of accountability. No doubt there are loads of great Massive
Open Online Courses (MOOCs), such as Coursera, Udacity,
Udemy, Skillshare. But what are the consequences of not
doing your homework or missing a month’s worth of
lectures? Nothing. Nobody cares.

Let’s face it, internal motivation is not strong in any of us.
We can always find a reason why we deserve to watch
Netflix and eat ice cream. I can’t even count how many
online courses I’ve signed up to and subsequently not
listened to a single lecture or completed a single piece of
coursework.

You need accountability and commitment to learning.
Think back to your university days, would have bothered to
finish that essay at 3 AM if nothing depended on it? Would
you have gone to any of the lectures if you didn’t care about
passing or failing?

Copyright © The App Brewery

www.appbrewery.com

29

Learning to code is a bit like
going to the gym.

This is why we try to introduce accountability into our
courses. We’ve realised that matching up students with a
buddy helps. Someone else who is a beginner, at the same
level as you who sometimes helps you and other times
needs your help. Sometimes, as people’s learning rates
diverge or if you’re paired up with a lazy bugger, you can
swap it up and get a new buddy. Because this system is
entirely voluntary, there is a degree of self-selection for
people who work well in teams and are motivated by
others. Just as you’re more likely to go to the gym if you
sign up with your partner, you’re more likely to learn if you
have a coding buddy.

So if you’re not on our course then find your own. There’s
plenty of Facebook groups dedicated to those who are
learning to code. There’s an entire subreddit
(r/learnprogramming) dedicated to this, I’m sure you’ll
find like-minded people somewhere online or offline.

The next thing I’m going to tell you will be controversial.
We believe that people don’t value things that don’t have
value. This is the reason why Coursera is taking down a
large number of their free courses. They saw that millions
of people were signing up for it but no one was taking any
of the classes let alone completing any of the projects. It
was actually detrimental to students’ learning to offer a
free course. We all have a degree of hoarding tendencies
and it’s very easy to signup for a bunch of stuff that the

Copyright © The App Brewery

www.appbrewery.com

30

Learning to code is a bit like
going to the gym.

future you can suffer through. There’s always tomorrow,
she says.

So if you are driven more by external motivation than
internal, try to use a little bit of financial motivation to
drive your learning. Think about how much a life skill is
worth to you and put your money where your intentions
are. See if you’re engaging with the course content more
with or without the financial commitment. There are
plenty of places where you can pay for something
affordable to motivate yourself to start a regular learning
habit.

The final part of this rule is to try and find ways of getting
assessed. Ok, so getting assessed is right up there with
death and taxes in terms of how much people enjoy it. But
when learning anything, it’s always important to get
feedback. You will get an objective assessment of your
current skill level, instead of feeling like an imposter or
brimming with false confidence. Coursera has a system
where the students mark each other’s work. At the App
Brewery, we use Github education to test your code and
look for bugs and problems with your code. But if you’re on
a coding course that doesn't have a system like this, then
it’ll be worth your while to find a code mentor who can
review your code and give you feedback. Only what’s
measured can be improved.

Copyright © The App Brewery

www.appbrewery.com

31

RULE EIGHT

Keep Learning

8

Being a good programmer is
a bit like being Madonna.

Don’t run out and buy your cone-shaped bras just yet.
What I mean is programming will keep evolving. In order
to stay relevant, you have to keep reinventing yourself.

There’s always new trends, new technologies and new
languages. Great programmers relish learning new things,
even if it means they become a beginner again.

The world will keep moving, if you stay in one place, you’ll
eventually be left behind. I know programmers who never
learnt anything else apart from Fortran. I know
Objective-C programmers who can’t persuade themselves
to make the leap and learn Swift, even though Apple is
telling developers that Objective-C will be phased out. We
all know that Apple never makes threats that they don’t
carry out, just look at the optical drive (and soon the
headphone jack?).

Don’t be the optical drive. Or rather, don’t be the laptop
that’s still trying to play CDs. If your needs change, learn to

Copyright © The App Brewery

www.appbrewery.com

33

Learning to code is a bit like
going to the gym.

 use a new tool. Keep learning, stay relevant.

Are you a web developer who always wanted to get into
mobile development? Pick a platform and learn iOS or
Android. Are you a front-end developer who is tempted by
the full-stack? Pick up web development with Node. If you
already understand the core programming concepts,
picking up a few more languages will be a lot easier than
starting from scratch.

“Learn x in y minutes” is a great resource for existing
programmers to learn new programming languages. Check
out their resources here: learnxinyminutes.com

Copyright © The App Brewery

www.appbrewery.com

34

https://learnxinyminutes.com/

RULE NINE

Play Foosball

9

When you see Hollywood
movies about programmers,

they’re usually sat in front of a laptop, mashing the
keyboard like they’re in some sort of high-stakes “smash
the mole” game.
When you see real programmers working. They tend to
look like this:

Yep, that’s right. No typing. Just staring. A lot of staring.

Copyright © The App Brewery

www.appbrewery.com

36

Learning to code is a bit like
going to the gym.

In a company, people tend to complain that the
programmers are always playing foosball or doing
something else that doesn’t look like work. People might
not be able to tell, but they are in fact working.

When you see them enjoying their foosball game, laughing
and joking, they’re probably suffering inside. For there’s a
bug, there’s always a bug. Or there’s something mysterious
about their code that they can’t work out. Maybe the code
is working perfectly, but unexpectedly (programmers don’t
like anything unexpected by the way). Like if they just
typed out a thousand lines in one go，and unexpectedly
there are no errors.

Copyright © The App Brewery

www.appbrewery.com

37

Learning to code is a bit like
going to the gym.

Other people might not understand, but in these
situations, it’s almost always worth stepping away from
your code and giving it some time and distance.

Do you have a bug in your code that you can’t work out?
Sleep on it, play foosball, go for a walk. In 9 out of 10 cases,
the solution will become apparent. In the remaining 1 out
of 10 cases, you’re just screwed.

This may sound unintuitive, but my advice is always to
code less, think more. Once the poorly thought-out code is
written and brought into the world, you’ll inevitably have
to go back and comb through your code, line-by-line,
refactoring and deleting things. This is always a painful
experience.

So remember, the easiest code to get rid of is the code that
was never written.

Copyright © The App Brewery

www.appbrewery.com

38

RULE TEN

Get a Mentor

10

When I was learning French,

I came across a method that resulted in the greatest leap in
my speaking abilities. That was having language exchanges
over Skype. I would pair up with a native French speaker
who wanted to learn English. We would spend half an hour
speaking French and half an hour speaking English. We
would both dedicate an hour each week to improving the
language that we were trying to learn.

While we were having a conversation in French, he would
correct my pronunciation or grammar and suggest ways
that I could construct my sentences to sound more native.

Pair programming is an agile software development
technique that’s based on very similar principles. For
example, a learner and a mentor would sit down at the
same workstation and work on a problem. The learner is in
charge of writing code and the mentor reviews the code
line-by-line as they are written.

It can be uncomfortable at first because it’s a bit

Copyright © The App Brewery

www.appbrewery.com

40

Learning to code is a bit like
going to the gym.

embarrassing making mistakes and having them pointed
out to you. But if you have a mentor who is a good teacher
then they will offer you decades of accumulated wisdom
that can lead to massive improvements in your own ability,
all within a few hours.

You’ll get to tap into someone who’s had the time to hone
their skills, find efficient ways of doing things and show
you how they program and approach problems.

Good mentors don’t solve your problems, rather they
practice the Socratic method of asking good questions that
get you to think for yourself. If you ask me how to write a
networking call, of course, I can simply type it all out and
get you to copy it. But that doesn’t help you. Instead, if you
show me how you approach the problem and I show you
how I approach the problem then you can learn so much
more than just following a recipe.

The next time you encounter a different problem, you can
apply the same approach and start solving it yourself.
Always remember that information is cheap. A century ago,
if I wanted to learn about the causes of disease, I probably
had to be an aristocrat, or chop wood and carry water for a
master and become their apprentice. Nowadays I can
search Google and get my answer in a few seconds.

Copyright © The App Brewery

www.appbrewery.com

41

Learning to code is a bit like
going to the gym.

So don’t get hung up on information. Learn to think
instead. How to approach a problem. How to break down
the problem. How to frame the problem. These skills will
take you much further than simple memorisation and
regurgitation.

But where do you find a mentor?

There are programming related Meetups happening in
almost every city in the world. Go to www.meetup.com and
find one related to a language you’re trying to learn. Attend
the meetups, get to know people. Exchange your expertise
for their expertise. Maybe someone needs an accountant,
maybe someone needs legal advice. Exchange your time for
their time. Don’t say to someone, “will you be my
mentor?”. No one wants to throw away their free time for
some stranger. Instead, offer your help in return for their
help and you’ll be successful in finding a mentor 95% of the
time.

Copyright © The App Brewery

www.appbrewery.com

42

http://www.meetup.com

RULE ELEVEN

Get into the Habit of
Chunking

11

So you have an awesome
idea.

But it’s way-way-way too complicated for your current skill
level. What do you do? You join the Chunking Express.

Nope, I’m not talking about the art-house movie. I’m
talking about breaking down your programming problem.

Let’s say that you’re trying to make a robot that can butter
toast. (If anyone is working on one of these I’d happily
fund your Kickstarter!) The robot doesn't know anything
about toast or butter or knives. Believe it or not, it actually
takes pretty sophisticated circuitry in our brains to be able
to achieve something as simple as buttering a slice of toast.
(This is probably why I can’t seem to do it without coffee).

So creating a robot that does all of that autonomously is
really complicated and difficult. But as we’re good
programmers, we can do some chunking and break down
the problem.

The robot doesn’t really need to know what is toast and

Copyright © The App Brewery

www.appbrewery.com

44

Learning to code is a bit like
going to the gym.

what is butter, we’re not making Skynet here, so let’s just
stick to the practical things. There are three things we need
the robot to do:

Pick up and arrange the piece of toast in the ideal buttering
position.
Pick up a serving of butter.
Place butter on toast with decent coverage (this is the part I
find most difficult).

Next, you break each module down even further. In the
process, you can think about alternate ways of solving the
problem. For example, does the robot need to “spread” the
butter? Or can it just melt the butter onto the toast? Does it
need to learn to pick up a knife? Or can it have some sort of
inbuilt knife-arm, like some sort of prison shiv pirate?

The more that you break down problems and define the
issue that you’re trying to solve, the easier it is to package
your code into bite-sized chunks. The simpler the chunk,
the easier it is to tackle.

So the next time that you’re trying to make that “cross
between Snapchat and Evernote”, remember to break
down the problem into solvable chunks.

Copyright © The App Brewery

www.appbrewery.com

45

RULE TWELVE

Break someone else's
code

12

One of the most important
steps to take

in order to make the jump from learner coder to a
fully-fledged programmer is understanding how to get
help. Everyone needs help. Everyone, including those
so-called “God Level Programmers”.

But what you do with the help will determine how fast you
progress as a coder. On a site like StackOverflow, it can be
very tempting to just copy and paste the code that someone
has provided. Your program works exactly as you hoped it
would and off you go on your merry programming ways.
This exercise didn’t teach you anything other than code
reliance. Because the next time you encounter the same
problem but in a different situation, that same code
snippet that someone provided may not work anymore.
Then what do you do? You’re stuck.

That’s why there’s a rule in programming that says “never
copy paste code that you don’t understand”. So what
should you do when you’re confronted with a block of code
that solves your problem but you have no clue how it
works? Break it down.

Copyright © The App Brewery

www.appbrewery.com

47

Learning to code is a bit like
going to the gym.

Step 1 - Copy and paste the code into your program. (yes,
yes, I know I just said not to do that, patience, patience).

Step 2 - Make sure that your program or application is
functioning as expected. I.e. confirm that block of code
really did solve your problem.

Step 3 - Delete the copy and pasted block of code line by
line.

Step 4 - Each time you delete a line, check to see what’s
been broken. Does the app still run? What are the error
codes? What has deleting that line of code done to your
program?

Step 5 - Even if you think you know what a line of code
does, delete it any way. The most important task as a
programmer is to always test your assumptions against the
outcome. The most enjoyable feeling as a programmer is
for the real world to validate your assumptions. Do you
know how nice it is when your
boyfriend/girlfriend/husband/wife says those magical
three words?

“You were right”.

It’s like that, but better.

Copyright © The App Brewery

www.appbrewery.com

48

Learning to code is a bit like
going to the gym.

Step 6 - Swap some of the lines around. Can the same
functionality be achieved with a different order of lines?
Why were they written in the order they were written in?

By breaking the solution code, line-by-line, you’ll learn and
understand what each line does and why it’s been written.
This is a far better way to use code from other people than
just pasting it in and hoping for the best. Once you
understand why each of those lines was necessary, the next
time you encounter a similar problem, you’ll be able to
tease out the problem and solve it yourself.

Once you’ve mastered breaking code from StackOverflow,
the next resource to target is GitHub. It’s a tool used by
programmers for collaboration but it is also one of the
largest repositories of open source code.

So how can you use it to become a better programmer?
Let’s say that you want to make an Instagram clone. But
unfortunately, you don’t know how to do that. So you head
over to github.com and search “Instagram” or “photo app”.

Inevitably, there will be something written in
Swift/Objective-C/Java that you can download and take a
look at.

Think about the structure of their program. Take a look at

Copyright © The App Brewery

www.appbrewery.com

49

Learning to code is a bit like
going to the gym.

all the classes, the constants, the interplay. Make some
modifications to the code. Does it still work or have you
broken it? Why did you break it? Is there a link that you
didn’t identify? Ask yourself a bunch of questions, learn
through the Socratic method. Tear down the project and
understand how it was built.

When you start getting really good at this, the next thing
you can try is reverse engineering. Find a small project on
GitHub made by a reputable programmer, download the
app. Run it and see all of its functionality. Play around with
it.

Then build it from scratch and once you’re done, compare
your code to their code. Are there efficiency gains that you
could have made? Are there solutions to things you
couldn’t figure out? Now you’re really getting into the big
leagues.

Copyright © The App Brewery

www.appbrewery.com

“ Move fast and break things.

Mark Zuckerberg

“

50

⭐⭐⭐⭐⭐

START TODAY

You’re busy and hard working, you deserve access
to the world’s best programming courses. With over

a million 5-star ratings, you can trust the App
Brewery.

LEARN MORE

Learn to Code.

https://www.udemy.com/user/4b4368a3-b5c8-4529-aa65-2056ec31f37e/
https://www.udemy.com/user/4b4368a3-b5c8-4529-aa65-2056ec31f37e/

