-
Notifications
You must be signed in to change notification settings - Fork 584
/
Copy pathbase.py
952 lines (778 loc) · 29.9 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
"""Base geometry class and utilities
Note: a third, z, coordinate value may be used when constructing
geometry objects, but has no effect on geometric analysis. All
operations are performed in the x-y plane. Thus, geometries with
different z values may intersect or be equal.
"""
from binascii import a2b_hex
from ctypes import pointer, c_size_t, c_char_p, c_void_p
from itertools import islice
import math
import sys
from warnings import warn
from shapely.affinity import affine_transform
from shapely.coords import CoordinateSequence
from shapely.errors import WKBReadingError, WKTReadingError
from shapely.ftools import wraps
from shapely.geos import WKBWriter, WKTWriter
from shapely.geos import lgeos
from shapely.impl import DefaultImplementation, delegated
if sys.version_info[0] < 3:
range = xrange
integer_types = (int, long)
else:
integer_types = (int,)
try:
import numpy as np
integer_types = integer_types + (np.integer,)
except ImportError:
pass
GEOMETRY_TYPES = [
'Point',
'LineString',
'LinearRing',
'Polygon',
'MultiPoint',
'MultiLineString',
'MultiPolygon',
'GeometryCollection',
]
def dump_coords(geom):
"""Dump coordinates of a geometry in the same order as data packing"""
if not isinstance(geom, BaseGeometry):
raise ValueError('Must be instance of a geometry class; found ' +
geom.__class__.__name__)
elif geom.type in ('Point', 'LineString', 'LinearRing'):
return geom.coords[:]
elif geom.type == 'Polygon':
return geom.exterior.coords[:] + [i.coords[:] for i in geom.interiors]
elif geom.type.startswith('Multi') or geom.type == 'GeometryCollection':
# Recursive call
return [dump_coords(part) for part in geom]
else:
raise ValueError('Unhandled geometry type: ' + repr(geom.type))
def geometry_type_name(g):
if g is None:
raise ValueError("Null geometry has no type")
return GEOMETRY_TYPES[lgeos.GEOSGeomTypeId(g)]
def geom_factory(g, parent=None):
# Abstract geometry factory for use with topological methods below
if not g:
raise ValueError("No Shapely geometry can be created from null value")
ob = BaseGeometry()
geom_type = geometry_type_name(g)
# TODO: check cost of dynamic import by profiling
mod = __import__(
'shapely.geometry',
globals(),
locals(),
[geom_type],
)
ob.__class__ = getattr(mod, geom_type)
ob._geom = g
ob.__p__ = parent
if lgeos.methods['has_z'](g):
ob._ndim = 3
else:
ob._ndim = 2
ob._is_empty = False
return ob
def geom_from_wkt(data):
warn("`geom_from_wkt` is deprecated. Use `geos.wkt_reader.read(data)`.",
DeprecationWarning)
if sys.version_info[0] >= 3:
data = data.encode('ascii')
geom = lgeos.GEOSGeomFromWKT(c_char_p(data))
if not geom:
raise WKTReadingError(
"Could not create geometry because of errors while reading input.")
return geom_factory(geom)
def geom_to_wkt(ob):
warn("`geom_to_wkt` is deprecated. Use `geos.wkt_writer.write(ob)`.",
DeprecationWarning)
if ob is None or ob._geom is None:
raise ValueError("Null geometry supports no operations")
return lgeos.GEOSGeomToWKT(ob._geom)
def deserialize_wkb(data):
geom = lgeos.GEOSGeomFromWKB_buf(c_char_p(data), c_size_t(len(data)))
if not geom:
raise WKBReadingError(
"Could not create geometry because of errors while reading input.")
return geom
def geom_from_wkb(data):
warn("`geom_from_wkb` is deprecated. Use `geos.wkb_reader.read(data)`.",
DeprecationWarning)
return geom_factory(deserialize_wkb(data))
def geom_to_wkb(ob):
warn("`geom_to_wkb` is deprecated. Use `geos.wkb_writer.write(ob)`.",
DeprecationWarning)
if ob is None or ob._geom is None:
raise ValueError("Null geometry supports no operations")
size = c_size_t()
return lgeos.GEOSGeomToWKB_buf(c_void_p(ob._geom), pointer(size))
def geos_geom_from_py(ob, create_func=None):
"""Helper function for geos_*_from_py functions in each geom type.
If a create_func is specified the coodinate sequence is cloned and a new
geometry is created with it, otherwise the geometry is cloned directly.
This behaviour is useful for converting between LineString and LinearRing
objects.
"""
if create_func is None:
geom = lgeos.GEOSGeom_clone(ob._geom)
else:
cs = lgeos.GEOSGeom_getCoordSeq(ob._geom)
cs = lgeos.GEOSCoordSeq_clone(cs)
geom = create_func(cs)
N = ob._ndim
return geom, N
def exceptNull(func):
"""Decorator which helps avoid GEOS operations on null pointers."""
@wraps(func)
def wrapper(*args, **kwargs):
if not args[0]._geom or args[0].is_empty:
raise ValueError("Null/empty geometry supports no operations")
return func(*args, **kwargs)
return wrapper
class CAP_STYLE(object):
round = 1
flat = 2
square = 3
class JOIN_STYLE(object):
round = 1
mitre = 2
bevel = 3
EMPTY = deserialize_wkb(a2b_hex(b'010700000000000000'))
class BaseGeometry(object):
"""
Provides GEOS spatial predicates and topological operations.
"""
# Attributes
# ----------
# __geom__ : c_void_p
# Cached ctypes pointer to GEOS geometry. Not to be accessed.
# _geom : c_void_p
# Property by which the GEOS geometry is accessed.
# __p__ : object
# Parent (Shapely) geometry
# _ctypes_data : object
# Cached ctypes data buffer
# _ndim : int
# Number of dimensions (2 or 3, generally)
# _crs : object
# Coordinate reference system. Available for Shapely extensions, but
# not implemented here.
# _other_owned : bool
# True if this object's GEOS geometry is owned by another as in the
# case of a multipart geometry member.
__geom__ = EMPTY
__p__ = None
_ctypes_data = None
_ndim = None
_crs = None
_other_owned = False
_is_empty = True
# Backend config
impl = DefaultImplementation
# a reference to the so/dll proxy to preserve access during clean up
_lgeos = lgeos
def empty(self, val=EMPTY):
# TODO: defer cleanup to the implementation. We shouldn't be
# explicitly calling a lgeos method here.
if not self._is_empty and not self._other_owned and self.__geom__:
try:
self._lgeos.GEOSGeom_destroy(self.__geom__)
except AttributeError:
pass # _lgeos might be empty on shutdown
self._is_empty = True
self.__geom__ = val
def __del__(self):
self.empty(val=None)
self.__p__ = None
def __str__(self):
return self.wkt
# To support pickling
def __reduce__(self):
return (self.__class__, (), self.wkb)
def __setstate__(self, state):
self.empty()
self.__geom__ = deserialize_wkb(state)
self._is_empty = False
if lgeos.methods['has_z'](self.__geom__):
self._ndim = 3
else:
self._ndim = 2
@property
def _geom(self):
return self.__geom__
@_geom.setter
def _geom(self, val):
self.empty()
self._is_empty = val in [EMPTY, None]
self.__geom__ = val
# Operators
# ---------
def __and__(self, other):
return self.intersection(other)
def __or__(self, other):
return self.union(other)
def __sub__(self, other):
return self.difference(other)
def __xor__(self, other):
return self.symmetric_difference(other)
def __eq__(self, other):
return (
type(other) == type(self) and
tuple(self.coords) == tuple(other.coords)
)
def __ne__(self, other):
return not self.__eq__(other)
__hash__ = None
# Array and ctypes interfaces
# ---------------------------
@property
def ctypes(self):
"""Return ctypes buffer"""
raise NotImplementedError
@property
def array_interface_base(self):
if sys.byteorder == 'little':
typestr = '<f8'
elif sys.byteorder == 'big':
typestr = '>f8'
else:
raise ValueError(
"Unsupported byteorder: neither little nor big-endian")
return {
'version': 3,
'typestr': typestr,
'data': self.ctypes,
}
@property
def __array_interface__(self):
"""Provide the Numpy array protocol."""
raise NotImplementedError
# Coordinate access
# -----------------
def _get_coords(self):
"""Access to geometry's coordinates (CoordinateSequence)"""
if self.is_empty:
return []
return CoordinateSequence(self)
def _set_coords(self, ob):
raise NotImplementedError(
"set_coords must be provided by derived classes")
coords = property(_get_coords, _set_coords)
@property
def xy(self):
"""Separate arrays of X and Y coordinate values"""
raise NotImplementedError
# Python feature protocol
@property
def __geo_interface__(self):
"""Dictionary representation of the geometry"""
raise NotImplementedError
# Type of geometry and its representations
# ----------------------------------------
def geometryType(self):
return geometry_type_name(self._geom)
@property
def type(self):
return self.geometryType()
def to_wkb(self):
warn("`to_wkb` is deprecated. Use the `wkb` property.",
DeprecationWarning)
return geom_to_wkb(self)
def to_wkt(self):
warn("`to_wkt` is deprecated. Use the `wkt` property.",
DeprecationWarning)
return geom_to_wkt(self)
@property
def wkt(self, **kw):
"""WKT representation of the geometry"""
return WKTWriter(lgeos, **kw).write(self)
@property
def wkb(self):
"""WKB representation of the geometry"""
return WKBWriter(lgeos).write(self)
@property
def wkb_hex(self):
"""WKB hex representation of the geometry"""
return WKBWriter(lgeos).write_hex(self)
def svg(self, scale_factor=1., **kwargs):
"""Raises NotImplementedError"""
raise NotImplementedError
def _repr_svg_(self):
"""SVG representation for iPython notebook"""
svg_top = '<svg xmlns="http://www.w3.org/2000/svg" ' \
'xmlns:xlink="http://www.w3.org/1999/xlink" '
if self.is_empty:
return svg_top + '/>'
else:
# Establish SVG canvas that will fit all the data + small space
xmin, ymin, xmax, ymax = self.bounds
if xmin == xmax and ymin == ymax:
# This is a point; buffer using an arbitrary size
xmin, ymin, xmax, ymax = self.buffer(1).bounds
else:
# Expand bounds by a fraction of the data ranges
expand = 0.04 # or 4%, same as R plots
widest_part = max([xmax - xmin, ymax - ymin])
expand_amount = widest_part * expand
xmin -= expand_amount
ymin -= expand_amount
xmax += expand_amount
ymax += expand_amount
dx = xmax - xmin
dy = ymax - ymin
width = min([max([100., dx]), 300])
height = min([max([100., dy]), 300])
try:
scale_factor = max([dx, dy]) / max([width, height])
except ZeroDivisionError:
scale_factor = 1.
view_box = "{0} {1} {2} {3}".format(xmin, ymin, dx, dy)
transform = "matrix(1,0,0,-1,0,{0})".format(ymax + ymin)
return svg_top + (
'width="{1}" height="{2}" viewBox="{0}" '
'preserveAspectRatio="xMinYMin meet">'
'<g transform="{3}">{4}</g></svg>'
).format(view_box, width, height, transform,
self.svg(scale_factor))
@property
def geom_type(self):
"""Name of the geometry's type, such as 'Point'"""
return self.geometryType()
# Real-valued properties and methods
# ----------------------------------
@property
def area(self):
"""Unitless area of the geometry (float)"""
return self.impl['area'](self)
def distance(self, other):
"""Unitless distance to other geometry (float)"""
return self.impl['distance'](self, other)
def hausdorff_distance(self, other):
"""Unitless hausdorff distance to other geometry (float)"""
return self.impl['hausdorff_distance'](self, other)
@property
def length(self):
"""Unitless length of the geometry (float)"""
return self.impl['length'](self)
# Topological properties
# ----------------------
@property
def boundary(self):
"""Returns a lower dimension geometry that bounds the object
The boundary of a polygon is a line, the boundary of a line is a
collection of points. The boundary of a point is an empty (null)
collection.
"""
return geom_factory(self.impl['boundary'](self))
@property
def bounds(self):
"""Returns minimum bounding region (minx, miny, maxx, maxy)"""
if self.is_empty:
return ()
else:
return self.impl['bounds'](self)
@property
def centroid(self):
"""Returns the geometric center of the object"""
return geom_factory(self.impl['centroid'](self))
@delegated
def representative_point(self):
"""Returns a point guaranteed to be within the object, cheaply."""
return geom_factory(self.impl['representative_point'](self))
@property
def convex_hull(self):
"""Imagine an elastic band stretched around the geometry: that's a
convex hull, more or less
The convex hull of a three member multipoint, for example, is a
triangular polygon.
"""
return geom_factory(self.impl['convex_hull'](self))
@property
def envelope(self):
"""A figure that envelopes the geometry"""
return geom_factory(self.impl['envelope'](self))
@property
def minimum_rotated_rectangle(self):
"""Returns the general minimum bounding rectangle of
the geometry. Can possibly be rotated. If the convex hull
of the object is a degenerate (line or point) this same degenerate
is returned.
"""
# first compute the convex hull
hull = self.convex_hull
try:
coords = hull.exterior.coords
except AttributeError: # may be a Point or a LineString
return hull
# generate the edge vectors between the convex hull's coords
edges = ((pt2[0] - pt1[0], pt2[1] - pt1[1]) for pt1, pt2 in zip(
coords, islice(coords, 1, None)))
def _transformed_rects():
for dx, dy in edges:
# compute the normalized direction vector of the edge
# vector.
length = math.sqrt(dx ** 2 + dy ** 2)
ux, uy = dx / length, dy / length
# compute the normalized perpendicular vector
vx, vy = -uy, ux
# transform hull from the original coordinate system to
# the coordinate system defined by the edge and compute
# the axes-parallel bounding rectangle.
transf_rect = affine_transform(
hull, (ux, uy, vx, vy, 0, 0)).envelope
# yield the transformed rectangle and a matrix to
# transform it back to the original coordinate system.
yield (transf_rect, (ux, vx, uy, vy, 0, 0))
# check for the minimum area rectangle and return it
transf_rect, inv_matrix = min(
_transformed_rects(), key=lambda r: r[0].area)
return affine_transform(transf_rect, inv_matrix)
def buffer(self, distance, resolution=16, quadsegs=None,
cap_style=CAP_STYLE.round, join_style=JOIN_STYLE.round,
mitre_limit=5.0):
"""Returns a geometry with an envelope at a distance from the object's
envelope
A negative distance has a "shrink" effect. A zero distance may be used
to "tidy" a polygon. The resolution of the buffer around each vertex of
the object increases by increasing the resolution keyword parameter
or second positional parameter. Note: the use of a `quadsegs` parameter
is deprecated and will be gone from the next major release.
The styles of caps are: CAP_STYLE.round (1), CAP_STYLE.flat (2), and
CAP_STYLE.square (3).
The styles of joins between offset segments are: JOIN_STYLE.round (1),
JOIN_STYLE.mitre (2), and JOIN_STYLE.bevel (3).
The mitre limit ratio is used for very sharp corners. The mitre ratio
is the ratio of the distance from the corner to the end of the mitred
offset corner. When two line segments meet at a sharp angle, a miter
join will extend the original geometry. To prevent unreasonable
geometry, the mitre limit allows controlling the maximum length of the
join corner. Corners with a ratio which exceed the limit will be
beveled.
Example:
>>> from shapely.wkt import loads
>>> g = loads('POINT (0.0 0.0)')
>>> g.buffer(1.0).area # 16-gon approx of a unit radius circle
3.1365484905459389
>>> g.buffer(1.0, 128).area # 128-gon approximation
3.1415138011443009
>>> g.buffer(1.0, 3).area # triangle approximation
3.0
>>> list(g.buffer(1.0, cap_style='square').exterior.coords)
[(1.0, 1.0), (1.0, -1.0), (-1.0, -1.0), (-1.0, 1.0), (1.0, 1.0)]
>>> g.buffer(1.0, cap_style='square').area
4.0
"""
if quadsegs is not None:
warn(
"The `quadsegs` argument is deprecated. Use `resolution`.",
DeprecationWarning)
res = quadsegs
else:
res = resolution
if mitre_limit == 0.0:
raise ValueError(
'Cannot compute offset from zero-length line segment')
if cap_style == CAP_STYLE.round and join_style == JOIN_STYLE.round:
return geom_factory(self.impl['buffer'](self, distance, res))
if 'buffer_with_style' not in self.impl:
raise NotImplementedError("Styled buffering not available for "
"GEOS versions < 3.2.")
return geom_factory(self.impl['buffer_with_style'](self, distance, res,
cap_style,
join_style,
mitre_limit))
@delegated
def simplify(self, tolerance, preserve_topology=True):
"""Returns a simplified geometry produced by the Douglas-Peucker
algorithm
Coordinates of the simplified geometry will be no more than the
tolerance distance from the original. Unless the topology preserving
option is used, the algorithm may produce self-intersecting or
otherwise invalid geometries.
"""
if preserve_topology:
op = self.impl['topology_preserve_simplify']
else:
op = self.impl['simplify']
return geom_factory(op(self, tolerance))
# Binary operations
# -----------------
def difference(self, other):
"""Returns the difference of the geometries"""
return geom_factory(self.impl['difference'](self, other))
def intersection(self, other):
"""Returns the intersection of the geometries"""
return geom_factory(self.impl['intersection'](self, other))
def symmetric_difference(self, other):
"""Returns the symmetric difference of the geometries
(Shapely geometry)"""
return geom_factory(self.impl['symmetric_difference'](self, other))
def union(self, other):
"""Returns the union of the geometries (Shapely geometry)"""
return geom_factory(self.impl['union'](self, other))
# Unary predicates
# ----------------
@property
def has_z(self):
"""True if the geometry's coordinate sequence(s) have z values (are
3-dimensional)"""
return bool(self.impl['has_z'](self))
@property
def is_empty(self):
"""True if the set of points in this geometry is empty, else False"""
return (self._geom is None) or bool(self.impl['is_empty'](self))
@property
def is_ring(self):
"""True if the geometry is a closed ring, else False"""
return bool(self.impl['is_ring'](self))
@property
def is_closed(self):
"""True if the geometry is closed, else False
Applicable only to 1-D geometries."""
if self.geom_type == 'LinearRing':
return True
elif self.geom_type == 'LineString':
if 'is_closed' in self.impl:
return bool(self.impl['is_closed'](self))
else:
return self.coords[0] == self.coords[-1]
else:
return False
@property
def is_simple(self):
"""True if the geometry is simple, meaning that any self-intersections
are only at boundary points, else False"""
return bool(self.impl['is_simple'](self))
@property
def is_valid(self):
"""True if the geometry is valid (definition depends on sub-class),
else False"""
return bool(self.impl['is_valid'](self))
# Binary predicates
# -----------------
def relate(self, other):
"""Returns the DE-9IM intersection matrix for the two geometries
(string)"""
return self.impl['relate'](self, other)
def covers(self, other):
"""Returns True if the geometry covers the other, else False"""
return bool(self.impl['covers'](self, other))
def contains(self, other):
"""Returns True if the geometry contains the other, else False"""
return bool(self.impl['contains'](self, other))
def crosses(self, other):
"""Returns True if the geometries cross, else False"""
return bool(self.impl['crosses'](self, other))
def disjoint(self, other):
"""Returns True if geometries are disjoint, else False"""
return bool(self.impl['disjoint'](self, other))
def equals(self, other):
"""Returns True if geometries are equal, else False"""
return bool(self.impl['equals'](self, other))
def intersects(self, other):
"""Returns True if geometries intersect, else False"""
return bool(self.impl['intersects'](self, other))
def overlaps(self, other):
"""Returns True if geometries overlap, else False"""
return bool(self.impl['overlaps'](self, other))
def touches(self, other):
"""Returns True if geometries touch, else False"""
return bool(self.impl['touches'](self, other))
def within(self, other):
"""Returns True if geometry is within the other, else False"""
return bool(self.impl['within'](self, other))
def equals_exact(self, other, tolerance):
"""Returns True if geometries are equal to within a specified
tolerance"""
return bool(self.impl['equals_exact'](self, other, tolerance))
def almost_equals(self, other, decimal=6):
"""Returns True if geometries are equal at all coordinates to a
specified decimal place"""
return self.equals_exact(other, 0.5 * 10**(-decimal))
def relate_pattern(self, other, pattern):
"""Returns True if the DE-9IM string code for the relationship between
the geometries satisfies the pattern, else False"""
pattern = c_char_p(pattern.encode('ascii'))
return bool(self.impl['relate_pattern'](self, other, pattern))
# Linear referencing
# ------------------
@delegated
def project(self, other, normalized=False):
"""Returns the distance along this geometry to a point nearest the
specified point
If the normalized arg is True, return the distance normalized to the
length of the linear geometry.
"""
if normalized:
op = self.impl['project_normalized']
else:
op = self.impl['project']
return op(self, other)
@delegated
def interpolate(self, distance, normalized=False):
"""Return a point at the specified distance along a linear geometry
If the normalized arg is True, the distance will be interpreted as a
fraction of the geometry's length.
"""
if normalized:
op = self.impl['interpolate_normalized']
else:
op = self.impl['interpolate']
return geom_factory(op(self, distance))
class BaseMultipartGeometry(BaseGeometry):
def shape_factory(self, *args):
# Factory for part instances, usually a geometry class
raise NotImplementedError("To be implemented by derived classes")
@property
def ctypes(self):
raise NotImplementedError(
"Multi-part geometries have no ctypes representations")
@property
def __array_interface__(self):
"""Provide the Numpy array protocol."""
raise NotImplementedError("Multi-part geometries do not themselves "
"provide the array interface")
def _get_coords(self):
raise NotImplementedError("Sub-geometries may have coordinate "
"sequences, but collections do not")
def _set_coords(self, ob):
raise NotImplementedError("Sub-geometries may have coordinate "
"sequences, but collections do not")
@property
def coords(self):
raise NotImplementedError(
"Multi-part geometries do not provide a coordinate sequence")
@property
def geoms(self):
if self.is_empty:
return []
return GeometrySequence(self, self.shape_factory)
def __iter__(self):
if not self.is_empty:
return iter(self.geoms)
else:
return iter([])
def __len__(self):
if not self.is_empty:
return len(self.geoms)
else:
return 0
def __getitem__(self, index):
if not self.is_empty:
return self.geoms[index]
else:
return ()[index]
def __eq__(self, other):
return (
type(other) == type(self) and
len(self) == len(other) and
all(x == y for x, y in zip(self, other))
)
def __ne__(self, other):
return not self.__eq__(other)
__hash__ = None
def svg(self, scale_factor=1., color=None):
"""Returns a group of SVG elements for the multipart geometry.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
color : str, optional
Hex string for stroke or fill color. Default is to use "#66cc99"
if geometry is valid, and "#ff3333" if invalid.
"""
if self.is_empty:
return '<g />'
if color is None:
color = "#66cc99" if self.is_valid else "#ff3333"
return '<g>' + \
''.join(p.svg(scale_factor, color) for p in self) + \
'</g>'
class GeometrySequence(object):
"""
Iterative access to members of a homogeneous multipart geometry.
"""
# Attributes
# ----------
# _factory : callable
# Returns instances of Shapely geometries
# _geom : c_void_p
# Ctypes pointer to the parent's GEOS geometry
# _ndim : int
# Number of dimensions (2 or 3, generally)
# __p__ : object
# Parent (Shapely) geometry
shape_factory = None
_geom = None
__p__ = None
_ndim = None
def __init__(self, parent, type):
self.shape_factory = type
self.__p__ = parent
def _update(self):
self._geom = self.__p__._geom
self._ndim = self.__p__._ndim
def _get_geom_item(self, i):
g = self.shape_factory()
g._other_owned = True
g._geom = lgeos.GEOSGetGeometryN(self._geom, i)
g._ndim = self._ndim
g.__p__ = self
return g
def __iter__(self):
self._update()
for i in range(self.__len__()):
yield self._get_geom_item(i)
def __len__(self):
self._update()
return lgeos.GEOSGetNumGeometries(self._geom)
def __getitem__(self, key):
self._update()
m = self.__len__()
if isinstance(key, integer_types):
if key + m < 0 or key >= m:
raise IndexError("index out of range")
if key < 0:
i = m + key
else:
i = key
return self._get_geom_item(i)
elif isinstance(key, slice):
if type(self) == HeterogeneousGeometrySequence:
raise TypeError(
"Heterogenous geometry collections are not sliceable")
res = []
start, stop, stride = key.indices(m)
for i in range(start, stop, stride):
res.append(self._get_geom_item(i))
return type(self.__p__)(res or None)
else:
raise TypeError("key must be an index or slice")
@property
def _longest(self):
max = 0
for g in iter(self):
l = len(g.coords)
if l > max:
max = l
class HeterogeneousGeometrySequence(GeometrySequence):
"""
Iterative access to a heterogeneous sequence of geometries.
"""
def __init__(self, parent):
super(HeterogeneousGeometrySequence, self).__init__(parent, None)
def _get_geom_item(self, i):
sub = lgeos.GEOSGetGeometryN(self._geom, i)
g = geom_factory(sub, parent=self)
g._other_owned = True
return g
def _test():
"""Test runner"""
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()