Skip to content
Anamoly Detection for Detecting Defected Manufactured Semi-Conductors, as in this case of Classification, the Defected Chips would be very less in comparison to perfect Chips so we have apply either Over-Sampling or Under-Sampling.
Jupyter Notebook
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.github/ISSUE_TEMPLATE
.gitignore Initial commit Mar 31, 2019
CODE_OF_CONDUCT.md Create CODE_OF_CONDUCT.md Mar 31, 2019
CONTRIBUTING.md Create CONTRIBUTING.md Mar 31, 2019
LICENSE
Outliers_Detection.ipynb
README.md Update README.md May 20, 2019
SECOM.ipynb Created using Colaboratory Mar 31, 2019
outlier-detection-tutorial.ipynb Add files via upload May 20, 2019
pull_request-template.md Create pull_request-template.md Mar 31, 2019
uci-secom.csv

README.md

SECOM-Detecting-Defected-Items

Anamoly Detection for Detecting Defected Manufactured Semi-Conductors, as in this case of Classification, the Defected Chips would be very less in comparison to perfect Chips so we have apply either Over-Sampling or Under-Sampling.

Abstract

Semiconductor manufacturing is one of the most technologically and highly complicated manufacturing processes. Traditional machine learning algorithms such as uni-variate and multivariate analyses have long been deployed as a tool for creating predictive model to detect faults. In the past decade major collaborative research projects have been undertaken between fab industries and academia in the areas of predictive modeling.

In this study we propose machine learning techniques to automatically generate an accurate predictive model to predict equipment faults during the wafer fabrication process of the semiconductor industries. Aim at constructing a decision model to help detecting as quickly as possible any equipment faults in order to maintain high process yields in manufacturing.

Data Sources & Goal

The SECOM (Semiconductor Manufacturing) dataset, consists of manufacturing operation data and the semiconductor quality data. It contains 1567 observations taken from a wafer fabrication production line. Each observation is a vector of 590 sensor measurements plus a label of pass/fail test.

Also, there are only 104 fail cases which are labeled as positive (encoded as 1), whereas much larger amount of examples pass the test and are labeled as negative (encoded as -1). This is a 1:14 proportion. In this work not only a feature selection method for extracting the post discriminative sensors is proposed, but also boosting and data generation techniques are devised to deal with highly imbalance between the pass and fail cases.

Source:

UCI SECOM DataSet

You can’t perform that action at this time.