
Visualizing the out-of-order CPU model

Ryota Shioya
Nagoya University

22

Introduction

◼ This presentation introduces:

◇ the visualization of the out-of-order CPU model in gem5

33

Introduction

◼ Let's suppose

◇ you come up with an excellent idea and

◇ try to extend the CPU model in gem5 for adding your new method.

◼ You will probably tackle the following issues:

◇ difficult bugs, especially performance related ones

◇ a situation where your method cannot improve the performance as

expected

44

Introduction

◼ You probably validate your modified gem5 as follows:

◇ Check counters outputted by gem5

☐ e.g., the number of LLC misses / branch mispredictions

☐ These counters sometimes give us clues.

◇ Check the behavior by using a debugger and step execution

◼ However, it is difficult to fix issues in the following situations:

◇ You have no idea what causes it

◇ You recognize some counters show that something is wrong,

but you have no idea what happened

55

Visualizing the pipeline behavior

◼ In such situations, pipeline visualization is very useful.

◼ In general, visualization is a powerful tool for investigating bugs or

behavior.

◇ If you have developed hardware with HDL such as Verilog, you

may have used a waveform viewer.

☐ In a waveform view, you can easily see signal transitions and

relations between signals.

☐ Such viewers may have helped you a lot.

◼ This is also true for gem5!

66

A text-based pipeline viewer is provided for gem5

◼ This viewer is very useful to investigate the pipeline behavior.

◇ But, you can see only a limited range of instruction sequences at once

◇ This is the "less" command itself, it is not very user-friendly.

This picture is from http://www.m5sim.org/Visualization

77

Konata: a new GUI based viewer

◼ You can see the pipeline behavior as a map app.

◇ This presentation introduces Konata and best practices in gem5.

88

Outline

1. A brief explanation of how to use

2. Typical visualization examples

3. Use cases

99

Preparation

1. Install: All you have to do is to download the package and unpack it.

◇ https://github.com/shioyadan/Konata/releases

◇ Windows/Linux/Mac packages are provided.

◇ No additional runtime is not required.

2. Start the executable file such as Konata.exe

1010

How to Use

1. Generate a trace log from gem5 with the O3 CPU model

◇ Execute gem5 with the following flags

◇ ./build/ARM/gem5.opt --debug-flags=O3PipeView --debug-start=<first

tick of interest> --debug-file=trace.out configs/example/se.py

--cpu-type=detailed --caches -c <path to binary> -m <last cycle of

interest>

◇ This example is from http://www.m5sim.org/Visualization

2. Load the generated "trace.out" to Konata

◇ from the menu in the window or using drag&drop

1111

How to use

◼ After loading the file, contents like the following are shown.

◇ Left side: instruction information such as a PC and mnemonic

◇ Right side: the image of visualized pipeline behavior

1212

How to see the visualized image

◼ The clock cycle proceeds from left to right

◇ F : Instruction fetch

◇ Dc : Instruction Decode

◇ Rn : Rename

◇ Ds : Dispatch

◇ IS : Issue

◇ Cm : Completion of execution

☐ The execution stage is not explicitly shown

☐ The execution seems to be started at the first stage of

"Cm" stages

◇ (The end of Cm stages) : Retire

Cycle 0 1 2 3 4 5 6 7 8 9 10 11

1313

Zoom in/out

◼ You can zoom in/out as follows:

zoom-in zoom-out

1414

Compare Two Pipelines

◼ Konata can show two pipelines overlapping.

(Currently, it requires manual operations as follows:

1. Load two files

2. Right click -> "Transparent mode" & "Synchronize scroll“

3. Right click -> “Pipeline color scheme” to change a pipeline color

1515

Outline

1. A brief explanation of how to use

2. Typical visualization examples

3. Use cases

1616

Typical Visualization Examples

◼ Introduce how the following things are shown:

1. Out-of-order execution

2. Branch misprediction

3. Cache miss

4. Execution speed

1717

Example: Out-of-order Execution

◼ Fetch and retirement, marked with the blue circles, are performed in-order

◇ Instruction issue, marked with the red circles, is performed out-of-order

1818

Example: Branch Misprediction

◇ Flushed instructions are shown as dark ones

Flushed instructions

mispredicted branch

1919

Example: Cache Misses

◼ A cache miss is typically shown as a diamond-like shape when the

image is zoomed out as follows

miss latency

miss latency

cache miss

cache miss

2020

Example: Cache Misses

◼ As it is zoomed out more, the pipeline is typically shown as follows

◇ This is the pipeline behavior of MCF in SPECCPU 2006.

◇ This figure shows the performance is degraded by the cache misses.
cache misses

cache misses

cache misses

cache misses

2121

The slope of a pipeline shape roughly represents

the execution speed (IPC)

◇ The following two pipelines show the execution of the same 10K

instructions

1
0
K

in
st

ru
ct

io
n

 e
xe

cu
ti

o
n

clock cycle

Slower

It takes longer cycles and the slope is gentle

Faster

It takes shorter cycles and the slope is steep

2222

The slope of a pipeline shape roughly represents

the execution speed (IPC)

◼ You can see the transition in the execution speed for each part of

the program as follows

fast

slow

fast

2323

Outline

1. A brief explanation of how to use

2. Typical visualization examples

3. Use cases

1. Grasping the pipeline behavior

2. Comparing pipelines

2424

Grasping the pipeline behavior

◼ The pipeline visualization makes it easy to grasp the pipeline

behavior.

◇ Explain this by using some examples

◼ Let's suppose you newly add speculative execution with branch

prediction.

◇ (Of course, gem5 already has this feature

◇ Something wrong happens in recovery from mispredictions.

2525

Investigating with a log

◼ For investigating your implementation,

you probably:

◇ Check custom logs or your "printf"

outputs such as the left example

◇ It records when/what instructions

are flushed.

◼ It's very difficult to detect which point

is incorrect from such text logs.

2626

Investigating with visualization

◼ By visualizing it, you can easily notice the incorrect point.

◇ There is the light instruction (not flushed) between the dark

flushed instructions.

◼ Although this is an artificial example,

◇ visualization gives us a lot of hints intuitively!

2727

Another example: memory level parallelism

◼ One of my friends tackled a topic related to memory level parallelism.

◇ In short, his method improves the performance by performing

multiple memory accesses in parallel.

◼ He enlarged the size of the OoO scheduling window so that more

memory accesses are performed in parallel.

◇ But, the performance is not improved...

2828

Another example: memory level parallelism

The pipeline is flushed

These instructions
should be executed
in parallel with the above

◼ He realized a curious behavior from the following zoomed-out image,

◇ because the shape is unnatural

◼ He realized that the pipeline was flushed on a cache miss

◇ In this sequence, memory accesses should be performed in parallel

2929

The cause of the flush

◼ He examined the flushed instruction in detail and found the cause.

◼ This was because he used Alpha ISA.

◇ In Alpha architecture, TLB miss causes a trap and the pipeline is

flushed.

◇ On a cache miss, a TLB miss often occurs.

◇ So, memory accesses cannot be performed in parallel.

◼ It is not easily noticed simply by observing the counters in gem5.

◇ The shape or pattern of visualized pipelines often tell us hints.

3030

Outline

1. A brief explanation of how to use

2. Typical visualization examples

3. Use cases

1. Grasping the pipeline behavior

2. Comparing pipelines

3131

Comparing pipelines

◼ Let's suppose

◇ your new method seems to work correctly,

◇ but it does not improve the performance as you expected.

◼ Konata can compare two pipelines!

◇ It is useful when investigating the above situation.

3232

Example of comparing

◼ Konata can show two pipelines overlapping.

◇ Blue shows a baseline processor pipeline.

◇ Orange shows a pipeline with a proposed method.

3333

Example of comparing

◼ The orange one (proposed) is basically faster than the blue one (baseline)

◇ The insn. fetch and retirement of the orange one are clearly fast.

3434

Example of comparing

◼ In the zoomed-in image,

◇ in some places, the fetching of the orange is unreasonably delayed.

◇ This was caused by a bug, and this bug degraded the performance.

The fetch of
the orange is
delayed.

3535

Comparing pipelines

◼ Visual comparison is very effective for analysis when adding new

features to gem5.

◇ If the performance is not improved as expected, something is

delayed.

◇ You can detect such parts by visual comparison.

☐ It is easy to see which part is different.

3636

Conclusion

◼ It is generally difficult to investigate the cause of a bug related to the

performance.

◇ Especially, when you have no idea what happened.

◼ In such cases, visualization is very useful.

◇ This presentation introduced a new pipeline viewer Konata and

best practice in gem5

◼ Please try it!

◇ https://github.com/shioyadan/Konata/releases

3737

Appendix

3838

Future work
(In 2022, the features 2. and 3. have been already implemented.

You can use them with “--debug-flags=O3PipeView,O3CPUAll.”

◇ Add new features:

1. Showing concurrent events such as pipeline stall etc.

2. Dependency arrows between instructions

3. Custom messages for each stage

◇ Konata has already had these features.

☐ Because Konata was developed for other simulators.

☐ I have a plan to add support for these features to gem5.

1.Multiple stage lanes 2.Dependency arrow 3.Custom log message

3939

The slope of a pipeline shape roughly represents

the execution speed (IPC)

◇ It is not accurate because flushed instructions are also shown.

◇ If you want to compare accurately, use "Hide flushed ops" option

from the right click menu

1
0
K

in
st

ru
ct

io
n

 e
xe

cu
ti

o
n

clock cycle

Slower

longer clock cycles are elapsed

Faster

shorter clock cycles are elapsed

	既定のセクション
	スライド 1: Visualizing the out-of-order CPU model
	スライド 2: Introduction
	スライド 3: Introduction
	スライド 4: Introduction
	スライド 5: Visualizing the pipeline behavior
	スライド 6: A text-based pipeline viewer is provided for gem5
	スライド 7: Konata: a new GUI based viewer
	スライド 8: Outline

	タイトルなしのセクション
	スライド 9: Preparation
	スライド 10: How to Use
	スライド 11: How to use
	スライド 12: How to see the visualized image
	スライド 13: Zoom in/out
	スライド 14: Compare Two Pipelines
	スライド 15: Outline
	スライド 16: Typical Visualization Examples
	スライド 17: Example: Out-of-order Execution
	スライド 18: Example: Branch Misprediction
	スライド 19: Example: Cache Misses
	スライド 20: Example: Cache Misses
	スライド 21: The slope of a pipeline shape roughly represents the execution speed (IPC)
	スライド 22: The slope of a pipeline shape roughly represents the execution speed (IPC)

	タイトルなしのセクション
	スライド 23: Outline
	スライド 24: Grasping the pipeline behavior
	スライド 25: Investigating with a log
	スライド 26: Investigating with visualization
	スライド 27: Another example: memory level parallelism
	スライド 28: Another example: memory level parallelism
	スライド 29: The cause of the flush
	スライド 30: Outline
	スライド 31: Comparing pipelines
	スライド 32: Example of comparing
	スライド 33: Example of comparing
	スライド 34: Example of comparing
	スライド 35: Comparing pipelines

	タイトルなしのセクション
	スライド 36: Conclusion
	スライド 37: Appendix
	スライド 38: Future work (In 2022, the features 2. and 3. have been already implemented. You can use them with “--debug-flags=O3PipeView,O3CPUAll.”
	スライド 39: The slope of a pipeline shape roughly represents the execution speed (IPC)

