For more information, check out our project [website] and paper on [arXiv].
Pretrained models are to be uploaded soon.
Our method is illustrated below:
git clone https://github.com/ShuaiyiHuang/SCorrSAN
cd SCorrSAN
conda create -n scorrsan python=3.6
conda activate scorrsan
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install -U scikit-image
pip install git+https://github.com/albumentations-team/albumentations
pip install tensorboardX termcolor timm tqdm requests pandas
- Download pre-trained weights on Link (TODO)
- All datasets are automatically downloaded into directory specified by argument
datapath
Result on SPair-71k: (PCK 55.3%)
python test.py --pretrained "/path_to_pretrained_model/spair" --benchmark spair
Results on PF-PASCAL: (PCK 81.5%, 93.3%, 96.6%)
python test.py --pretrained "/path_to_pretrained_model/pfpascal" --benchmark pfpascal
Results on PF-WILLOW, (PCK 54.1%, 80.0%, 89.8%)
python test.py --pretrained "/path_to_pretrained_model/pfpascal" --benchmark pfpascal
SPair-71k: (PCK 55.3%)
sh ./scripts/train_spair.sh
PF-PASCAL: (PCK 81.5%, 93.3%, 96.6%)
sh ./scripts/train_pfpascal.sh
This repository builds on other public projects, mainly CATs, DHPF, and GLU-Net.
If you find this research useful, please consider citing:
@inproceedings{huang2022learning,
title={Learning Semantic Correspondence with Sparse Annotations},
author={Huang, Shuaiyi and Yang, Luyu and He, Bo and Zhang, Songyang and He, Xuming and Shrivastava, Abhinav},
booktitle={Proceedings of the European Conference on Computer Vision(ECCV)},
year={2022}
}