
## Data Analytics and Visualization Boot Camp Statistics Cheat Sheet

| Selecting an Appropriate Statistical Test |                |                                           |                     |             |                                                                                                                                  |  |  |
|-------------------------------------------|----------------|-------------------------------------------|---------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Statistical<br>Test                       |                | Input Varia                               | Analytical Question |             |                                                                                                                                  |  |  |
|                                           | Independent    |                                           |                     | Dependent   |                                                                                                                                  |  |  |
|                                           | # of Variables | Data Type                                 | # of Variables      | Data Type   |                                                                                                                                  |  |  |
| One-Sample<br>t-Test                      | 1              | Dichotomous<br>(Population or<br>Sample)  | 1                   | Continuous  | Is there a statistical difference between<br>the mean of the sample distribution and<br>the mean of the population distribution? |  |  |
| Two-Sample<br>t-Test                      | 1              | Dichotomous<br>(Sample A vs.<br>Sample B) | 1                   | Continuous  | Is there a statistical difference<br>between the distribution means<br>from two samples?                                         |  |  |
| ANOVA                                     | 1+             | Categorical                               | 1                   | Continuous  | Is there a statistical difference<br>between the distribution means<br>from multiple samples?                                    |  |  |
| Simple<br>Linear<br>Regression            | 1              | Continuous                                | 1                   | Continuous  | Can we predict values for a dependent<br>variable using a linear model and values<br>from the independent variable?              |  |  |
| Multiple<br>Linear<br>Regression          | 2+             | Continuous                                | 1                   | Continuous  | How much variance in the dependent<br>variable is accounted for in a linear<br>combination of independent variables?             |  |  |
| Chi-Squared<br>Test                       | 1              | Categorical                               | 1+                  | Categorical | Is there a difference in categorical<br>frequencies between groups?                                                              |  |  |



- Bell curve distribution
- Values closer to the mean occur more frequently than values away from mean
- Shapiro-Wilk test p-value approximately greater than 0.05
- Follows the 68-95-99.7 rule
  - 68% of all data falls within 1 standard deviation from mean
  - 95.54% of all data falls within 2 standard deviations
  - 99.73% of all data falls within 3 standard deviations



| Sel | ecting a Signific     | ance Level                    | Types of Analytical Errors |                                                                                                                                     |
|-----|-----------------------|-------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| f   | Significance<br>Level | Probability of<br>Being Wrong |                            | <ul> <li>False positive error</li> <li>Reject the null hypothesis</li> </ul>                                                        |
|     | 0.1                   | 1 in 10                       | Type I                     | when true <ul> <li>Can be limited by making significance smaller</li> </ul>                                                         |
|     | 0.05                  | 5 in 100                      |                            |                                                                                                                                     |
|     | 0.01                  | 1 in 100                      | Type II                    | <ul> <li>False negative error</li> <li>Fail to reject the null</li> </ul>                                                           |
|     | 0.001                 | 1 in 1,000                    |                            | <ul> <li>Yan to reject the hulf<br/>hypothesis when false</li> <li>Can be limited by adding<br/>measurements to analysis</li> </ul> |
|     | 0.0001                | 1 in 10,000                   |                            |                                                                                                                                     |

| y = mx + b $f = b$ | Equation of a Line             |       |             |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------|-------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y =<br>↓<br>Dependent variable | Slope | y intercept |  |  |

Importance of Findings

Low

Normal

High

Very High

Extreme

| Pearson's Correlation |                         |  |  |  |  |
|-----------------------|-------------------------|--|--|--|--|
| Absolute Value of r   | Strength of Correlation |  |  |  |  |
| r < 0.3               | None or very weak       |  |  |  |  |
| 0.3 ≤ r < 0.5         | Weak                    |  |  |  |  |
| 0.5 ≤ r < 0.7         | Moderate                |  |  |  |  |
| r ≥ 0.7               | Strong                  |  |  |  |  |

## A/B Testing Criteria

• If the success metric is numerical and the sample size is small, use a z-score summary statistic.

• If the success metric is numerical and the sample size is large, use a two-sample t-test.

• If the success metric is categorical, use a chi-squared test.

## © 2020 Trilogy Education Services, a 2U, Inc. brand. All Rights Reserved.

0

Standard Deviations

2

3

-1

-3

-2