Skip to content

shunzhang876/AdaptiveFeatureLearning

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
src
 
 
 
 
 
 
 
 

Tracking Persons-of-Interest via Adaptive Discriminative Features (ECCV 2016)

This is the research code for the paper:

Shun Zhang, Yihong Gong, Jia-Bin Huang, Jongwoo Lim, Jinjun Wang, Narendra Ahuja and Ming-Hsuan Yang. "Tracking Persons-of-Interest via Adaptive Discriminative Features", in Proceedings of European Conference on Computer Vision (ECCV), 2016.

We take the T-ara sequence as an example to evaluate our adaptive feature learning approach in this code. Our project website can be found here:

Project page

Citation

If you find the code and pre-trained models useful in your research, please consider citing:

 @inproceedings{Zhang-ECCV-2016,
       author = {Zhang, Shun and Gong, Yihong and Huang, Jia-Bin and Lim, Jongwoo and Wang, Jinjun and Ahuja, Narendra and Yang, Ming-Hsuan},
       title = {Tracking Persons-of-Interest via Adaptive Discriminative Features},
       booktitle = {European Conference on Computer Vision},
       year = {2016},
       pages = {415-433}
   }

System Requirements

  • MATLAB (tested with R2014b on 64-bit Linux)
  • Caffe

Installation

  1. Download and unzip the project code.

  2. Install Caffe. Please follow the Caffe installation instructions to install dependencies and then compile Caffe:

    # We call the root directory of the project code `AFL_ROOT`.
    cd $AFL_ROOT/external/caffe-Triplet-New
    make all -j8
    make pycaffe
    make matcaffe
    
  3. Download the T-ara images and extract all images into AFL/data/Tara.

  4. Download the AlexNet model:

    cd $AFL_ROOT/external/caffe-Triplet-New
    scripts/download_model_binary.py models/bvlc_reference_caffenet
    
  5. Download the VGG-Face Model and put it in $AFL_ROOT/external/caffe-Triplet-New/models/VGG. Download the pre-trained face model and put it in $AFL_ROOT/external/caffe-Triplet-New/models/pretrained_web_face.

Usage

Directly run the script run_Tara_example.sh.

Or run the following commands step by step:

  1. Mine constraints:

    cd $AFL_ROOT
    # Start MATLAB
    matlab
    >> genTracklet('Tara')
    
  2. Learn adaptive discriminative features:

    cd $AFL_ROOT
    sh shell_scripts/Tara/adapt_Triplet.sh
    
  3. Extract features:

    sh shell_scripts/Tara/extract_All_Feas.sh
    
  4. Perform hierarchical agglomerative clustering algorithm (you can get Fig. 6(a) in our supplementary materials):

    matlab
    >> clustering_tracklets('Tara')
    
  5. Perform a simple multi-face tracking:

    matlab
    >> facetracking('Tara')
    

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published