Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

1577 lines (1409 sloc) 36.838 kb
/* This is a public domain general purpose hash table package written by Peter Moore @ UCB. */
/* static char sccsid[] = "@(#) st.c 5.1 89/12/14 Crucible"; */
#ifdef NOT_RUBY
#include "regint.h"
#include "st.h"
#else
#include "ruby/ruby.h"
#endif
#include <stdio.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#include <string.h>
typedef struct st_table_entry st_table_entry;
struct st_table_entry {
st_index_t hash;
st_data_t key;
st_data_t record;
st_table_entry *next;
st_table_entry *fore, *back;
};
typedef struct st_packed_entry {
st_index_t hash;
st_data_t key, val;
} st_packed_entry;
#define STATIC_ASSERT(name, expr) typedef int static_assert_##name##_check[(expr) ? 1 : -1];
#define ST_DEFAULT_MAX_DENSITY 5
#define ST_DEFAULT_INIT_TABLE_SIZE 11
#define ST_DEFAULT_SECOND_TABLE_SIZE 19
#define ST_DEFAULT_PACKED_TABLE_SIZE 18
#define PACKED_UNIT (int)(sizeof(st_packed_entry) / sizeof(st_table_entry*))
#define MAX_PACKED_HASH (int)(ST_DEFAULT_PACKED_TABLE_SIZE * sizeof(st_table_entry*) / sizeof(st_packed_entry))
STATIC_ASSERT(st_packed_entry, sizeof(st_packed_entry) == sizeof(st_table_entry*[PACKED_UNIT]))
STATIC_ASSERT(st_packed_bins, sizeof(st_packed_entry[MAX_PACKED_HASH]) <= sizeof(st_table_entry*[ST_DEFAULT_PACKED_TABLE_SIZE]))
/*
* DEFAULT_MAX_DENSITY is the default for the largest we allow the
* average number of items per bin before increasing the number of
* bins
*
* DEFAULT_INIT_TABLE_SIZE is the default for the number of bins
* allocated initially
*
*/
#define type_numhash st_hashtype_num
const struct st_hash_type st_hashtype_num = {
st_numcmp,
st_numhash,
};
/* extern int strcmp(const char *, const char *); */
static st_index_t strhash(st_data_t);
static const struct st_hash_type type_strhash = {
strcmp,
strhash,
};
static st_index_t strcasehash(st_data_t);
static const struct st_hash_type type_strcasehash = {
st_strcasecmp,
strcasehash,
};
static void rehash(st_table *);
#ifdef RUBY
#define malloc xmalloc
#define calloc xcalloc
#define realloc xrealloc
#define free(x) xfree(x)
#endif
#define numberof(array) (int)(sizeof(array) / sizeof((array)[0]))
#define EQUAL(table,x,y) ((x)==(y) || (*(table)->type->compare)((x),(y)) == 0)
#define do_hash(key,table) (st_index_t)(*(table)->type->hash)((key))
#define do_hash_bin(key,table) (do_hash((key), (table))%(table)->num_bins)
/* preparation for possible allocation improvements */
#define st_alloc_entry() (st_table_entry *)malloc(sizeof(st_table_entry))
#define st_free_entry(entry) free(entry)
#define st_alloc_table() (st_table *)malloc(sizeof(st_table))
#define st_dealloc_table(table) free(table)
#define st_alloc_bins(size) (st_table_entry **)calloc(size, sizeof(st_table_entry *))
#define st_free_bins(bins, size) free(bins)
static inline st_table_entry**
st_realloc_bins(st_table_entry **bins, st_index_t newsize, st_index_t oldsize)
{
bins = (st_table_entry **)realloc(bins, newsize * sizeof(st_table_entry *));
MEMZERO(bins, st_table_entry*, newsize);
return bins;
}
/* Shortage */
#define bins as.big.bins
#define head as.big.head
#define tail as.big.tail
#define real_entries as.packed.real_entries
/* preparation for possible packing improvements */
#define PACKED_BINS(table) ((table)->as.packed.entries)
#define PACKED_ENT(table, i) PACKED_BINS(table)[i]
#define PKEY(table, i) PACKED_ENT((table), (i)).key
#define PVAL(table, i) PACKED_ENT((table), (i)).val
#define PHASH(table, i) PACKED_ENT((table), (i)).hash
#define PKEY_SET(table, i, v) (PKEY((table), (i)) = (v))
#define PVAL_SET(table, i, v) (PVAL((table), (i)) = (v))
#define PHASH_SET(table, i, v) (PHASH((table), (i)) = (v))
/* this function depends much on packed layout, so that it placed here */
static inline void
remove_packed_entry(st_table *table, st_index_t i)
{
table->real_entries--;
table->num_entries--;
if (i < table->real_entries) {
MEMMOVE(&PACKED_ENT(table, i), &PACKED_ENT(table, i+1),
st_packed_entry, table->real_entries - i);
}
}
static inline void
remove_safe_packed_entry(st_table *table, st_index_t i, st_data_t never)
{
table->num_entries--;
PKEY_SET(table, i, never);
PVAL_SET(table, i, never);
PHASH_SET(table, i, 0);
}
/*
* MINSIZE is the minimum size of a dictionary.
*/
#define MINSIZE 8
/*
Table of prime numbers 2^n+a, 2<=n<=30.
*/
static const unsigned int primes[] = {
ST_DEFAULT_INIT_TABLE_SIZE,
ST_DEFAULT_SECOND_TABLE_SIZE,
32 + 5,
64 + 3,
128 + 3,
256 + 27,
512 + 9,
1024 + 9,
2048 + 5,
4096 + 3,
8192 + 27,
16384 + 43,
32768 + 3,
65536 + 45,
131072 + 29,
262144 + 3,
524288 + 21,
1048576 + 7,
2097152 + 17,
4194304 + 15,
8388608 + 9,
16777216 + 43,
33554432 + 35,
67108864 + 15,
134217728 + 29,
268435456 + 3,
536870912 + 11,
1073741824 + 85,
0
};
static st_index_t
new_size(st_index_t size)
{
int i;
#if 0
for (i=3; i<31; i++) {
if ((1<<i) > size) return 1<<i;
}
return -1;
#else
st_index_t newsize;
for (i = 0, newsize = MINSIZE; i < numberof(primes); i++, newsize <<= 1) {
if (newsize > size) return primes[i];
}
/* Ran out of polynomials */
#ifndef NOT_RUBY
rb_raise(rb_eRuntimeError, "st_table too big");
#endif
return -1; /* should raise exception */
#endif
}
#ifdef HASH_LOG
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
static struct {
int all, total, num, str, strcase;
} collision;
static int init_st = 0;
static void
stat_col(void)
{
char fname[10+sizeof(long)*3];
FILE *f = fopen((snprintf(fname, sizeof(fname), "/tmp/col%ld", (long)getpid()), fname), "w");
fprintf(f, "collision: %d / %d (%6.2f)\n", collision.all, collision.total,
((double)collision.all / (collision.total)) * 100);
fprintf(f, "num: %d, str: %d, strcase: %d\n", collision.num, collision.str, collision.strcase);
fclose(f);
}
#endif
st_table*
st_init_table_with_size(const struct st_hash_type *type, st_index_t size)
{
st_table *tbl;
#ifdef HASH_LOG
# if HASH_LOG+0 < 0
{
const char *e = getenv("ST_HASH_LOG");
if (!e || !*e) init_st = 1;
}
# endif
if (init_st == 0) {
init_st = 1;
atexit(stat_col);
}
#endif
tbl = st_alloc_table();
tbl->type = type;
tbl->num_entries = 0;
tbl->entries_packed = size <= MAX_PACKED_HASH;
if (tbl->entries_packed) {
size = ST_DEFAULT_PACKED_TABLE_SIZE;
}
else {
size = new_size(size); /* round up to prime number */
}
tbl->num_bins = size;
tbl->bins = st_alloc_bins(size);
tbl->head = 0;
tbl->tail = 0;
return tbl;
}
st_table*
st_init_table(const struct st_hash_type *type)
{
return st_init_table_with_size(type, 0);
}
st_table*
st_init_numtable(void)
{
return st_init_table(&type_numhash);
}
st_table*
st_init_numtable_with_size(st_index_t size)
{
return st_init_table_with_size(&type_numhash, size);
}
st_table*
st_init_strtable(void)
{
return st_init_table(&type_strhash);
}
st_table*
st_init_strtable_with_size(st_index_t size)
{
return st_init_table_with_size(&type_strhash, size);
}
st_table*
st_init_strcasetable(void)
{
return st_init_table(&type_strcasehash);
}
st_table*
st_init_strcasetable_with_size(st_index_t size)
{
return st_init_table_with_size(&type_strcasehash, size);
}
void
st_clear(st_table *table)
{
register st_table_entry *ptr, *next;
st_index_t i;
if (table->entries_packed) {
table->num_entries = 0;
table->real_entries = 0;
return;
}
for (i = 0; i < table->num_bins; i++) {
ptr = table->bins[i];
table->bins[i] = 0;
while (ptr != 0) {
next = ptr->next;
st_free_entry(ptr);
ptr = next;
}
}
table->num_entries = 0;
table->head = 0;
table->tail = 0;
}
void
st_free_table(st_table *table)
{
st_clear(table);
st_free_bins(table->bins, table->num_bins);
st_dealloc_table(table);
}
size_t
st_memsize(const st_table *table)
{
if (table->entries_packed) {
return table->num_bins * sizeof (void *) + sizeof(st_table);
}
else {
return table->num_entries * sizeof(struct st_table_entry) + table->num_bins * sizeof (void *) + sizeof(st_table);
}
}
#define PTR_NOT_EQUAL(table, ptr, hash_val, key) \
((ptr) != 0 && ((ptr)->hash != (hash_val) || !EQUAL((table), (key), (ptr)->key)))
#ifdef HASH_LOG
static void
count_collision(const struct st_hash_type *type)
{
collision.all++;
if (type == &type_numhash) {
collision.num++;
}
else if (type == &type_strhash) {
collision.strcase++;
}
else if (type == &type_strcasehash) {
collision.str++;
}
}
#define COLLISION (collision_check ? count_collision(table->type) : (void)0)
#define FOUND_ENTRY (collision_check ? collision.total++ : (void)0)
#else
#define COLLISION
#define FOUND_ENTRY
#endif
#define FIND_ENTRY(table, ptr, hash_val, bin_pos) \
((ptr) = find_entry((table), key, (hash_val), ((bin_pos) = (hash_val)%(table)->num_bins)))
static st_table_entry *
find_entry(st_table *table, st_data_t key, st_index_t hash_val, st_index_t bin_pos)
{
register st_table_entry *ptr = table->bins[bin_pos];
FOUND_ENTRY;
if (PTR_NOT_EQUAL(table, ptr, hash_val, key)) {
COLLISION;
while (PTR_NOT_EQUAL(table, ptr->next, hash_val, key)) {
ptr = ptr->next;
}
ptr = ptr->next;
}
return ptr;
}
static inline st_index_t
find_packed_index(st_table *table, st_index_t hash_val, st_data_t key)
{
st_index_t i = 0;
while (i < table->real_entries &&
(PHASH(table, i) != hash_val || !EQUAL(table, key, PKEY(table, i)))) {
i++;
}
return i;
}
#define collision_check 0
int
st_lookup(st_table *table, register st_data_t key, st_data_t *value)
{
st_index_t hash_val;
register st_table_entry *ptr;
hash_val = do_hash(key, table);
if (table->entries_packed) {
st_index_t i = find_packed_index(table, hash_val, key);
if (i < table->real_entries) {
if (value != 0) *value = PVAL(table, i);
return 1;
}
return 0;
}
ptr = find_entry(table, key, hash_val, hash_val % table->num_bins);
if (ptr == 0) {
return 0;
}
else {
if (value != 0) *value = ptr->record;
return 1;
}
}
int
st_get_key(st_table *table, register st_data_t key, st_data_t *result)
{
st_index_t hash_val;
register st_table_entry *ptr;
hash_val = do_hash(key, table);
if (table->entries_packed) {
st_index_t i = find_packed_index(table, hash_val, key);
if (i < table->real_entries) {
if (result != 0) *result = PKEY(table, i);
return 1;
}
return 0;
}
ptr = find_entry(table, key, hash_val, hash_val % table->num_bins);
if (ptr == 0) {
return 0;
}
else {
if (result != 0) *result = ptr->key;
return 1;
}
}
#undef collision_check
#define collision_check 1
static inline st_table_entry *
new_entry(st_table * table, st_data_t key, st_data_t value,
st_index_t hash_val, register st_index_t bin_pos)
{
register st_table_entry *entry = st_alloc_entry();
entry->next = table->bins[bin_pos];
table->bins[bin_pos] = entry;
entry->hash = hash_val;
entry->key = key;
entry->record = value;
return entry;
}
static inline void
add_direct(st_table *table, st_data_t key, st_data_t value,
st_index_t hash_val, register st_index_t bin_pos)
{
register st_table_entry *entry;
if (table->num_entries > ST_DEFAULT_MAX_DENSITY * table->num_bins) {
rehash(table);
bin_pos = hash_val % table->num_bins;
}
entry = new_entry(table, key, value, hash_val, bin_pos);
if (table->head != 0) {
entry->fore = 0;
(entry->back = table->tail)->fore = entry;
table->tail = entry;
}
else {
table->head = table->tail = entry;
entry->fore = entry->back = 0;
}
table->num_entries++;
}
static void
unpack_entries(register st_table *table)
{
st_index_t i;
st_packed_entry packed_bins[MAX_PACKED_HASH];
register st_table_entry *entry, *preventry = 0, **chain;
st_table tmp_table = *table;
MEMCPY(packed_bins, PACKED_BINS(table), st_packed_entry, MAX_PACKED_HASH);
table->as.packed.entries = packed_bins;
tmp_table.entries_packed = 0;
#if ST_DEFAULT_INIT_TABLE_SIZE == ST_DEFAULT_PACKED_TABLE_SIZE
MEMZERO(tmp_table.bins, st_table_entry*, tmp_table.num_bins);
#else
tmp_table.bins = st_realloc_bins(tmp_table.bins, ST_DEFAULT_INIT_TABLE_SIZE, tmp_table.num_bins);
tmp_table.num_bins = ST_DEFAULT_INIT_TABLE_SIZE;
#endif
i = 0;
chain = &tmp_table.head;
do {
st_data_t key = packed_bins[i].key;
st_data_t val = packed_bins[i].val;
st_index_t hash = packed_bins[i].hash;
entry = new_entry(&tmp_table, key, val, hash,
hash % ST_DEFAULT_INIT_TABLE_SIZE);
*chain = entry;
entry->back = preventry;
preventry = entry;
chain = &entry->fore;
} while (++i < MAX_PACKED_HASH);
*chain = NULL;
tmp_table.tail = entry;
*table = tmp_table;
}
static void
add_packed_direct(st_table *table, st_data_t key, st_data_t value, st_index_t hash_val)
{
if (table->real_entries < MAX_PACKED_HASH) {
st_index_t i = table->real_entries++;
PKEY_SET(table, i, key);
PVAL_SET(table, i, value);
PHASH_SET(table, i, hash_val);
table->num_entries++;
}
else {
unpack_entries(table);
add_direct(table, key, value, hash_val, hash_val % table->num_bins);
}
}
int
st_insert(register st_table *table, register st_data_t key, st_data_t value)
{
st_index_t hash_val;
register st_index_t bin_pos;
register st_table_entry *ptr;
hash_val = do_hash(key, table);
if (table->entries_packed) {
st_index_t i = find_packed_index(table, hash_val, key);
if (i < table->real_entries) {
PVAL_SET(table, i, value);
return 1;
}
add_packed_direct(table, key, value, hash_val);
return 0;
}
FIND_ENTRY(table, ptr, hash_val, bin_pos);
if (ptr == 0) {
add_direct(table, key, value, hash_val, bin_pos);
return 0;
}
else {
ptr->record = value;
return 1;
}
}
int
st_insert2(register st_table *table, register st_data_t key, st_data_t value,
st_data_t (*func)(st_data_t))
{
st_index_t hash_val;
register st_index_t bin_pos;
register st_table_entry *ptr;
hash_val = do_hash(key, table);
if (table->entries_packed) {
st_index_t i = find_packed_index(table, hash_val, key);
if (i < table->real_entries) {
PVAL_SET(table, i, value);
return 1;
}
key = (*func)(key);
add_packed_direct(table, key, value, hash_val);
return 0;
}
FIND_ENTRY(table, ptr, hash_val, bin_pos);
if (ptr == 0) {
key = (*func)(key);
add_direct(table, key, value, hash_val, bin_pos);
return 0;
}
else {
ptr->record = value;
return 1;
}
}
void
st_add_direct(st_table *table, st_data_t key, st_data_t value)
{
st_index_t hash_val;
hash_val = do_hash(key, table);
if (table->entries_packed) {
add_packed_direct(table, key, value, hash_val);
return;
}
add_direct(table, key, value, hash_val, hash_val % table->num_bins);
}
static void
rehash(register st_table *table)
{
register st_table_entry *ptr, **new_bins;
st_index_t new_num_bins, hash_val;
new_num_bins = new_size(table->num_bins+1);
new_bins = st_realloc_bins(table->bins, new_num_bins, table->num_bins);
table->num_bins = new_num_bins;
table->bins = new_bins;
if ((ptr = table->head) != 0) {
do {
hash_val = ptr->hash % new_num_bins;
ptr->next = new_bins[hash_val];
new_bins[hash_val] = ptr;
} while ((ptr = ptr->fore) != 0);
}
}
st_table*
st_copy(st_table *old_table)
{
st_table *new_table;
st_table_entry *ptr, *entry, *prev, **tailp;
st_index_t num_bins = old_table->num_bins;
st_index_t hash_val;
new_table = st_alloc_table();
if (new_table == 0) {
return 0;
}
*new_table = *old_table;
new_table->bins = st_alloc_bins(num_bins);
if (new_table->bins == 0) {
st_dealloc_table(new_table);
return 0;
}
if (old_table->entries_packed) {
MEMCPY(new_table->bins, old_table->bins, st_table_entry*, old_table->num_bins);
return new_table;
}
if ((ptr = old_table->head) != 0) {
prev = 0;
tailp = &new_table->head;
do {
entry = st_alloc_entry();
if (entry == 0) {
st_free_table(new_table);
return 0;
}
*entry = *ptr;
hash_val = entry->hash % num_bins;
entry->next = new_table->bins[hash_val];
new_table->bins[hash_val] = entry;
entry->back = prev;
*tailp = prev = entry;
tailp = &entry->fore;
} while ((ptr = ptr->fore) != 0);
new_table->tail = prev;
}
return new_table;
}
static inline void
remove_entry(st_table *table, st_table_entry *ptr)
{
if (ptr->fore == 0 && ptr->back == 0) {
table->head = 0;
table->tail = 0;
}
else {
st_table_entry *fore = ptr->fore, *back = ptr->back;
if (fore) fore->back = back;
if (back) back->fore = fore;
if (ptr == table->head) table->head = fore;
if (ptr == table->tail) table->tail = back;
}
table->num_entries--;
}
int
st_delete(register st_table *table, register st_data_t *key, st_data_t *value)
{
st_index_t hash_val;
st_table_entry **prev;
register st_table_entry *ptr;
hash_val = do_hash(*key, table);
if (table->entries_packed) {
st_index_t i = find_packed_index(table, hash_val, *key);
if (i < table->real_entries) {
if (value != 0) *value = PVAL(table, i);
*key = PKEY(table, i);
remove_packed_entry(table, i);
return 1;
}
if (value != 0) *value = 0;
return 0;
}
prev = &table->bins[hash_val % table->num_bins];
for (;(ptr = *prev) != 0; prev = &ptr->next) {
if (EQUAL(table, *key, ptr->key)) {
*prev = ptr->next;
remove_entry(table, ptr);
if (value != 0) *value = ptr->record;
*key = ptr->key;
st_free_entry(ptr);
return 1;
}
}
if (value != 0) *value = 0;
return 0;
}
int
st_delete_safe(register st_table *table, register st_data_t *key, st_data_t *value, st_data_t never)
{
st_index_t hash_val;
register st_table_entry *ptr;
hash_val = do_hash(*key, table);
if (table->entries_packed) {
st_index_t i = find_packed_index(table, hash_val, *key);
if (i < table->real_entries) {
if (value != 0) *value = PVAL(table, i);
*key = PKEY(table, i);
remove_safe_packed_entry(table, i, never);
return 1;
}
if (value != 0) *value = 0;
return 0;
}
ptr = table->bins[hash_val % table->num_bins];
for (; ptr != 0; ptr = ptr->next) {
if ((ptr->key != never) && EQUAL(table, ptr->key, *key)) {
remove_entry(table, ptr);
*key = ptr->key;
if (value != 0) *value = ptr->record;
ptr->key = ptr->record = never;
return 1;
}
}
if (value != 0) *value = 0;
return 0;
}
void
st_cleanup_safe(st_table *table, st_data_t never)
{
st_table_entry *ptr, **last, *tmp;
st_index_t i;
if (table->entries_packed) {
st_index_t i = 0, j = 0;
while (PKEY(table, i) != never) {
if (i++ == table->real_entries) return;
}
for (j = i; ++i < table->real_entries;) {
if (PKEY(table, i) == never) continue;
PACKED_ENT(table, j) = PACKED_ENT(table, i);
j++;
}
table->real_entries = j;
/* table->num_entries really should be equal j at this moment, but let set it anyway */
table->num_entries = j;
return;
}
for (i = 0; i < table->num_bins; i++) {
ptr = *(last = &table->bins[i]);
while (ptr != 0) {
if (ptr->key == never) {
tmp = ptr;
*last = ptr = ptr->next;
st_free_entry(tmp);
}
else {
ptr = *(last = &ptr->next);
}
}
}
}
int
st_update(st_table *table, st_data_t key, st_update_callback_func *func, st_data_t arg)
{
st_index_t hash_val, bin_pos;
register st_table_entry *ptr, **last, *tmp;
st_data_t value = 0;
int retval, existing = 0;
hash_val = do_hash(key, table);
if (table->entries_packed) {
st_index_t i = find_packed_index(table, hash_val, key);
if (i < table->real_entries) {
value = PVAL(table, i);
existing = 1;
}
{
retval = (*func)(&key, &value, arg, existing);
if (!table->entries_packed) {
FIND_ENTRY(table, ptr, hash_val, bin_pos);
goto unpacked;
}
switch (retval) {
case ST_CONTINUE:
if (!existing) {
add_packed_direct(table, key, value, hash_val);
break;
}
PVAL_SET(table, i, value);
break;
case ST_DELETE:
if (!existing) break;
remove_packed_entry(table, i);
}
}
return existing;
}
FIND_ENTRY(table, ptr, hash_val, bin_pos);
if (ptr != 0) {
value = ptr->record;
existing = 1;
}
{
retval = (*func)(&key, &value, arg, existing);
unpacked:
switch (retval) {
case ST_CONTINUE:
if (!existing) {
add_direct(table, key, value, hash_val, hash_val % table->num_bins);
break;
}
ptr->record = value;
break;
case ST_DELETE:
if (!existing) break;
last = &table->bins[bin_pos];
for (; (tmp = *last) != 0; last = &tmp->next) {
if (ptr == tmp) {
tmp = ptr->fore;
*last = ptr->next;
remove_entry(table, ptr);
st_free_entry(ptr);
break;
}
}
break;
}
return existing;
}
}
int
st_foreach_check(st_table *table, int (*func)(ANYARGS), st_data_t arg, st_data_t never)
{
st_table_entry *ptr, **last, *tmp;
enum st_retval retval;
st_index_t i;
if (table->entries_packed) {
for (i = 0; i < table->real_entries; i++) {
st_data_t key, val;
st_index_t hash;
key = PKEY(table, i);
val = PVAL(table, i);
hash = PHASH(table, i);
if (key == never) continue;
retval = (*func)(key, val, arg);
if (!table->entries_packed) {
FIND_ENTRY(table, ptr, hash, i);
if (retval == ST_CHECK) {
if (!ptr) goto deleted;
goto unpacked_continue;
}
goto unpacked;
}
switch (retval) {
case ST_CHECK: /* check if hash is modified during iteration */
if (PHASH(table, i) == 0 && PKEY(table, i) == never) {
break;
}
i = find_packed_index(table, hash, key);
if (i == table->real_entries) {
goto deleted;
}
/* fall through */
case ST_CONTINUE:
break;
case ST_STOP:
return 0;
case ST_DELETE:
remove_safe_packed_entry(table, i, never);
break;
}
}
return 0;
}
else {
ptr = table->head;
}
if (ptr != 0) {
do {
if (ptr->key == never)
goto unpacked_continue;
i = ptr->hash % table->num_bins;
retval = (*func)(ptr->key, ptr->record, arg);
unpacked:
switch (retval) {
case ST_CHECK: /* check if hash is modified during iteration */
for (tmp = table->bins[i]; tmp != ptr; tmp = tmp->next) {
if (!tmp) {
deleted:
/* call func with error notice */
retval = (*func)(0, 0, arg, 1);
return 1;
}
}
/* fall through */
case ST_CONTINUE:
unpacked_continue:
ptr = ptr->fore;
break;
case ST_STOP:
return 0;
case ST_DELETE:
last = &table->bins[ptr->hash % table->num_bins];
for (; (tmp = *last) != 0; last = &tmp->next) {
if (ptr == tmp) {
tmp = ptr->fore;
remove_entry(table, ptr);
ptr->key = ptr->record = never;
ptr->hash = 0;
ptr = tmp;
break;
}
}
}
} while (ptr && table->head);
}
return 0;
}
int
st_foreach(st_table *table, int (*func)(ANYARGS), st_data_t arg)
{
st_table_entry *ptr, **last, *tmp;
enum st_retval retval;
st_index_t i;
if (table->entries_packed) {
for (i = 0; i < table->real_entries; i++) {
st_data_t key, val, hash;
key = PKEY(table, i);
val = PVAL(table, i);
hash = PHASH(table, i);
retval = (*func)(key, val, arg);
if (!table->entries_packed) {
FIND_ENTRY(table, ptr, hash, i);
if (!ptr) return 0;
goto unpacked;
}
switch (retval) {
case ST_CONTINUE:
break;
case ST_CHECK:
case ST_STOP:
return 0;
case ST_DELETE:
remove_packed_entry(table, i);
i--;
break;
}
}
return 0;
}
else {
ptr = table->head;
}
if (ptr != 0) {
do {
i = ptr->hash % table->num_bins;
retval = (*func)(ptr->key, ptr->record, arg);
unpacked:
switch (retval) {
case ST_CONTINUE:
ptr = ptr->fore;
break;
case ST_CHECK:
case ST_STOP:
return 0;
case ST_DELETE:
last = &table->bins[ptr->hash % table->num_bins];
for (; (tmp = *last) != 0; last = &tmp->next) {
if (ptr == tmp) {
tmp = ptr->fore;
*last = ptr->next;
remove_entry(table, ptr);
st_free_entry(ptr);
ptr = tmp;
break;
}
}
}
} while (ptr && table->head);
}
return 0;
}
#if 0 /* unused right now */
int
st_reverse_foreach(st_table *table, int (*func)(ANYARGS), st_data_t arg)
{
st_table_entry *ptr, **last, *tmp;
enum st_retval retval;
int i;
if (table->entries_packed) {
for (i = table->num_entries-1; 0 <= i; i--) {
int j;
st_data_t key, val;
key = PKEY(table, i);
val = PVAL(table, i);
retval = (*func)(key, val, arg);
switch (retval) {
case ST_CHECK: /* check if hash is modified during iteration */
for (j = 0; j < table->num_entries; j++) {
if (PKEY(table, j) == key)
break;
}
if (j == table->num_entries) {
/* call func with error notice */
retval = (*func)(0, 0, arg, 1);
return 1;
}
/* fall through */
case ST_CONTINUE:
break;
case ST_STOP:
return 0;
case ST_DELETE:
remove_packed_entry(table, i);
break;
}
}
return 0;
}
if ((ptr = table->head) != 0) {
ptr = ptr->back;
do {
retval = (*func)(ptr->key, ptr->record, arg, 0);
switch (retval) {
case ST_CHECK: /* check if hash is modified during iteration */
i = ptr->hash % table->num_bins;
for (tmp = table->bins[i]; tmp != ptr; tmp = tmp->next) {
if (!tmp) {
/* call func with error notice */
retval = (*func)(0, 0, arg, 1);
return 1;
}
}
/* fall through */
case ST_CONTINUE:
ptr = ptr->back;
break;
case ST_STOP:
return 0;
case ST_DELETE:
last = &table->bins[ptr->hash % table->num_bins];
for (; (tmp = *last) != 0; last = &tmp->next) {
if (ptr == tmp) {
tmp = ptr->back;
*last = ptr->next;
remove_entry(table, ptr);
st_free_entry(ptr);
ptr = tmp;
break;
}
}
ptr = ptr->next;
free(tmp);
table->num_entries--;
}
} while (ptr && table->head);
}
return 0;
}
#endif
/*
* hash_32 - 32 bit Fowler/Noll/Vo FNV-1a hash code
*
* @(#) $Hash32: Revision: 1.1 $
* @(#) $Hash32: Id: hash_32a.c,v 1.1 2003/10/03 20:38:53 chongo Exp $
* @(#) $Hash32: Source: /usr/local/src/cmd/fnv/RCS/hash_32a.c,v $
*
***
*
* Fowler/Noll/Vo hash
*
* The basis of this hash algorithm was taken from an idea sent
* as reviewer comments to the IEEE POSIX P1003.2 committee by:
*
* Phong Vo (http://www.research.att.com/info/kpv/)
* Glenn Fowler (http://www.research.att.com/~gsf/)
*
* In a subsequent ballot round:
*
* Landon Curt Noll (http://www.isthe.com/chongo/)
*
* improved on their algorithm. Some people tried this hash
* and found that it worked rather well. In an EMail message
* to Landon, they named it the ``Fowler/Noll/Vo'' or FNV hash.
*
* FNV hashes are designed to be fast while maintaining a low
* collision rate. The FNV speed allows one to quickly hash lots
* of data while maintaining a reasonable collision rate. See:
*
* http://www.isthe.com/chongo/tech/comp/fnv/index.html
*
* for more details as well as other forms of the FNV hash.
***
*
* To use the recommended 32 bit FNV-1a hash, pass FNV1_32A_INIT as the
* Fnv32_t hashval argument to fnv_32a_buf() or fnv_32a_str().
*
***
*
* Please do not copyright this code. This code is in the public domain.
*
* LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
* EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*
* By:
* chongo <Landon Curt Noll> /\oo/\
* http://www.isthe.com/chongo/
*
* Share and Enjoy! :-)
*/
/*
* 32 bit FNV-1 and FNV-1a non-zero initial basis
*
* The FNV-1 initial basis is the FNV-0 hash of the following 32 octets:
*
* chongo <Landon Curt Noll> /\../\
*
* NOTE: The \'s above are not back-slashing escape characters.
* They are literal ASCII backslash 0x5c characters.
*
* NOTE: The FNV-1a initial basis is the same value as FNV-1 by definition.
*/
#define FNV1_32A_INIT 0x811c9dc5
/*
* 32 bit magic FNV-1a prime
*/
#define FNV_32_PRIME 0x01000193
#ifdef ST_USE_FNV1
static st_index_t
strhash(st_data_t arg)
{
register const char *string = (const char *)arg;
register st_index_t hval = FNV1_32A_INIT;
/*
* FNV-1a hash each octet in the buffer
*/
while (*string) {
/* xor the bottom with the current octet */
hval ^= (unsigned int)*string++;
/* multiply by the 32 bit FNV magic prime mod 2^32 */
hval *= FNV_32_PRIME;
}
return hval;
}
#else
#ifndef UNALIGNED_WORD_ACCESS
# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD86) || \
defined(__mc68020__)
# define UNALIGNED_WORD_ACCESS 1
# endif
#endif
#ifndef UNALIGNED_WORD_ACCESS
# define UNALIGNED_WORD_ACCESS 0
#endif
/* MurmurHash described in http://murmurhash.googlepages.com/ */
#ifndef MURMUR
#define MURMUR 2
#endif
#define MurmurMagic_1 (st_index_t)0xc6a4a793
#define MurmurMagic_2 (st_index_t)0x5bd1e995
#if MURMUR == 1
#define MurmurMagic MurmurMagic_1
#elif MURMUR == 2
#if SIZEOF_ST_INDEX_T > 4
#define MurmurMagic ((MurmurMagic_1 << 32) | MurmurMagic_2)
#else
#define MurmurMagic MurmurMagic_2
#endif
#endif
static inline st_index_t
murmur(st_index_t h, st_index_t k, int r)
{
const st_index_t m = MurmurMagic;
#if MURMUR == 1
h += k;
h *= m;
h ^= h >> r;
#elif MURMUR == 2
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
#endif
return h;
}
static inline st_index_t
murmur_finish(st_index_t h)
{
#if MURMUR == 1
h = murmur(h, 0, 10);
h = murmur(h, 0, 17);
#elif MURMUR == 2
h ^= h >> 13;
h *= MurmurMagic;
h ^= h >> 15;
#endif
return h;
}
#define murmur_step(h, k) murmur((h), (k), 16)
#if MURMUR == 1
#define murmur1(h) murmur_step((h), 16)
#else
#define murmur1(h) murmur_step((h), 24)
#endif
st_index_t
st_hash(const void *ptr, size_t len, st_index_t h)
{
const char *data = ptr;
st_index_t t = 0;
h += 0xdeadbeef;
#define data_at(n) (st_index_t)((unsigned char)data[(n)])
#define UNALIGNED_ADD_4 UNALIGNED_ADD(2); UNALIGNED_ADD(1); UNALIGNED_ADD(0)
#if SIZEOF_ST_INDEX_T > 4
#define UNALIGNED_ADD_8 UNALIGNED_ADD(6); UNALIGNED_ADD(5); UNALIGNED_ADD(4); UNALIGNED_ADD(3); UNALIGNED_ADD_4
#if SIZEOF_ST_INDEX_T > 8
#define UNALIGNED_ADD_16 UNALIGNED_ADD(14); UNALIGNED_ADD(13); UNALIGNED_ADD(12); UNALIGNED_ADD(11); \
UNALIGNED_ADD(10); UNALIGNED_ADD(9); UNALIGNED_ADD(8); UNALIGNED_ADD(7); UNALIGNED_ADD_8
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_16
#endif
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_8
#else
#define UNALIGNED_ADD_ALL UNALIGNED_ADD_4
#endif
if (len >= sizeof(st_index_t)) {
#if !UNALIGNED_WORD_ACCESS
int align = (int)((st_data_t)data % sizeof(st_index_t));
if (align) {
st_index_t d = 0;
int sl, sr, pack;
switch (align) {
#ifdef WORDS_BIGENDIAN
# define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1: \
t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 2)
#else
# define UNALIGNED_ADD(n) case SIZEOF_ST_INDEX_T - (n) - 1: \
t |= data_at(n) << CHAR_BIT*(n)
#endif
UNALIGNED_ADD_ALL;
#undef UNALIGNED_ADD
}
#ifdef WORDS_BIGENDIAN
t >>= (CHAR_BIT * align) - CHAR_BIT;
#else
t <<= (CHAR_BIT * align);
#endif
data += sizeof(st_index_t)-align;
len -= sizeof(st_index_t)-align;
sl = CHAR_BIT * (SIZEOF_ST_INDEX_T-align);
sr = CHAR_BIT * align;
while (len >= sizeof(st_index_t)) {
d = *(st_index_t *)data;
#ifdef WORDS_BIGENDIAN
t = (t << sr) | (d >> sl);
#else
t = (t >> sr) | (d << sl);
#endif
h = murmur_step(h, t);
t = d;
data += sizeof(st_index_t);
len -= sizeof(st_index_t);
}
pack = len < (size_t)align ? (int)len : align;
d = 0;
switch (pack) {
#ifdef WORDS_BIGENDIAN
# define UNALIGNED_ADD(n) case (n) + 1: \
d |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1)
#else
# define UNALIGNED_ADD(n) case (n) + 1: \
d |= data_at(n) << CHAR_BIT*(n)
#endif
UNALIGNED_ADD_ALL;
#undef UNALIGNED_ADD
}
#ifdef WORDS_BIGENDIAN
t = (t << sr) | (d >> sl);
#else
t = (t >> sr) | (d << sl);
#endif
#if MURMUR == 2
if (len < (size_t)align) goto skip_tail;
#endif
h = murmur_step(h, t);
data += pack;
len -= pack;
}
else
#endif
{
do {
h = murmur_step(h, *(st_index_t *)data);
data += sizeof(st_index_t);
len -= sizeof(st_index_t);
} while (len >= sizeof(st_index_t));
}
}
t = 0;
switch (len) {
#ifdef WORDS_BIGENDIAN
# define UNALIGNED_ADD(n) case (n) + 1: \
t |= data_at(n) << CHAR_BIT*(SIZEOF_ST_INDEX_T - (n) - 1)
#else
# define UNALIGNED_ADD(n) case (n) + 1: \
t |= data_at(n) << CHAR_BIT*(n)
#endif
UNALIGNED_ADD_ALL;
#undef UNALIGNED_ADD
#if MURMUR == 1
h = murmur_step(h, t);
#elif MURMUR == 2
# if !UNALIGNED_WORD_ACCESS
skip_tail:
# endif
h ^= t;
h *= MurmurMagic;
#endif
}
return murmur_finish(h);
}
st_index_t
st_hash_uint32(st_index_t h, uint32_t i)
{
return murmur_step(h + i, 16);
}
st_index_t
st_hash_uint(st_index_t h, st_index_t i)
{
st_index_t v = 0;
h += i;
#ifdef WORDS_BIGENDIAN
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 12*8
v = murmur1(v + (h >> 12*8));
#endif
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 8*8
v = murmur1(v + (h >> 8*8));
#endif
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 4*8
v = murmur1(v + (h >> 4*8));
#endif
#endif
v = murmur1(v + h);
#ifndef WORDS_BIGENDIAN
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 4*8
v = murmur1(v + (h >> 4*8));
#endif
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 8*8
v = murmur1(v + (h >> 8*8));
#endif
#if SIZEOF_ST_INDEX_T*CHAR_BIT > 12*8
v = murmur1(v + (h >> 12*8));
#endif
#endif
return v;
}
st_index_t
st_hash_end(st_index_t h)
{
h = murmur_step(h, 10);
h = murmur_step(h, 17);
return h;
}
#undef st_hash_start
st_index_t
st_hash_start(st_index_t h)
{
return h;
}
static st_index_t
strhash(st_data_t arg)
{
register const char *string = (const char *)arg;
return st_hash(string, strlen(string), FNV1_32A_INIT);
}
#endif
int
st_strcasecmp(const char *s1, const char *s2)
{
unsigned int c1, c2;
while (1) {
c1 = (unsigned char)*s1++;
c2 = (unsigned char)*s2++;
if (c1 == '\0' || c2 == '\0') {
if (c1 != '\0') return 1;
if (c2 != '\0') return -1;
return 0;
}
if ((unsigned int)(c1 - 'A') <= ('Z' - 'A')) c1 += 'a' - 'A';
if ((unsigned int)(c2 - 'A') <= ('Z' - 'A')) c2 += 'a' - 'A';
if (c1 != c2) {
if (c1 > c2)
return 1;
else
return -1;
}
}
}
int
st_strncasecmp(const char *s1, const char *s2, size_t n)
{
unsigned int c1, c2;
while (n--) {
c1 = (unsigned char)*s1++;
c2 = (unsigned char)*s2++;
if (c1 == '\0' || c2 == '\0') {
if (c1 != '\0') return 1;
if (c2 != '\0') return -1;
return 0;
}
if ((unsigned int)(c1 - 'A') <= ('Z' - 'A')) c1 += 'a' - 'A';
if ((unsigned int)(c2 - 'A') <= ('Z' - 'A')) c2 += 'a' - 'A';
if (c1 != c2) {
if (c1 > c2)
return 1;
else
return -1;
}
}
return 0;
}
static st_index_t
strcasehash(st_data_t arg)
{
register const char *string = (const char *)arg;
register st_index_t hval = FNV1_32A_INIT;
/*
* FNV-1a hash each octet in the buffer
*/
while (*string) {
unsigned int c = (unsigned char)*string++;
if ((unsigned int)(c - 'A') <= ('Z' - 'A')) c += 'a' - 'A';
hval ^= c;
/* multiply by the 32 bit FNV magic prime mod 2^32 */
hval *= FNV_32_PRIME;
}
return hval;
}
int
st_numcmp(st_data_t x, st_data_t y)
{
return x != y;
}
st_index_t
st_numhash(st_data_t n)
{
return (st_index_t)n;
}
Jump to Line
Something went wrong with that request. Please try again.