Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
##M3 Simulation Examples
library(simsem)
##Example methodological simulation. Vary percent missing data (MCAR)
##Percent missing, traditional method
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LX <- simMatrix(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPH <- symMatrix(latent.cor, 0.5)
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTD <- symMatrix(error.cor)
CFA.Model <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD)
SimData <- simData(CFA.Model, 500)
SimModel <- simModel(CFA.Model)
SimMissing <- simMissing(pmMCAR=0.05, numImps=0)
Output.05 <- simResult(2000, SimData, SimModel, objMissing=SimMissing, multicore=F)
summary(Output.05, digits=5)
round(colMeans(Output.05@fit),3)
SimMissing <- simMissing(pmMCAR=0.40, numImps=0)
Output.40 <- simResult(2000, SimData, SimModel, objMissing=SimMissing, multicore=F)
summary(Output.40, digits=5)
round(colMeans(Output.40@fit),3)
SimMissing <- simMissing(pmMCAR=0.8, numImps=0)
Output.8 <- simResult(2000, SimData, SimModel, objMissing=SimMissing, multicore=F)
summary(Output.8, digits=5)
round(colMeans(Output.8@fit),3)
#Pull elements for F tests
PS.05<-cbind(Output.05@coef$PS2_1, rep(1,length(Output.05@coef$PS2_1)))
PS.40<-cbind(Output.40@coef$PS2_1, rep(2,length(Output.40@coef$PS2_1)))
PS.8<-cbind(Output.8@coef$PS2_1, rep(3,length(Output.8@coef$PS2_1)))
PS <- data.frame(rbind(PS.05,PS.40,PS.8))
PS$X2<-as.factor(PS$X2)
m1<-lm(X1~X2, data=PS)
CFI <- c(Output.05@fit$CFI,Output.40@fit$CFI,Output.8@fit$CFI)
chi <- c(Output.05@fit$Chi,Output.40@fit$Chi,Output.8@fit$Chi)
RMSEA <- c(Output.05@fit$RMSEA,Output.40@fit$RMSEA,Output.8@fit$RMSEA)
SRMR <- c(Output.05@fit$SRMR,Output.40@fit$SRMR,Output.8@fit$SRMR)
PS <- cbind(PS, CFI, chi, RMSEA, SRMR)
PS$X2 <- as.factor(PS$X2)
m1<-lm(CFI~X2, data=PS)
anova(m1)
m1<-lm(chi~X2, data=PS)
anova(m1)
m1<-lm(RMSEA~X2, data=PS)
anova(m1)
m1<-lm(SRMR~X2, data=PS)
anova(m1)
#Continously varying parameters
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LX <- simMatrix(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPH <- symMatrix(latent.cor, 0.5)
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTD <- symMatrix(error.cor)
CFA.Model <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD)
SimData <- simData(CFA.Model, 500)
SimModel <- simModel(CFA.Model)
mis <- simUnif(.01,.9)
Output <- simResult(2000, SimData, SimModel, pmMCAR=mis, multicore=T)
summary(Output, digits=5)
round(colMeans(Output@fit),3)
#Create data frame for analysis
PS <- data.frame(cbind(Output@paramValue$PS2_1,Output@coef$PS2_1, Output@pmMCAR))
names(PS) <- c('pop', 'samp', 'pmMCAR')
PS$bias <- (PS$pop-PS$samp)/PS$pop
m1 <- lm(bias ~ pmMCAR, data=PS)
PS$chis <- Output@fit$Chi
PS$RMSEA <- Output@fit$RMSEA
PS$CFI <- Output@fit$CFI
PS$SRMR <- Output@fit$SRMR
#Analyze results with regression
m1 <- lm(chis ~ pmMCAR, data=PS)
summary(m1)
m1 <- lm(RMSEA ~ pmMCAR, data=PS)
summary(m1)
m1 <- lm(CFI ~ pmMCAR, data=PS)
summary(m1)
m1 <- lm(SRMR ~ pmMCAR, data=PS)
summary(m1)
#plot results for continously varying percent missing
plot(PS$pmMCAR, PS$bias, ylab="Parameter Bias", xlab="% Missing", ylim=c(-1,1), mar=c(0,0,0,0), cex.lab=1.5, cex.axis=1.25)
m1 <- lm(bias ~ pmMCAR, data=PS)
abline(reg = m1, col='blue', lwd=2.5)
points(.05, -.00004, pch=16, col='red', lwd=2.5, bg='red')
points(.40, .00021, pch=16, col='red', lwd=2.5, bg='red')
points(.80, -.00882, pch=16, col='red', lwd=2.5, bg='red')
plot(PS$pmMCAR, PS$CFI, ylab="CFI", xlab="% Missing", ylim=c(.7,1), mar=c(0,0,0,0), cex.lab=1.5, cex.axis=1.25)
m1 <- lm(CFI ~ pmMCAR, data=PS)
abline(reg = m1, col='blue', lwd=2.5)
points(.05, .998, pch=16, col='red', lwd=2.5, bg='red')
points(.40, .994, pch=16, col='red', lwd=2.5, bg='red')
points(.80, .956, pch=16, col='red', lwd=2.5, bg='red')
plot(PS$pmMCAR, PS$SRMR, ylab="SRMR", xlab="% Missing", ylim=c(0,.2), mar=c(0,0,0,0), cex.lab=1.5, cex.axis=1.25)
m1 <- lm(SRMR ~ pmMCAR, data=PS)
abline(reg = m1, col='blue', lwd=2.5)
points(.05, .017, pch=16, col='red', lwd=2.5, bg='red')
points(.40, .029, pch=16, col='red', lwd=2.5, bg='red')
points(.80, .107, pch=16, col='red', lwd=2.5, bg='red')
plot(PS$pmMCAR, PS$chis, ylab="Chi square", xlab="% Missing", ylim=c(0,40), mar=c(0,0,0,0), cex.lab=1.5, cex.axis=1.25)
m1 <- lm(chis ~ pmMCAR, data=PS)
abline(reg = m1, col='blue', lwd=2.5)
points(.05, 8.13, pch=16, col='red', lwd=2.5, bg='red')
points(.40, 8.23, pch=16, col='red', lwd=2.5, bg='red')
points(.80, 8.16, pch=16, col='red', lwd=2.5, bg='red')
plot(PS$pmMCAR, PS$RMSEA, ylab="RMSEA", xlab="% Missing", ylim=c(0,.10), mar=c(0,0,0,0), cex.lab=1.5, cex.axis=1.25)
m1 <- lm(RMSEA ~ pmMCAR, data=PS)
abline(reg = m1, col='blue', lwd=2.5)
points(.05, .012, pch=16, col='red', lwd=2.5, bg='red')
points(.40, .013, pch=16, col='red', lwd=2.5, bg='red')
points(.80, .014, pch=16, col='red', lwd=2.5, bg='red')
##Power analysis example
##Continously varying sample size
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LX <- simMatrix(loading, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPH <- symMatrix(latent.cor, 0.1)
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTD <- symMatrix(error.cor)
CFA.Model <- simSetCFA(LX = LX, RPH = RPH, RTD = RTD)
SimData <- simData(CFA.Model, 500)
SimModel <- simModel(CFA.Model)
ContN <- simUnif(100, 2000)
Output.pow <- simResult(3000, SimData, SimModel, n=ContN, multicore=F)
summary(Output.pow, digits=5)
pow<-continuousPower(Output.pow, powerParam = 'PS2_1')
pow[pow[,2]>.8 & pow[,2]<.84,][1,] #power of .80004 is sample size of 1436
#plot power
plot(pow[,1], pow[,2], type='l',ylab="Power", xlab="Sample Size", lwd=2, ylim=c(0,1), cex.lab=1.5, cex.axis=1.25)
#Test power traditional way
SimData <- simData(CFA.Model, 1436)
SimModel <- simModel(CFA.Model)
Output.trad <- simResult(3000, SimData, SimModel, multicore=T)
summary(Output.trad, digits=5) #power = .810