S

Warsaw University of Technology
Faculty of Electronics and Information Technology

Institute of Electronic Systems

Wojciech Obuchowicz
ID number: 252852

Bachelor’s diploma thesis

Firmware for Sinara’s two-channel temperature
controller

Thesis supervisor:

Maciej Linczuk, PhD

Warsaw 2019

Summary

Title: Firmware for Sinara’s two-channel temperature controller

The goal of the thesis is to design firmware for 2-channel temperature controller of the Sinara hard-
ware family. Consecutive project phases are formulating design assumptions, designing the firmware,
testing the firmware using the prototype, testing the firmware with the device and presenting results. The
firmware is designed for TM4C1294NCPDT microcontroller from Texas Instruments. The project im-
plements various solutions: Ethernet communication, MQTT protocol, RTOS, PID control and others.

Keywords: firmware, microcontroller, PID controller, ARM, Ethernet, MOTT

Streszczenie

Tytul: Oprogramowanie modutu dwukanatowego kontrolera temperatury projektu Sinara

Celem niniejszej pracy jest zaprojektowanie oprogramowania dla dwukanatowego kontrolera temper-
atury projektu Sinara. Na kolejne etapy pracy sktada si¢ sformutowanie zatozen projektowych, opracow-
anie oprogramowania, przetestowanie oprogramowania z uzyciem prototypu, przetestowanie dzialania
urzadzenia z zatadowanym oprogramowaniem oraz przedstawienie wynikéw pracy. Oprogramowanie
zaprojektowano dla mikrokontrolera TM4C1294NCPDT firmy Texas Instruments. W projekcie wyko-
rzystano wiele roznych rozwiazan: komunikacj¢ Ethernet, protokot MQTT, RTOS, regulacj¢ PID i inne.

Stowa kluczowe: firmware, mikrokontroler, regulator PID, ARM, Ethernet, MOTT

Tg kartke nalezy zastapi¢ o§wiadczeniem o autorstwie pracy.

Contents

Contents

1 Introduction
1.1 About temperature stabilization|. L L
1.2 About Sinara project]

2 Review of existing solutions and the purpose of the thesis
2.1 Review of existing solutions|
2.2 Thepurposeofthethesis L

3 Design assumptions and design concept
3.1 About thermostat project
3.2 Designassumptions| i i e e e e e e e
3.3 Designconcept

N

Design of the firmware

4.1 Prototyping) vt
4.2 Description of the firmware for thermostat_thorlabs|
4.3 Description of the firmware for thermostat max|.

5 Testing of the firmware|
5.1 Testing the thermostat_thorlabs version|
5.2 Testing the thermostat_ max version

6 Conclusions

List of Figures
List of Tables

A Appendix

IA.1 Source code ofthe firmware
[A.2 Schematics ofthedevicel

Bibliography

15
15
18
28

35
35
37

45

47

49

51
51
64

73

1 Introduction

1.1 About temperature stabilization

Throughout history, humanity has struggled with the problem of temperature stabilization. The problem
arose from the need to provide comfortable living conditions. It is believed that early humans used
caves as their living places [6]. They served as shelters from adverse weather conditions, wild animals,
but also from excessive temperature fluctuations. The structure of the cave ensured that in winter the
temperature was higher than outside and in summer it was lower than outside. If the cave itself did not
provide the right temperature, humans wore fur clothing — another tool to control the temperature. The
discovery of fire was a milestone for temperature stabilization — with controlled fire humans could easily
keep their homes warm. Throughout the centuries the control of the temperature had to be conducted
by people. They assessed subjectively whether the temperature was comfortable and, consequently, they
increased or decreased the heat. The discovery of electricity has brought significant changes in the area
of temperature control. The use of relays made it possible to perform objective and more precise control
of the temperature. Electronics enabled further improvements in the field of temperature stabilization.
Nowadays, advanced temperature control systems are used not only in homes but also in science. For
instance, high precision temperature control is required in the field of quantum physics. Many research
teams struggle with high requirements for temperature stabilization. One of them is the team of Sinara
project.

1.2 About Sinara project

Sinara is an open source instrumentation family built for the purposes of the ARTIQ project [17]. ARTIQ
(Advanced Real-Time Infrastructure for Quantum Physics) is an initiative created within partnerships
between M-Labs and the National Institute of Standards and Technology (NIST), which currently has
more than a dozen research institutions from around the world [4, 10]. As part of ARTIQ, a control
system is being developed for applications in experiments in the field of quantum computing. The
Sinara project was created in response to the need to improve the quality, functionality and scalability of
ARTIQ systems. Hardware Sinara is designed to be reproducible, modular and easy to adapt. Because
experiments in the field of quantum computing put high demands on fast data processing in real time,
Sinara modules are produced in two forms — MicroTCA and Eurocard Extension Module (EEM). Cur-
rently, over 40 modules of the Sinara family are being developed [18]. One of the institutions involved
in the Sinara project is the Institute of Electronic Systems at Warsaw University of Technology [16].

As mentioned before, the Sinara team faces high demands on temperature control. Experiments in the
field of quantum computing require temperature stability at the level of millikelvins. That is why the idea
of implementing a two-channel temperature control module in ARTIQ system was born. The module
must provide the required temperature stability and be compatible with the ARTIQ system (Ethernet
communication, proper PCB form etc.).

2 Review of existing solutions and the
purpose of the thesis

2.1 Review of existing solutions

Owing to the fact that the desired device has very specific requirements for temperature stability and
compatibility, there are no ready-made solutions on the market. It is also difficult to find modules
with similar functionality. However, by inspecting the market in search of similar devices, one can find
modules that provide temperature control via Ethernet.

2.1.1 AR654

Figure 2.1. Four-channel universal controller AR654 from Apar [E]

The Apar’s universal controller AR654 enables temperature control in four channels via Ethernet [3].
Both control through a web application and a remote terminal are provided. However, this device is very
advanced when it comes to functionality. Not only temperature control, but also control of other physical
quantities (humidity, pressure, flow, velocity, etc.) is possible. The controller is not designed in any of
the standards used by the Sinara project (EEM, MicroTCA) and requires a mains or low-voltage power
supply from a separate socket. It also has parts unnecessary from the point of view of the Sinara project:
a graphic LCD display, a keyboard and a USB port. The software of this device enables displaying,
keyboard handling, writing to flash memory and many functions redundant in the ARTIQ system.

2.1.2 Uniplex IIT

@) K1eppErR ©) KiEpPER
o o
UNIPLEX 11, [

Figure 2.2. Uniplex III heating controller from Klopper Therm [E]

The Uniplex III temperature controller from Kidpper Therm is produced in the form of EEM [24].
However, also in this case, the module uses power from a separate socket. In addition, the device
provides support for only one channel and has a display and a keyboard that are unnecessary when it
comes to the Sinara project. Service via the web application is not provided. From the point of view of
the firmware, the module may have similar solutions regarding the remote terminal to those that might
be used in the desired module.

Due to the lack of ready-made solutions on the market, Sinara team decided to create their own tem-
perature controller called thermostat. The PCB of the project was designed in the Institute of Electronic
Systems at Warsaw University of Technology. Firmware of the device is the subject of this thesis.

2.2 The purpose of the thesis

The purpose of the thesis is to design firmware for the two-channel temperature controller of the Sinara
project. This includes, in particular, the ability to control the settings of the device and read data from
it using the web application or a remote terminal enabling easy automation with Python scripts. The
firmware must also provide temperature control mechanism.

The purpose of the device is to stabilize the temperature at the level of 1 mK, however, reaching
this level of stability is not the purpose of the thesis. For many reasons, mainly regarding laboratory
capabilities, tuning the device was left in the hands of physicists of Sinara project.

3 Design assumptions and design concept

3.1 About thermostat project

The temperature controller module developed by the Sinara team is called thermostat [20]. Be-
cause temperature control for ARTIQ system applications does not set the highest requirements for
signal phase control, the device has been designed in the form of EEM, which is cheaper than the
form of MicroTCA also used by ARTIQ [30], nevertheless, it is sufficient for the project. Communica-
tion with the controller occurs via the RJ-45 connector, the temperature can be controlled in two channels.

At the Institute of Electronic Systems, a PCB was designed for two versions of the device [20,21].
One of them uses a ready-made TEC driver from Thorlabs, with which the microcontroller communi-
cates using UART. This version was called thermostat _thorlabs and was not finally produced due to the
unsatisfactory performance of the TEC driver. However, the firmware of this version has been created
and is described in this thesis.

The simplified schematic diagram of thermostat _thorlabs looks as follows:

Peltier module,
MTD415T
< 10 kQ thermistor
RJ-45 TM4C1294NCPDT
A
Power circuit Peltier module,
MTD415T
10 kQ thermistor

Figure 3.1. Simplified schematic diagram of thermostat thorlabs

The thermostat_thorlabs is powered via an RJ-45 connector, using the Ag5300 module from Silvertel.
Ag5300 makes it possible to obtain an output signal of 12V and power up to 30W, using PoE (Power over
Ethernet) technology.

7~ -
=
pog) ——
Inputs —t— AQSSOO
e VINe . _ . DG
VIN- Signature peoc T [L e
& control comver‘ter—‘_ T /~ output
| -vDC |
AT DET ADJ
Figure 3.2. Block diagram of Ag5300 [2]

Two input pins — VIN+ and VIN- — are connected to the positive and negative pins of the PoE.
AT DET pin of Ag5300 is set automatically when the power is supplied to the 4g5300 via Cat 5e
cable. This pin is not used in the project. Thanks to the DC/DC converter of the module, 12V voltage
is provided between pins -VDC and +VDC. The converter has built-in output overload and short-circuit

protection.

Input signals coming to the thermostat_thorlabs via the RJ-45 connector are processed by the Texas
Instruments’ TM4C1294NCPDT microcontroller equipped with a 32-bit ARM Cortex M4 core and an

integrated Ethernet hardware support.

Table 3.1. Selected parameters of the TM4C12294NCPDT microcontroller [19].

|

Performance
Core ARM Cortex-M4F
Performance 120 MHz
Flash 1024 kB
SRAM 256 kB
EEPROM 6 kB
Communication Interfaces
UART 8x
QSSI 4x
12C 10x
CAN 2%
Ethernet MAC 10/100
USB USB 2.0
System Integration
DMA 32-channel configurable DMA controller
General-Purpose Timers 8%
Watchdog Timers 2x
GPIO 15x

The microcontroller is based on the most widely used instruction set architecture — ARM [12]. 1024
kB flash and 120 MHz clock rate are more than sufficient for project’s applications. 6 kB EEPROM can
be used to save modifiable parameters of the thermostat. The device provides multiple communication
interfaces and Ethernet is the most important for the designed device. Many UART and QSSI interfaces
ensure effective communication with units of the thermostat. General-purpose timers can be used in the
project for time management and pulse shaping. Also, watchdog timers are useful to detect and recover
from potential malfunctions.

In each of the two channels, there is Thorlabs’ MTD415T TEC driver, which controls the Peltier
module using an external temperature sensor. The microcontroller communicates with the MTD415T
module via the UART interface.

Figure 3.3. MTD415T [22]

Table 3.2. Selected parameters of the MTD415T [22]

Output Power up to 6.0 W
Maximum Temperature Control Range +5°C to +45°C
Temperature Setting Resolution 1 mK
Temperature Measurement Resolution better than 10 mK, typically 2 mK
Absolute Temperature Accuracy + 0.5°C
Temperature Stability over 8 h, typically better than 20 mK
Interface UART, 115 200 b/s, 8 data bits, 1 stop bit

The maximum output power of the module is 6.0 W — that is more than sufficient as the power circuit
of the thermostat capable of providing up to 8W. Range of the controlled temperature is adequate — there
is no need to provide control of temperatures lower than +5°C or higher than +45°C. Temperature setting
resolution is good enough, however, measurement resolution, as well as temperature stability, was finally
found not satisfactory. For this reason, the manufacturing of thermostat_thorlabs was abandoned.

As the schematic diagram shows, a Peltier module and a temperature sensor are connected to each
MTD415T.

The second version of the device is a version using two MAX1968 systems from Maxim IC — switch-
mode drivers for Peltier modules and 4D7172-2 from Analog Devices — a sigma-delta analog-to-digital
converter. The simplified schematic diagram of this version of the project looks as follows:

MAX1968 Peltier module

Temperature
/ sensor
k
RJ-45 TM4C1294NCPDT AD7172-2
F \
, Temperature
\ sensor
Power circuit 7
MAX1968 Peltier module

Figure 3.4. Simplified schematic diagram of thermostat max

The difference with the previous version is the use of MAX1968 chips. MAX1968 allows to control
the current and voltage of the Peltier module.

10

ON

OFF

REF

|H—”—cn

MAXV

REF

FREQ

IFAA-AAA—o

MAXIP

MAX Vree =

Viay x 4

MAXIN

MAX leg =
(Vnaxip | VReF) x

(0.15V / Rsese)

HFAAA—AAN

ITEC

CTu

MAX leg =
(Ve / Vrer) %

(015V / Rsense)

T

s

081

REF

COMP

GND

w|}—T—||—

PWM CONTROL
AND
GATE CONTROL

Voo

PVpp1

V10

LX1

PGND1

=

o]

081

B

0s2

PVpp2

PGND2

MAX1968

<l

As the manufacturer points, the MAX1968 consists of two switching buck regulators operating
together to directly control TEC current. REF is the output pin with 1.5V reference voltage. MAXV,
MAXIP and MAXIN are input pins used to set maximum bipolar TEC voltage, maximum positive TEC
current and maximum negative TEC current respectively. PWM signals from microcontroller are used in
the project as signals to set these values. /TEC is an output signal corresponding to the value of the actual
TEC current, while CTLI is an input signal to set TEC current. FREQ pin allows selection of switching
frequency. SHDN is shutdown control input — it is used in the project to enable or disable TEC driver
using the microcontroller GPIO signal. The other pins of the MAX7968 device are significant from the
design point of view — the choice of the connected resistors, capacitors and inductors determines the

Figure 3.5. Block diagram of MAX1968 m

resonant frequency of output filter and other design features.

To read the voltage on thermistors, the AD7172-2 analog-to-digital converter is used.

11

AVDD1 AVDD2 REGCAPA REF- REF+ REFOUT IOVDD REGCAPD
")

AR e a0
MULTIPLI . AVSS
BUFFERED
\ LDo PRECISION Lbo
REFERENCE
RAIL-TO-RAIL
AINO AVDD REFERENCE ‘ INT
é INPUT BUFFERS REF cs
AIN1 -E;C
SCLK
N SERIAL
L raapc [DGITAL N INTERFACE DIN
AIN2 FILTER = AND CONTROL|
{:; D‘ |—=(> DOUT/RDY
AIN3 RAIL-TO-RAIL SYNEERROE
é ANALOG INPUT GPIO AND XTAL AND INTERNAL [=+=(J SYNC/ERROR
BUFFERS MUX CLOCK OSCILLATOR
AIN4 Al AVSS 1/0 CONTROL CIRCUITRY
/TEMPERATURE AD7172-2
SENSOR
h—
AVSS GPIOD GPIO1 XTAL1 XTAL2/CLKIO DGND

Figure 3.6. Block diagram of AD7172-2 1]

The AD7172-2 is a low noise, low power ADC with 2 fully differential channels or 4 single-ended
channels. The maximum channel scan rate of the device is of 6.21 kSPS. The output data rates range
from 1.25 SPS to 31.25 kSPS. The analog-to-digital converter has three essential blocks:

e ¥ — A ADC block
o digital filter block

e serial interface and control block

ADC block handles fundamental functionality that is converting an analog signal to a digital signal.
Digital filter block is responsible for filtering the output signal to reach the desired optimization of noise,
settling time, and rejection. Serial interface and control block handles SPI communication.

Input pins for analog signals are from A/NO to AIN4. The first four are connected to temperature
sensors used in the project. CS, SCLK, DIN, DOUT/RDY pins are connected to the microcontroller —
they are used for SPI communication. AVDDI1, AVDD2, REGCAPA, REF-, REF+, IOVDD, REGCAPD,
AVSS and DGND are pins for power purposes. The other pins, including general purpose input/output
pins and pins for external crystal oscillator, are not used in the designed device.

In the further part of the thesis the name thermostat refers to the whole project, the name thermo-
stat_thorlabs — to the version of the project with MTD415T modules, and the name thermostat max —
to the version with the MAX7968 chips. Schematics of both versions of the device are included as an
attachment to the thesis.

3.2 Design assumptions

The firmware of the thermostat module for the TM4C1294NCPDT microcontroller must meet the fol-
lowing requirements:

e The firmware must be error-proof and easy to modify.

o Two MTD415T/MAXI1968 controllers must be serviced in two channels from the web application
level.

e Temperature control should be possible via a remote terminal enabling automation using Python
scripts.

12

e The configuration of the connection should be as automatic as possible, but it should be possible
to change and save.

e In the case of using external solutions (e.g. libraries), they should be open source solutions.

3.3 Design concept

To ensure the reliability of the created firmware, it should be as simple as possible, should not use
unnecessary functions in the code, should provide control of set values and error handling. The simplicity
of the modification is assured if each functionality is served by a separate function, and the code is well
described.

In order to implement the communication protocols used in project, it was necessary to use the TCP/IP
stack. Lightweight IP (IwIP) is the widely used TCP/IP stack for embedded systems [25]. The popularity
of this stack implies that it is well-tested on different microcontrollers. Using IwIP ensures low memory
usage while still having a full-sized TCP/IP stack [9]. An additional advantage is that IwIP is open source.

Figure 3.7. IwIP logo [9]

The project uses a real-time operating system (RTOS) for embedded devices. The advantages of this
solution are as follows:

e Simultaneous service of the web application, remote terminal, communication with the controller
and other side tasks should be much simpler with the use of RTOS multithreading. Scheduling
and synchronization of these tasks without an operating system would be a complex problems by
themselves, implicating a potentially greater number of errors.

e The use of RTOS ensures higher processor performance, because there is no time wasted on
completing various threads.

e Better management of resources. When a thread connected to a web server has to share resources
with a thread related to a remote terminal, RTOS solves it by inversion of priorities.

e Using the operating system should provide a more simple and transparent code structure.

e Portability - using RTOS simplifies the implementation of the created firmware in case of need to
change the microcontroller in the device.

The idea of implementing a dedicated real-time operating system was abandoned and one of the
systems available on the market was implemented. Writing a dedicated RTOS would involve a relatively
high cost of time and a potentially greater risk of unreliability in the first period of use of the device.
The popular operating systems for embedded devices available on the market should no longer deal with
many defects. What is more, popular RTOS has probably been tested many times in integration with the
IwlIP library.

FreeRTOS was chosen from the real-time operating systems available on the market. The advantage
of this system is that it is one of the two most popular RTOS for embedded devices [26]. That brings with

13

&
&

Figure 3.8. FreeRTOS logo [8]

it higher reliability, a larger knowledge base about the system and a larger community that supports itself
in solving design problems.

An additional advantage of FreeRTOS is that it is open source, which is consistent with the design
assumptions of the Sinara hardware family. Another benefit is a set of already existing Ethernet projects
implemented on the TM4C1294NCPDT microcontroller. These working projects are provided by
the manufacturer with Tivaware package designed to help developers in their work. In fact, Texas
Instruments attached the FreeRTOS system in Tivaware library.

The last significant choice is the issue of how to implement the remote text terminal. One solution
would be to use the SCPI communication standard and the Telnet protocol. However, choosing this
option would require defining the way of issuing commands (e.g. the commands would have to end
with the “carriage return” sign). The way the command should be handled would have to be complex
and, therefore, it would be non-standard (i.e. limited to this specific device). Using this solution would
imply problems in case of need to change microcontroller. Moreover, Telnet by itself does not provide
sufficient certainty of delivery. Additional functions implemented on the server side as well as on the
client side would be necessary for this purpose. For all of these reasons, the idea of implementing the
remote terminal has been abandoned.

Eventually, the MQ Telemetry Transport protocol (MQTT) based on the publication/subscription
pattern, was implemented in the project. This protocol perfectly fits for applications in embedded
systems — it is extremely simple and light (i.e. it needs little resources). It does not need a wide
bandwidth, it provides high reliability and allows to manage the assurance of delivery [31]. Furthermore,
many ARTIQ software tools use MQTT successfully [20], so it will be easier to adapt and use the device
in the ARTIQ system.

14

4 Design of the firmware

The firmware of the thermostat project was written in C language in the C99 standard and is divided into
many source files. The full source code of both versions of the project is on the CD attached to the thesis.

4.1 Prototyping

Before the final version of the thermostat firmware was achieved, the project had been gradually devel-
oped using the tools available at the university.

4.1.1 Hardware

Before working with the final version of the thermostat device, the firmware was developed using the
TM4C1294XL evaluation board from Texas Instruments, which is based on the TM4C1294NCPDT mi-
crocontroller with a built-in Ethernet MAC and PHY chip [23]. The development board contains multiple
peripherals useful while designing firmware with Ethernet connectivity. Among these peripherals there
are:

e Ethernet port

micro USB connector

debugger, programmer and UART-USB converter

4 user LEDs

2 user buttons

a set of pins enabling, for example, a connection of additional peripheral devices

As the project required the use of three UART interfaces, a USB-UART converter module based on
the CP2102 chipset was used for prototyping.

4.1.2 Software

The thermostat firmware was created in the Code Composer Studio - an integrated development envi-
ronment dedicated to projects for 7exas Instruments microcontrollers. CCS includes a C/C++ optimizing
compiler, a friendly source code editor and a debugger [7]. TM4C1294NCPDT microcontroller used in
the project thermostat is supported by CCS with no limit on the size of the code.

15

P11
casd
NEK-THAC1294XL
) Bo

Figure 4.1. TM4C1294XL evaluation board

¥ workspace - thermostat_max/spi.c - Code Composer Studio - X
File Edit View Navigate Project Run Scripts Window Help
Db 0P @~k -iRESE- D ®l[=
[Project Explorer 5% = B | [¢ thermostatc [€] config.c [2] leds.c [£] send_command.c [8) spi.c 52 id_task.c maqtt_client.c & = B [Target Configurations % = 8
& - | L 551UaTaGET (5511 BASE, &datall]); & @
BE% 171 data[i] &= BxB@FF; i A=
[K) FreeRTOSConfig.h A 172 ¥ type filter text
[d] idle_task.c 173
(9 el sdcc 15 remlt - et s (satal] <e 31 & Ve b
result = result + (data << 8); (= User Defines
% :";E"‘“'j“"h 176 result = result + (data[3]);
es.c 177
] leds.h 178 result = result - @x300000;
€] Iwip_task.c 179
&) wip_taskch 180 *channel = data[4];
L 181
[hwipopts.n 182 if(data[4] == @xB || data[4] == @x1) {
Lo matt_client.c 183 return result;
[H] matt_client.h 184 } else {
[pid_task.c 185 return @xfFFfffff;
[1) pid_taskch 156 }
[H priorities.h 157
& pwm.c Loey
- 189
[pwm.h ©int32_t getTemp(int32_t RawTemp, int32_t Te, int32 t Beta, intle t Ratio, intls t tempmode, int32_t ptA, int3z t
(€] send_command.c 1{
[B send_command.h 2 float alpha = ((float) RawTemp)/83886@8.8; // raw/2°23
(5] seril_task.c 2 Foat recepTs
[B] seria] tasich 5 Float temp adiv2bs
[g] serial.c 6 float temp_ldivb;
[B] serial.h 7 int32_t result;
; 3
spi.c
% szm S if(tempmode == 8) {
o // LT = 1/T@ + 1/B*In(alpha/(1-alpha)*Rref/Re v Click the New button to create a new target
[4) startup_ces.c , et e P,
B teinet < > configuration file. Click here to hide this message.
elnet.c
0] telneth B Consale 3 S BHE | M B -9~ = O [@rroblems O Advice 57 5 Progress 47 Search H v =0
[thermostat_ccs.cmd max 3 items
[6) thermostat.c CORTEX_M4_@: GEL Output: ~ Description N Resource Path
g vart_th.e Memory Map Initialization Complete .
[v v i Optimization Advice (3 items)
< > < >
Writable Smart Insert 216:36

Figure 4.2. GUI of Code Composer Studio

Realterm software was used to work with UART. Realterm is a console emulator that allows capturing,
controlling and debugging data streams from, for example, UART |

16

Zm RealTerm: Serial Capture Program 2.0.0.70

i
IP Address:

Open a browser and enter the IP address to access the web server.lflk

169 .254. 24

Display]Pnrt] Eapture] Pins 1 Send] Echo Pnrt] 12C] 12C-2 I IZEMlsc] Misc]

Dizplay f&s [~ Half Duplex Status
(@ ﬁ;g:' ™ newLine mode | Connected
 Hexlspace] | [Inwert [7Bits _IR=D2
£ Mo fsdl TRD (3
l_l: wg‘ Data Frames _|CT5(8)
¢ mifb Bytes |2 & jDCD m
uint] DSR (8]
O Ascii [Single Gulp ;
s _|Ring (3)
[_C Hlilgab[% Fows Cols _|BREAK
e Hg:lCSV Terminal Font| (16 % |80 3| [Scrollback | Enar

- LFLg
9 .46 LFRlF

By " Bl " LFCR

An| Clear| Freeze| 7|

You can use ActiveX automation to control mel

Char Count:452 CPS:0 Port: 5115200 8M1 Non

Figure 4.3. GUI of Realterm

The thermostat project uses Ethernet to communicate with a microcontroller. To successfully develop
a part of the project responsible for network connectivity with the PCB, it was necessary to use a program
that allows capturing and analyzing data flowing in the network. A popular, open source Wireshark
program has been selected for these applications. A big advantage of Wireshark is relatively simple
handling with a graphical user interface.

£ Przechwytywanie z Ethemet 5 - X
Plik Edytuj Widok Idi Przechwytuj Analizuj Statystyki Telefonia Bezprzewodowe Marzedzia Pgmoc

L) X RezsZF LT =EaqqQBE

TAoply 2 display fiter .. <C -] Wyrazenie... | +
No. Time Source Destination Protocol Length Info

12627 8964.734075 169.254.249.46 169.254.58.158 TCP 1514 8@ + 51975 [PSH, ACK] Seq=2921 Ack=316 Win=3781 Len=146@ [TCP segment of a reassembled PDU]

12628 8964.734882 169.254.249.46 169.254.58.158 TCP 1514 80 + 51975 [ACK] 5eq=4381 Ack=316 Win=3781 Len=146@ [TCP segment of a reassembled PDU]

12623 8964.734195 1693.254.58.158 1693.254.249 .46 TP 54 51975 » 80 [ACK] Seq=316 Ack=5841 Win=64240 Len=8

12638 3964.734793 163.254.249.46 169.254.58.158 TP 1514 88 » 51975 [PSH, ACK] Seq=5841 Ack=316 Win=3781 Len=146@ [TCP segment of a reassembled PDU]

12631 8964.734883 169.254.249.46 169.254.58.158 TP 1514 88 + 51975 [ACK] Seq=73@1 Ack=316 Win=3781 Len=146@ [TCP segment of a reassembled PDU]

12632 8964.734918 169.254.58.158 169.254.249.46 TP 54 51975 » 88 [ACK] Seq=316 Ack=8761 Win=64248 Len=@

12633 8964.735515 169.254.249.46 169.254.58.158 TCP 1514 88 » 51975 [PSH, ACK] Seq=8761 Ack=316 Win=3781 Len=146@ [TCP segment of a reassembled PDU]

12634 8964.735518 169.254.249.46 169.254.58.158 TCP 1514 88 » 51975 [ACK] Seq=18221 Ack=316 Win=3781 Len=1468 [TCP segment of a reassembled PDU]

12635 8964.735611 169.254.58.158 169.254.249.46 TCP 54 51975 = 80 [ACK] Seq=316 Ack=11681 Win=64240 Len=0

12636 8964.736208 169.254.249.46 169.254.58.158 TCP 1514 8@ + 51975 [PSH, ACK] Seq=11681 Ack=316 Win=3781 Len=146@ [TCP segment of a reassembled PDU]

12637 8964.736212 169.254.249.46 169.254.58.158 TCP 1514 80 + 51975 [ACK] 5Seq=13141 Ack=316 Win=3781 Len=146@ [TCP segment of a reassembled PDU]

12638 8964.736281 169.254.58.158 169.254.249.46 TCP 54 51975 = 80 [ACK] 5eq=316 Ack=14681 Win=64240 Len=0

12639 8964.736951 169.254.249.46 169.254.58.158 TCP 1514 8@ » 51975 [PSH, ACK] Seq=146@1 Ack=316 Win=3781 Len=146@ [TCP segment of a reassembled PDU]

12648 3964.736954 163.254.249.46 169.254.58.158 HTTP 733 HTTP/1.8 208 OK (PNG)

12641 3964.737841 169.254.58.158 169.254.249 .46 TP 54 51975 » 88 [ACK] Seq=316 Ack=16741 Win=64240 Len=0

12642 8964.737681 169.254.58.158 169.254.249.46 TP 54 51975 » 8@ [FIN, ACK] Seq=316 Ack=16741 Win=64248 Len=8

12643 8964.738841 169.254.249.46 169.254.58.158 TP 6@ 88 » 51975 [ACK] Seq=16741 Ack=317 Win=378@ Len=8 v

Frame 12643: 6@ bytes on wire (430 bits), 6@ bytes captured (48@ bits) on interface ©

Ethernet II, Src: TexasIns_83:2e:f8 (@@:la:b6:83:2e:8), Dst: LcfcHefe_4d:65:8c (28:d2:44:4d
Internet Protocol Version 4, Src: 169.254.249.46, Dst:

:65:8¢)
169.254.58.158

Transmission Control Protocol, Src Port: 88, Dst Port: 51975, Seq: 16741, Ack: 317, Len: @

28 d2 44 4d 65 3c 99 la
80 28 81 76 60 00 ff 06
3a 9¢ 80 5@ cb 07 02 @0
@c c4 de 2e 02 00 00 @0

b6 @3 2e f3 63 0@ 45 0@
32 98 a9 fe f9 2e a9 fe
ff 54 5a 79 15 f2 5@ 1@
00 o0 00 @0

(@ ¥ Ethernet 5: <live capture in progress:>

(Dle

P

TZy--P

Pakietdu: 12643 - Wyswietianych: 12643 {100.0%) Profil: Default

Figure 4.4. GUI of Wireshark

As mentioned earlier, the project uses the MQTT data transmission protocol. This protocol is based
on the publication/subscription pattern, therefore, the presence of a server is required. This server is
called MQTT broker and it manages all publications and subscriptions in the MQTT network. During
the development and testing process of the MQTT part of the project, a popular open source Mosquitto

broker was used. The advantage of Mosquitto is its versatility and low usage of memory resources [13].

17

The use of MOTT Spy software was very helpful in the development of the MQTT part. This is a
universal application of MQTT client written in Java. It enables to monitor the activity of the MQTT
network.

I matt-spy - X
m Configuration Connections Window Help

Control panel | wo023147888@127.0.0.1:1883

¥ Publish message

Topic | thermostat/chO/temp/read -

@ Publish | ~
Data
» Scripted publications o
¥ Subscriptions and received messages o
New | All | thermostat/#
Message 1/6 | showistest | I || < || S || S iy Search 4 Teols -
Topic Time| 2019/01/26 22:12:31:784
Data
¥ Received messages summary [search topics: 1 (4 topics, 6 messages, load: 0,0/0,0/0,0)
Topic Content Browse Messages Last received v
thermostat/ch0/temp 20.927 v 2} 2019/01/26 22:12:31:784
thermostat/ch0/tempjread v 1 2019/01/26 22:12:31:782
thermostat/ch1 ftec/curr 16 v 2} 2019/01/26 22:12:14:258
thermostat/ch1 ftec/curr/read v 1

2019/01/26 22:12:14:257

Figure 4.5. GUI of MQOTT Spy

4.2 Description of the firmware for thermostat thorlabs

4.2.1 FreeRTOS tasks

Processes in the FreeRTOS system are carried out using tasks. Each task has its own registers and its
stack. FreeRTOS is a preemptive system. This means that the scheduler decides which task is executed
at the moment. The developer’s issue is to construct and initiate the tasks that are subsequently managed
by the scheduler [29].

The following FreeRTOS tasks have been implemented in the thermostat firmware:

e atask related to TCP/IP stack handling — this task is initiated by IwIP library functions

e a task that supports Telnet-UART communication — implemented in the Seria/Task function in the
”serial task.c” file

e vApplicationldleHook — the lowest priority function, called by the system when no higher priority
task requires execution

The task regarding the TCP/IP stack is initialized in the main function using the function /wlPTaskInit
[A.1.1]. For this purpose, the MAC address is read from the microcontroller registers and it is passed
to the function together with static IP address, subnet mask, default gateway for the connection and
connection type. In this case it is used a connection with DHCP. As the documentation of the lwIP
library says, if there is no possibility of connecting with the use of DHCP (e.g. there is no DHCP server
in the network), AUTOIP mode is used instead. This mode is created specifically for the IwIP library [5].
Establishing a connection in the AUTOIP mode starts with attempting to take a randomly selected static
IP address of form 169.254.xxx.xxx. Subsequently, there is an attempt to connect to the network. A

18

certain type of protection against competing addresses has been implemented here - after drawing an
address of the above-mentioned form, ARP request for such address is sent several times. In the absence
of a response, the drawn address is accepted as its own. However, it is not certain that there will be no
duplication of the IP address in the network.

The SerialTask function is a task that handles communication over the UART and Telnet serial port
[A.1.2]. The SerialTask uses system queues that store data coming from UART and outgoing to UART.
Each character arriving via a given Telnet channel is sent directly to the corresponding UART port. In
the same way, each character coming from UART is sent to the appropriate Telnet channel. This task has
been implemented so that there is a simple way of direct communication (via Telnet) with two MTD415T
modules (two UART ports correspond to two MTD415T devices). Thanks to that it is easier to validate
the thermostat thorlabs module. It also provides a simple text terminal in case there are difficulties with
MQTT part of the project.

In the vApplicationldleHook function [A.1.3]], there is a code that enables changing the IP address of
the thermostat module if necessary (e.g. changing the IP address by the user, disconnecting or connecting
the module to the network). The new IP address is sent to the UART port available to the user (P40 and
PA1 pins of the microcontroller).

4.2.2 Ethernet communication

As mentioned above, the FreeRTOS task responsible for handling the TCP/IP stack is initiated using
the IwlIP library. Ethernet communication is an important part of the designed firmware, therefore the
code responsible for this part of the project is the most extensive and plays a key role. The connection
is established in the /wiPTasklnit function. In this function the Telnet session is opened (7elnetlnit,
TelnetListen and TelnetOpen functions of the "telnet.c” file) and the web server is launched (the Attpd_init
function of the /w/P library).

The web server in the designed firmware uses the SSI (Server Side Includes) scripting mech-
anism and the CGI (Common Gateway Interface) interface. SSI allows nesting specific values in
the code of the document sent by the server to the client. These values can be, for example, vari-
ables or function results. In the thermostat project values of measured temperature, voltage, current
is sent to the client with the help of SSI. As for CGI, it allows communication between the web
server functions and other functions of the project. In the case of this firmware, CGI is primarily used
to handle the requested values of the set temperature, maximum current, voltage, sent by the HTTP client.

The http_set ssi_handler function specifies a function that handles all SSI queries from a web server.
The http_set cgi handlers function assigns functions that support all of the CGI requests provided
in the project. These functions (http_set ssi_handler and http set cgi handlers) are called during
initialization, in the ConfigWeblInit function implemented in the ”config.c” file.

The “config.c” file contains a significant part of the code responsible for handling the web server
— this is the backend of the created web application. In the file there are definitions of all of the
functions responsible for executing CGI requests and the function ConfigSSIHandler responding to SSI
queries. The array below is passed to the Attp_set cgi handlers function and defines which functions
are responsible for each CGI request:

1 static const tCGI g psConfigCGIURIs[] =
{

{ ”/config.cgi”, ConfigCGIHandler }, // CGI_INDEX_ CONFIG
{ ”/misc.cgi”, ConfigMiscCGIHandler }, // CGI_INDEX MISC
5 { ”/defaults.cgi”, ConfigDefaultsCGIHandler }, // CGI_INDEX DEFAULTS

19

”/ip.cgi”, ConfigIPCGIHandler }, // CGI_INDEX IP
”/read.cgi”, ConfigERRCGIHandler }, // CGI_INDEX ERR
”/reserr.cgi”, ConfigRESERRCGIHandler }, // CGI_INDEX RESERR
”/teclim.cgi”, ConfigTecLimCGIHandler }, // CGI_INDEX_ TECLIM
10 ”/tempset.cgi”, ConfigTempSetCGIHandler }, // CGI_INDEX TEMPSET
”/tempwin.cgi”, ConfigTempWinCGIHandler }, // CGI_INDEX TEMPWIN
”/tempdel.cgi”, ConfigTempDelCGIHandler }, // CGI_INDEX TEMPDEL
ConfigCLGainCGIHandler }, // CGI_INDEX CLGAIN

”/clperiod.cgi”, ConfigCLPeriodCGIHandler }, // CGI_INDEX_ CLPERIOD

15 ”/cltime .cgi”, ConfigCLTimeCGIHandler }, // CGI_INDEX CLTIME
”/clp.cgi”, ConfigCLPCGIHandler }, // CGI_INDEX CLP
”/cli.cgi”, ConfigCLICGIHandler }, // CGI_INDEX CLI

”/cld.cgi”,

ConfigCLDCGIHandler },

// CGI_INDEX_CLD

”/soft_reset.cgi”, ConfigSoftResetCGIHandler },// CGI INDEX SOFT RESET

{
{
{
{
{
{
{
{ ”/clgain.cgi”,
{
{
{
{
{
{
{

20 ”/setmqtt.cgi”,

IE

ConfigSetMQTTCGIHandler }

// CGI_INDEX_SETMQTT

For example: if the web client sends a request ’tempset.cgi”, the function ConfigTempSetCGIHandler

will be launched and the target temperature will be set.

Table 4.1. Functions that handle CGI requests and actions performed by these functions

ConfigCGlHandler changes Telnet protocol settings (port number, mode, IP, timeout)
ConfigMiscCGIHandler changes the module name
ConfigDefaultsCGIHandler | restores the default connection parameters
ConfigIPCGIlHandler changes connection parameters (IP address, subnet mask, default
gateway)
ConfigERRCGIHandler reads error register of MTD415T module
ConfigRESERRCGIHandler | resets error register of MTD415T module

ConfigTecLimCGIHandler

sets the TEC current limit

ConfiglempSetCGIHandler

sets the target temperature

ConfigTempWinCGIlHandler

sets the temperature window

ConfiglempDelCGIHandler

sets the diode delay time

ConfigCLGainCGIHandler

sets the critical gain of PID controller

ConfigCLPeriodCGIHandler

sets the critical period of PID controller

ConfigCLTimeCGIHandler

sets the cycling time of PID controller

ConfigCLPCGIHandler sets the P share of PID controller
ConfigCLICGIHandler sets the I share of PID controller
ConfigCLDCGIHandler sets the D share of PID controller

ConfigSoftResetCGIHandler

resets the device

ConfigSetMQTTCGIHandler

changes address of the MQTT broker

All functions supporting CGI requests have a similar structure, therefore a description of one of them
will give a picture of all others. For example, the function that handles the request to change the current

limit looks as below:

1 static const char *

ConfigTecLimCGIHandler(int ilndex ,

{
int32 t i32Port;
5 int32_t i32Value;

int iNumParams,

bool bParamError = false;

bool bCommandError;

/!

10 // Get the port number.

20

char *pcParam|[],

char *pcValue[])

/!
i32Port = ConfigGetCGIParam(” port”, pcParam, pcValue, iNumParams, &bParamError);

i32Value = (uint32 t)ConfigGetCGIParam(”teclim”, pcParam, pcValue, iNumParams, &bParamError);

if (bParamError || ((i32Port != 0) && (i32Port != 1)))
{

}

bCommandError = Set_TEC_limit(i32Port, i32Value);

return (PARAM _ERROR RESPONSE);

20

if (bCommandError == 0)
{
25 return (PARAM_ERROR RESPONSE);
} else
{
if (i32Port == 0)
{
30 return (TECO PAGE_URI);
} else
{
return (TEC1_PAGE_URI);

}
35 }

The iNumParams variable specifies the number of parameters passed by the CGI request, the
pcParam table contains pointers to the names of the passed parameters, and the pclValue table — pointers
to the values of the passed parameters (in the form of char). The ConfigGetCGIParam function is used
to read the values of the passed parameters. It finds the name of the parameter and converts its value
from char to int. If the passed parameter has an incorrect value, the error page is returned to the client. If
the parameter value is correct, the function handling the request is called. In this case, the Set TEC [imit
function sets the appropriate current limit value. After the value is set correctly, the proper web page is
sent to the client. In this case, the page corresponding to the definition TECO PAGE URI is tecO.shtm.

When handling a request to change the target temperature, the corresponding function looks slightly
different. That is because the value of temperature is stored in memory in units of m°C' whereas the
user sends the temperature value in ©C with the separator (”.” or ”,”).

The ConfigSSIHandler function handles SSI queries. When called, a string of characters is sent to
functions that handle the web server. These characters are then placed in HTML code and the appropriate
value is visible by the web client.

1 static uintl6 t ConfigSSIHandler(int ilndex, char *pclnsert, int ilnsertLen)

{
uint32 t ui32Port;
int iCount;

5 const char *pcString;
char answer[32];
uint32 t ans_len = 0;

ip_addr t *addr temp;

10 switch (ilndex)
{
/1l
// 1P address
/1l
15 case SSI INDEX IPADDR:

{
uint32 t ui32IPAddr;

ui32IPAddr = IwIPLocallPAddrGet();

20 return (usnprintf(pclnsert, ilnsertLen, ”%d.%d.%d.%d”,
((ui32IPAddr >> 0) & OxFF),

21

((ui32IPAddr >> 8) & OxFF),

((ui32IPAddr >> 16) & OxFF),

((ui32IPAddr >> 24) & 0xFF)));
25

-

/...

The ilndex variable contains the SSI tag number, according to the g pcConfigSSITags pointers table
passed to the Attp_set ssi_handler function at the web server initialization.

1 static const char *g pcConfigSSITags[] =
{

“ipaddr”, // SSI_INDEX_IPADDR
”macaddr”, // SSI INDEX MACADDR
5 »p0br”, // SSI_INDEX_POBR
”p0sb”, // SSI_INDEX_ POSB
"pOp”, // SSI_INDEX_POP

/...

The answer to the SSI query is saved in the memory location pointed by pclnsert. The variable
ilnsertLen specifies the maximum length of this answer.

SSI queries are handled in switch ... case statement with a vast number of cases. For different SSI
tags different actions are performed. Below is the case of TEC current limit:

case SSI INDEX_ TECLIMO:
case SSI_INDEX TECLIMI :

{

5 ui32Port = (ilndex == SSI INDEX TECLIMO) ? 0 : 1;
ans_len = Read TEC(ui32Port, 0, answer);
return (usnprintf(pclnsert, ilnsertLen, ™%s”, answer));

/...

When the web server receives a request to load a web page, it is handled by a file system that is
implemented in the file “enet fs.c”.

4.2.3 File system

Each page on the web server is saved in the form of a char table in the file ”enet fsdata.h”. A simplified
tree is implemented to search for the desired page. It consists of structures containing pointers to tables
that store the content of web pages. The function f§_open from the file “enet_fs.c” searches the
tree and if it succeeds, the proper web page can be loaded into the output buffer.

4.2.4 EEPROM memory

The firmware of thermostat uses the available EEPROM memory to save and read parameters important
for the project. The Tivaware library provided by the manufacturer contains functions allowing simple
EEPROM handling. All actions regarding EEPROM are implemented in the functions of the ”config.c”
file. While bootup, the microcontroller tries to read the parameters from EEPROM.

1 void
ConfigLoad (void)

{
uint8 t *pui8Buffer;
pui8Buffer = EEPROMPBGet();
if (pui8Buffer)
{

22

10

g sParameters = *(tConfigParameters
g sWorkingDefaultParameters = g sParameters;

*)pui8Buffer;

The function ConfigSave is used to save parameters [A.1.5]. The list of parameters that are saved in
the EEPROM memory is as follows:

e UART parameters (baud rate, data size, parity, stop bits, flow control)

e Telnet parameters (timeout, port number, IP address)

e Module name

e [P address of module

e Subnet mask

e Default gateway

e [P address of MQTT broker

4.2.5 Front-end of the web application

In the part responsible for the front-end of the web application, the HTML markup language, the CSS
style sheet language and some JavaScript are used. All *html and *shtm documents as well as *js and
*css files are located in the f§ subdirectory of the main project directory. The documents use the SSI
scripting language to retrieve values from the web server and the CGI interface that allows to send
commands to the web server. An example of a fragment of a document that uses SSI and CGI:

1

20

25

<table width="100%"
<tbody>

<tr >
<td
<td
<td
<td

</tr>

<tr >
<td

<td><!——+#teclim0

width="30%"
width="30%"
width="30%"
width="10%"

border="0" cellpadding="2" cellspacing="2">

class="gr”></td>
class="gl”>Current </td>
class="gl”>Updated </td >
class="gl”></td>

class="gr”>TEC current limit: </td>

> mA</td >

<form name="teclim” action="teclim.cgi” method="get”>
<input name="port” value="0" type="hidden”>
<td><input maxlength="4" size="5" name="teclim”>mA</td>

<td>

<input name="mysubmit” value="Set” type="submit”>
</td>
</form>

</tr>
<tr >

<td class="gr”>Actual TEC current: </td>
<td><!——#teccur0 —> mA</td>
<td ></td>
</tr>
<tr>
<td class="gr”>Actual TEC voltage: </td>

<td><!——#tecvol0 —> mV</td>
<td ></td >

</tr>

</tbody >

</table >

When the page is loaded, the value of the maximum TEC current for the channel 0 will be inserted in
the </—#teclim0—> location. When sending the form teclim, a request feclim.cgi with the parameter port

23

= () and the parameter feclim with the value entered by the user in the input field will be sent to the server.
After receiving such request, the web server will run the function setting the current limit in channel 0 to
the received value.

-
x

TEC settings

¢

¢ @ @ 10.42.0.56/tec0.shtm v @ 9 N @

=12 ARTIQ Sinara Thermostat

4
3 SI NARA 2-channel temperature controller EEM based on the Thorlabs MTD415T

chv

Temperature status
Connection Status Channel 0 TEC Settings

Port 0 Settings
Port 1 Settings
Miscellaneous Settings

I Cren Updated

TEC current limit: BRI mA Set

Actual TEC current: pEIEREY
Actual TEC voltage: PAyER 1"

TC general info

CH 0 TEC settings

CH 1 TEC settings
CH 0 Temperature settings
CH 1 Temperaiure setiings
CH 0 Control loop settings
CH 1 Control loop settings

MQTT status

Reset device

Figure 4.6. Layout of the sample webpage

4.2.6 Communication with MTD415T modules

The microcontroller TM4C1294NCPDT communicates with two MTD415T modules using UART. The
microcontroller’s RX line for the first channel is, according to the device schematics, on the P44 pin,
and the TX line is on the P45 pin. For the second channel, the RX line corresponds to the PK(pin and
the TX line to the PK/ pin.

The functions of Tivaware library used in the firmware allow simple sending (function SerialSend in
the file “serial.c”) and receiving (function SerialReceive in the “serial.c” file) characters with UART.

The ”send _command.c” file of the project contains all the functions that support UART communica-
tion with the Thorlabs modules. In particular, the Send Command and Receive Answer functions play
an important role of sending properly formatted commands to the MTD415T modules and receiving

answers from them [A.1.6,/A.1.7].

In the function that receives the response from the M7TD415T chip, a simple timeout mechanism was
implemented to prevent the device from hanging if there is any difficulty in communicating with the
Thorlabs device. All UART receiving and transmitting actions are non-blocking in the firmware. That
also prevents the program from hanging. If the timeout is reached, the Receive Answer function sets the
response “timeout” and this response is sent to the web client.

[\

4

The functions Send Command and Receive Answer are the internal functions used by the other
functions from the file ”send command.c”. The other functions are responsible for the construction
of commands sent to the devices of Thorlabs, consistent with the documentation provided by the
manufacturer. To follow how these functions work, one can inspect some commands of MTD4157T":

Table 4.2. Extract of the datasheet of MTD415T

| Command | MTD415T action
Lx (x - current in range 200-2000 [mA]) Sets the TEC current limit to x
L? Reads the TEC current limit [mA]
A? Reads the actual TEC current [mA]
u? Reads the actual TEC voltage [mV]

The Set TEC limit and Read TEC functions are used to handle the commands presented in the
above table.

1 bool Set TEC limit(uint32 t uwi32Port, uint32_ t limit)
{

char command[5];
5 command[0] = "L’;

if(limit >= 200 && limit < 1000)
{
command|[1] ((limit/100) % 10) + °0°;
10 command[2] ((limit/10) % 10) + °0°;
command[3] ((limit) % 10) + ’0’;
Send Command(ui32Port ,command,4);
return true;
} else if(limit >= 1000 && limit <= 2000)
15 {

command[1]
command [2]
command[3]
command [4]
20 Send Command(ui32Port ,command,S);
return true;
b} else

((1imit/1000) % 10) + ’0°;
((1imit/100) % 10) + 0°;
((limit/10) % 10) + °07;

((limit) % 10) + *07;

>

return false;
25 }
}

The function Set TEC [limit constructs the command, but before sending the command to the TEC
controller, the current limit value is validated. In case of an incorrect command (e.g. with a value out
of range), the MTD415T reaction would be unpredictable from the designer’s point of view, as the
manufacturer did not describe how the TEC driver behaves in such circumstances. If the value of the
variable /imit does not meet the requirements, the function returns the value false, which results in
sending the web page informing about the error in the parameter value (’perror.shtm”) to the web client.
If the value of this variable is correct, the function constructs a command and uses the Send Command
function to send the command to the Thorlabs device. Validating the values is different for each
parameter, that is why each setting command has a separate handling function.

1 uint32_t Read TEC(uint32 t ui32Port, uint32_t mode, char *answerBuf)
ASSERT ((mode == 0) || (mode == 1) || (mode == 2));

5 char command[2];

25

uint32 t ans len;

switch (mode)
{

10 case O0:
command [0]
break ;

case 1:
command[0]

15 break;

case 2:
command[0]
break ;

’L’; //reads the TEC current limit

N

; //reads the actual TEC current

’U’; //reads the actual TEC voltage

}
20

command[1] = ’?7;

Send Command(ui32Port ,command,2);

ans len = Receive Answer(ui32Port ,answerBuf);
25

return ans_len;

}

The function responsible for the read commands has a simpler form, because there is no need to
validate any data. After constructing and transmitting the command, the function calls the Receive An-
swer function to receive data. There is no need to delay before calling this function because of the
non-blocking nature of designed UART and the timeout mechanism.

Functions created in the ”send_command.c” file are used while handling CGI requests and responding
to SSI queries.

4.2.7 MQTT client

The MQTT protocol does not use the traditional client-server model, but it is based on the publica-
tion/subscription pattern. Therefore, there is no direct connection between the sender of the message
(publisher) and its recipient (subscriber). The connection between the publisher and the subscriber is
handled by a broker. Broker analyzes the messages that it receives and distributes them to subscribers.

MQTT is based on the TCP/IP model, therefore the broker, as well as each client must have a TCP/IP
stack. In the thermostat project, the TCP/IP stack is implemented using the /wiP library. In the latest
version of the /wlP 2.1.2 library, the MQTT functionality has been added. However, IwIP 2.1.2. is a new
version and it has not yet been included in the libraries supplied by the microcontroller manufacturer. It
was necessary to adapt the rest of the manufacturer’s libraries to the latest version of IwIP (it was a need
to define some functions, change the names of the IwIP functions).

Each MQTT message contains a topic — a string of characters that the broker uses to determine which
clients should obtain a message. Topic has a hierarchical structure with a slash as a level separator. The
form of topic should be consistent in the designed MQTT system. The good practices of designing the
form of topic [14] are as follows:

e lack of leading forward slash

e not using spaces in a topic

using only ASCII characters

keeping the topic short and concise (save of resources)

enabling extensibility

26

In the designed MQTT client, each action is a response to the publication of another client, i.e. it
corresponds to the command-reaction model. Therefore, the client does not publish any messages by
itself, e.g. it does not send information about temperature periodically. The designed form of the topic
can be read from the table:

Topic Action
thermostat |/reset Resets device
/ch0 /gen |/ver /read Reads the version of hardware and software of MTD415T
or /id /read Reads the ID of MTD415T
/ch1 ferr /read Reads the error register of MTD415T
/reset Resets the error register
/tec |/curr /read Reads the actual current of TEC driver
/lim |/set |Sets the current limit of TEC driver
/read |Reads the current limit of TEC driver
volt /read Reads the TEC voltage
/temp |/read Reads the actual temperature
/set /set Sets the target temperature
/read Reads the set temperature
/win /set Sets the temperature window
/read Reads the temperature window
/del /set Sets the delay time of status pin
/read Reads the delay time of status pin
/cloop |/gain /set Sets the critical gain
/read Reads the critical gain
/period /set Sets the critical period
/read Reads the critical period
/cyctime /set Sets the cycling time
/read Reads the cycling time
/P /set Sets the P share
/read Reads the P share
/1 /set Sets the I share
/read Reads the I share
/D /set Sets the D share
/read Reads the D share

In the above table, the topic has been divided into hierarchical parts, therefore, to read the final form
of the topic, it should be constructed from the appropriate cells of the table. For example, if reading the
current limit in the channel 0, the appropriate topic is ”thermostat/ch0/tec/curr/lim/read”.

As for functions that require values to set, e.g. setting the current limit, the set value should be given
in payload of MQTT messages in a format compatible with the web application.

All functions related to MQTT handling are implemented in the “mqtt_client.c” file.

Establishing a connection with the broker takes place in the function do_connect [A.1.8]. After
successfully connecting to the broker or failing to connect several times, the mgtt connection cb

function is called [A.1.9].

If the client and the broker are connected, the client starts the subscription of ’thermostat/#”, i.e. it
starts to track all the topics that begin with the string “thermostat/”. The function mqtt incoming pub-
lish_cb is a callback function called when any message from the subscribed topic reaches the MQTT

client [A.1.10].

One of the input arguments of this function is a pointer to a string containing the topic of the MQTT
message. Depending on the content of this string, the different action is taken. The function parse_topic

27

is used to divide the topic into hierarchical parts. The extended if statement is a place, where the
appropriate action is chosen. In case of setting a parameter, the appropriate number is assigned to the
variable inpub_id. This variable is used by the function that analyzes the payloads of MQTT messages.
In the case of reading action, the proper function that deals with the publication of data in the MQTT
network is called.

The function mgqtt_incoming data_cb is a callback function called in response to a payload coming
with a MQTT message [A.1.11]. It is responsible for ensuring that the parameter defined in the topic of
the MQTT message takes the value sent in payload.

In the if statement of the function, appropriate functions are called depending on the value of the
variable inpub_id. For example, for the topic thermostat/chO/tec/curr/lim/set”, the mqtt _incoming pub-
lish_cb function assigns 6 to the inpub id variable. Therefore, in the function mgqtt _incoming data _cb
the function Set TEC limit is called. This function is responsible for setting the current limit.

The "mgqtt _client.c” file also contains a set of functions that are responsible for publishing the data,
when the read command is received from the MQTT broker. For example - assuming that MQTT client
received a message with the topic “thermostat/chO/tec/curr/lim/read”, the variable inpub_id takes the
value 0 and the function publish_tec is called.

1 void publish tec(mgqtt client t *client, void *arg, const char *topic)
{
char answer[32];
err_t err;
5 u8 t qos = 1; /* quality of service */
u8_t retain = 1; /* do retain */

if (inpub_id >= 0 && inpub_id <= 2) {
ans_len = Read TEC(ui32Port, inpub_id, answer);
10 err = mqtt_publish(client, topic, answer, ans len, qos, retain, mqtt pub_request cb, arg);
if (err != ERR OK) {
UARTprintf(” Publish error: %d\n”, err);

The function Read TEC and the library function mgqtt publish that publishes the message in the
MQTT network are used here.

In the entire part of the project responsible for MQTT communication, the UART interface available
to the user (P40 and PA 1 pins of the microcontroller) was used to send messages about MQTT status and
any errors.

4.3 Description of the firmware for thermostat _max

The temperature controller in the version with MAX7968 modules differs significantly from the ther-
mostat_thorlabs version in the part responsible for temperature control. In the device with Thorlabs
modules temperature reading, Peltier current setting and PID control were handled by the firmware
of MTD415T. In the thermostat max version, all these functionalities had to be implemented in the
designed firmware. To perform the above-mentioned tasks, it is necessary to make microcontroller work
with two MAX1968 drivers and AD7172-2 analog-to-digital converter.

The part of the project responsible for Ethernet communication, file system, EEPROM memory

remained the same as in the thermostat thorlabs version. As for the web application and MQTT
communication, it was only necessary to adapt the relevant parts of the project to the version with

28

MAXI1968 drivers.

4.3.1 The concept of temperature control in the thermostat max version

In the firmware of this version of the device, a proportional-integral-derivative controller has been
implemented, consisting of three parts: proportional, integral and differential. The input variable of the
controller is the temperature, and the output variable — the current of the Peltier module. The measured
temperature values are obtained by reading the voltage on temperature sensors using AD7172-2 ADC.
Communication of the microcontroller with the ADC is via the SPI interface. The current value for
the Peltier module is set by MAX1968 basing on PWM signals on specific MAX7968 pins. Providing
appropriate PWM signals on some pins of the MAX1968 allows also to set the positive and negative
current limit and the voltage limit of the Peltier module. The MAX1968 driver, apart from the output
pins to be connected to the Peltier module, has two outputs. The voltage on these outputs is proportional
to the actual Peltier voltage and current. These values can be calculated using the formula provided by
the manufacturer. The firmware uses an internal analog-to-digital converter of TM4C1294NCPDT to
read the voltage on both these MAX1968 outputs.

It was assumed in the project that the temperature would be measured either by Pt100/Pt1000 resis-
tance temperature detectors (RTDs) or by NTC/PTC thermistors.

4.3.2 SPI communication

2, 9

SPI communication with the Analog Devices’ ADC has been implemented in the project’s ’spi.c” file.
The spi_config function is responsible for the initialization of the SPI and the proper configuration of the
converter. It activates and changes settings of both input channels and selects wanted operating mode
(continuous conversion mode).

The spi_getvalue function is responsible for getting the value from the analog-to-digital converter
[A.1.12]. As a result, the value taken from the ADC is returned, while the status of ADC is saved in the
memory location pointed by channel. Status of ADC determines the channel for which the conversion
was done.

The temperature of the thermistor or resistance temperature detector is calculated in the getTemp
function [A.1.13]. For the NTC/PTC thermistor, a simple equation describing the dependence of
thermistor resistance on its temperature was used [27].

, where Ry is thermistor resistance at temperature 7', Ry, is thermistor resistance at reference
temperature 1,, 3 is parameter specific for a thermistor.

For a Pt100/Pt1000 resistance thermometer, the value of temperature is calculated using the Callendar

- Van Dusen equation for temperatures above 0°C [32].

Rp=Ryp - (1+A-(T—Ty)+ B (T —T,)?) (4.2)

R - resistance of RTD at temperature T', R, - resitance of thermistor at reference temperature 75,
A and B - parameters specific for the material of RTD (platinum).

29

All material parameters needed for temperature calculations are entered by the user via the web

application or using the MQTT protocol. The ratio f;T is calculated from the value of the voltage read

Ty
from the ADC.

43.3 PWM

The functioning of MAX1968 depends on PWM signals on some pins of the driver. The average voltage
applied to the input pins of MAX1968 is regulated by using the appropriate duty cycle. Average voltage
on these particular pins is used by MAX1968 to determine the Peltier current and the current and
voltage limits. The functions responsible for control of PWM signals are implemented in the project’s
pwm.c” file. In the function pwm_config, all needed microcontroller resources are initialized. The
other functions of the file are responsible for setting individual signals, e.g. when setting the PWM
signal responsible for the Peltier current of channel 0, the sezCurr0 function is called.

1 void setCurr0(int32 t Curr) {
if(Curr > IMAX) {
Curr = IMAX;
}
5 if(Curr < -IMAX) {
Curr = —IMAX;
}

Curr = (1500+Curr*1500/3000);
10 if (Curr != 0) {
TimerMatchSet (TIMER3 BASE, TIMER A, TimerLoadGet(TIMER3 BASE, TIMER A) * \
(3300 — Curr) /3300);
} else {
TimerMatchSet (TIMER3 BASE, TIMER A, TimerLoadGet(TIMER3 BASE, TIMER A) — 1);
15 }
)

The conditional statements are used here to prevent exceeding the current limit specified by the /IMAX
definition. Duty cycle calculation is based on the datasheet of MAX1968 driver, where it is specified how
the voltage level at the PWM pin translates into (in this case) the value of current.

4.3.4 Internal ADC

The voltages on the two output pins of the MAX1968 driver are proportional to the current and voltage
of the Peltier module. In the thermostat project, to read these voltages, microcontroller’s built-in ADC
is used. It is a 12-bit precision analog-to-digital converter with a maximum sample rate of 2 million
samples per second and hardware averaging of up to 64 samples.

The code responsible for handling the internal ADC can be found in the file internal adc.c” of
the project. The function internal adc config is responsible for initializing the converter, while the
functions internal_adc getvalues(and internal_adc getvaluesl - for getting the value from it.

1 void internal adc_getvaluesO (uint32 t* Value) {
uint32 t ADC SEQ = 1;
5 ADCProcessorTrigger (ADCO BASE, ADC SEQ);

while (! ADCIntStatus (ADCO_BASE, ADC SEQ, false))
{
}

ADClIntClear (ADCO_BASE, ADC SEQ);

ADCSequenceDataGet (ADCO BASE, ADC SEQ, Value);

30

15}

Calling the ADCProcessorTrigger function starts the sampling sequence defined in the initializing
function. The value from the ADC is taken in the ADCSequenceDataGet function and is written to the
memory location pointed by Value.

4.3.5 PID controller

The purpose of the PID controller is to maintain the temperature at the level of the value set by the user
via the web application or via the MQTT protocol. The PID controller in the project determines the value
of the Peltier current based on the difference between the measured and set temperature. The value of
current is calculated by adding three parts:

e proportional P — the greater the difference between measured and set temperature is, the greater its
share is

e integral [— it is responsible for compensating for past errors and its contribution is proportional to
the sum of the specified number of recently recorded errors

e differential D — it is to compensate for the expected error and its contribution is greater when
changes in the measured temperature are greater

The basic formula describing the operation of the PID controller is as follows [28]:

t
de
u(t) = P elt) +1-/ e(r)dr+ D @.3)
0

e - error value, in this case the difference between the measured and set temperature

u - control output, for the thermostat it is a value of Peltier current

P, I, D - parameters determined by the user, by changing the values of these parameters the user
changes the share of PID parts in control output

The thermostat project uses a discrete version of the|4.3 equation. Instead of the integral presented,
the sum of the errors multiplied by the relevant time was used.

Z e(ty) (L —te_1)
k=0

Instead of a derivative, the appropriate quotient was used.

€<tn) — e<tn—1)
t, —t

n n—1

The part of the code responsible for PID control can be found in the project’s ”pid_task.c” file. The
function that handles PID control has been defined as the task of the FreeRTOS system and is initialized
in the PIDTaskInit function. The task’s name is PIDTask [A.1.14].

Each time the task is launched by the system, the temperature value is taken from the AD7172-
2 converter. Then the corresponding Peltier current is calculated and set using setCurr0 or setCurrl
function. The function SetStat is used to switch the diode on or off depending on whether the value of the
measured temperature is within or out of the user-defined range around the set temperature. The while
loop of the PIDTask function is run by the FreeRTOS every 75 ms.

31

4.3.6 Watchdog

In the thermostat project Watchdog was implemented to protect the system from hanging and the resulting
need to manually reset the device. In the TM4C1294NCPDT microcontroller, the Watchdog functioning
looks as below [19]:

e After enabling, the Watchdog counter starts working. When it reaches 0, the Watchdog interrupt
is called and the value from the WDTLOAD register is loaded into the Watchdog counter. The
counter starts counting down again.

e If the counter reaches 0 again and the Watchdog interrupt flag is not cleared, the microcontroller
resets.

e In case the Watchdog interrupt flag is cleared before the second interrupt, the value from the
WDTLOAD register is loaded into the Watchdog counter and the countdown starts again.

In the thermostat max project, the value of WDTLOAD was chosen so that the Watchdog interrupt
occurs every 1 second. Watchdog initialization takes place inside the Watchdog config function defined
in the project’s "watchdog.c” file. Clearing the Watchdog interrupt flag takes place inside a while loop
of the PIDTask, which should be called every 75 ms if the device works properly.

4.3.7 Changes in other parts of the project

Thanks to the modularity of the designed firmware, adapting it to the version with MAX7968 drivers
was relatively easy. The parts responsible for the web application and MQTT communication needed to
be changed. Also, functions used by the web server and the MQTT client from the ”send command.c”
file required some changes.

SSI tags and related functions were added to the ”config.c” file. Functions that were not implemented
in thermostat thorlabs version include in particular those related to the calibration of Pt100/Pt1000
RTDs and NTC/PTC thermistors. Handling new CGI requests has been implemented in this version of
the web application.

Parameters that previously were sent to MTD415T drivers, in this version are saved to the EEPROM
memory. Therefore, the list of parameters that are saved to the EEPROM memory looks as below:

e UART parameters (baud rate, data size, parity, stop bits, flow control)
e Telnet parameters (timeout, port number, IP address)

e Module name

e [P address of module

e Subnet mask

e Default gateway

e [P address of MQTT broker

e PID parameters for each channel

e Target temperature for each channel

e Calibration parameters for Pt100/Pt1000 and NTC/PTC

e Current limit, voltage limit, temperature window, MAX1968 switching frequency for each channel

32

Significant changes were made in the file ”send command.c”. The Send Command and Re-
ceive_Averwer functions responsible for UART communication with the MTD415T modules were
removed. In the version with the Thorlabs chips, most of the functions in this file were to send com-
mands and receive responses from the M7TD415T drivers. In thermostat max most functions reduces to
writing or reading from the EEPROM memory. An example is Read MaxVolt function responsible for
reading the voltage limit:

1 uint32 t Read MaxVolt(uint32 t uwi32Port, char *answerBuf)
{

uint32 t ans_len;

if (ui32Port == 0) {
ans_len = usnprintf(answerBuf, 32, "%d”, g sParameters.uil6MaxVolt0);
} else {
ans_len = usnprintf(answerBuf, 32, "%d”, g sParameters.uil6MaxVoltl);
10 }

return ans_len;

In turn, one of the exceptions is Set_MaxVolt, which is called when setting the voltage limit:

1 bool Set MaxVolt(uint32 t ui32Port, int32 t voltage)

{
if(voltage < 0 || voltage > 5000) ¢{
5 return false;
}
if (ui32Port == 0) {
g sParameters.uil6MaxVolt0 = voltage;
10 setMaxVolt0 ((uintl6 t) voltage);
} else {
g sParameters.uil6MaxVoltl = voltage;
setMaxVoltl ((uintl6_t) voltage);
}
15
return true;
}

Here, besides the write to the memory, the appropriate PWM signal is set using setMaxVolt0 or
setMaxVolt] function.

The way the MQTT client works remained the same. However, the form of the MQTT topic was
changed to adapt it to new functionalities:

33

Topic Action

thermostat |/reset Resets device
/saveall Saves all parameters to EEPROM
/ch0 /on Turns TEC driver on
or |loff Turns TEC driver off
/chl /onoff? Sends ‘ON’if TEC driver is on or ‘OFF’ if it is off
/cal /0 /set Sets the reference temperature for calibration
/read Reads the reference temperature for calibration
/beta /set Sets the B parameter for calibration
/read Reads the [parameter for calibration
/ratio /set Sets the ratio parameter for calibration
/read Reads the ratio parameter for calibration
/tempmode |/set Sets the type of temperature sensor; ‘0’ - NTC/PTC, ‘1’ - Pt100/Pt1000
/read Reads the type of temperature sensor
/pta /set Sets the A parameter for Pt100/Pt1000
/read Reads the A parameter for Pt100/Pt1000
/pth /set Sets the B parameter for Pt100/Pt1000
/read Reads the B parameter for Pt100/Pt1000
/freq /set Sets the switching frequency of TEC driver
/read Reads the switching frequency of TEC driver
/rawtemp |'read Reads the raw value received from AD7172-2
/tec /curr /read Reads the actual current of TEC driver

flim |/pos |/set |Sets the positive current limit of TEC driver
/read |Reads the current limit of TEC driver

/meg |/set |Sets the negative current limit of TEC driver
/read |Reads the negative current limit of TEC driver

/volt /read Reads the TEC voltage
/Mlim |/set Sets the voltage limit of TEC driver
/read Reads the voltage limit of TEC driver
/temp |/read Reads the actual temperature
/set /set Sets the target temperature
/read Reads the set temperature
/win /set Sets the temperature window
/read Reads the temperature window
/cloop |/P /set Sets the P share
/read Reads the P share
1 /set Sets the I share
/read Reads the I share
/D /set Sets the D share
/read Reads the D share

The above table should be read as in the thermostat_thorlabs version, i.e. the final form of the topic
should be constructed from the table cells. When reading the reference temperature for calibration in
channel 1, the topic is "thermostat/ch1/cal/t0/read”.

If required, a set value should be given in the payload of MQTT message in a format compatible with
the web application.

34

S Testing of the firmware

5.1 Testing the thermostat_thorlabs version

The PCB project of the thermostat with MTD415T drivers was not finally sent for production, therefore
all tests were performed using the TM4C1294XL evaluation board from Texas Instruments and the
USB-UART converter module based on CP2102.

The module correctly establishes communication via Ethernet in all modes - AUTOIP, DHCP and
Static IP. DHCP mode was tested using the ZTE ZXV10 H202N router. Below is the window of the
Wireshark program, where one can see the way AUTOIP mode works.

M autoip.pcapng - O X
Plik Edytuj Widok IdZ Przechwytuj Analizuj Statystyki Telefonia Bezprzewodowe MNarzgdzia Pomoc
Am @ cesz=fsEEaaan
| |ar|:| ﬂ "] Wyrazenie... +
Mo, Time Source Diestination Protocol Length Info
4 9.2020832 LcfcHefe_4d:65:8c Broadcast ARP 42 who has 169.254.58.1587 Tell #.8.0.0
11 1.2682856 LefcHefe_4d:65:8c Broadcast ARP 42 Who has 169.254.58.1587 Tell #.08.08.8
33 2.201988 LefcHefe_4d:65:8¢c Broadcast ARP 42 Who has 169.254.58.1587 Tell 8.0.08.9
38 3.2e1915 LefcHefe_4d:65:8c Broadcast ARP 42 gratuitous ARP for 169.254.58.158 (Request)
a9 29,811427 TexasIns_@83:2e:T8 Broadcast ARP 68 Who has 169.254.249.467 Tell .0.8.8
161 31.211262 TexasIns_@3:2e:T8 Broadcast ARP 6@ Who has 169.254.249.467 Tell #.0.0.0
162 32.611339 TexasIns_@3:2e:T8 Broadcast ARP 66 Who has 169.254.249.467 Tell #.8.6.0
186 34.611478 TexasIns_@3:2e:f8 Broadcast ARP 6@ Gratuitous ARP for 1609.254.249.46 (Request)
187 34.618610 TexasIns_@3:2e:f8 Broadcast ARP 6@ Who has 169.254.58.1587 Tell 169.254.249.46
188 34.618673 LefcHefe_4d:65:8c TexasIns_@83:2e:T8 ARP 42 169.254.58.158 is at 28:d2:44:4d:65:8c
116 36.611353 TexasIns_@3:2e:T8 Broadcast ARP 60 Gratuitous ARP for 169.254.249.46 (Request)
< >
Frame 116: 68 bytes on wire (488 bits), 6@ bytes captured (480 bits) on interface @
Ethernet II, Src: TexasIns_@3:2e:T8 (@@:1a:b6:83:2e:T8), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Address Resclution Protocol (request/gratuitous ARP)
ff £ff ff ff ff ff @@ 1a b6 83 2e f3 @8 @6 @2 0l . -~
B3 @0 86 B4 @0 @1 @@ la be @83 2e f8 a9 fe f9 2e . .
B0 20 B2 be ee @@ a9 fe 9 2¢ @0 @2 @0 20 /2 Le . W
() ? autoip.pcapng Pakietdw: 123 - Wyswietlanych: 11 (8.9%) - Porzuconych: 0 {0.0%) || Profil: Default

Figure 5.1. AUTOIP mode captured by Wireshark

In this mode, a static IP address of 169.254.xxx.xxx is randomly generated, and then ARP request for
this address is sent several times. In the above case, the answer did not happen, consequently, the drawn
address was accepted as its own.

Since the thermostat max version was not finally produced, testing of the web application and MQTT

communication was troublesome, because all interactions of the microcontroller with the MTD415T
modules had to be simulated using the USB-UART converter and the Realterm software. With the

35

assistance of these tools, it was possible to observe the commands reaching MTD415T and the thermostat
responses to UART messages coming from the (simulated) Thorlabs devices. With this MTD415T
simulation, it was found that the firmware is working properly. Particular actions taken by the user of
the web application invoke the transmission of the expected commands to the USB-UART converter. In
turn, when sending UART messages to the microcontroller, the microcontroller correctly interprets them.
For example, when the microcontroller sent ”Te?”” command to the USB-UART converter (query for the
actual temperature) and Realterm responded 7230507, the temperature value was correctly displayed in
the web application, and also correctly sent in the MQTT publication.

® Temperature settings X

c @

=12 ARTIQ Sinara Thermostat

>
\ SI N A RA 2-channel temperature controller EEM based on the Thorlabs MTD415T

T~

v oo @9y In @ =

)

% A

Temperature status

Connection Status Channel 0 Temperature Settings
Port 0 Settings
Port 1 Settings.

Miscellaneous Settings

I C.ren Updated

Set temperature: Rl /Ao | loc Set

JaTEI RGN EWIER 23.050 °C

TC general info
CH 0 TEC settings
CH 1 TEC settings
CH 0 Temperature seftings

Temperature window: ey 4 (mK Set
Status diode delay time: 43 (Is Set

CH 1 Temperature settings

CH 0 Control loop settings

CH 1 Control loop settings
MQTT status

Reset device

Figure 5.2. Testing of the web application

£ *Ethernet 3 - m} x
Plik Edytuj Widok ldi Przechwytuj Analizu] Statystyki Telefonia Bezrprzewodowe Marzedzia Pomoc
md® RERe=2=2f J5EQAQaE
[i |mqtt [X] -] Wyrazenie +
No. Time Source Destination Protocol Length Info
188 46.971438 169.254.249.46 169.254.58.158 MOTT 78 Connect Command
189 46.971788 169.254.58.158 169.254.249.46 MOTT 58 Connect Ack
118 46.973386 169.254.249.46 169.254.58.158 MOTT 73 Subscribe Request (id=1) [thermostat/#]
111 46.973413 169.254.58.158 169.254.249.46 MOTT 59 Subscribe Ack (id=1)
777 94.859993 169.254.58.158 169.254.249.46 MOTT 86 Publish Message [thermostat/che/temp/set/read]
778 94.868358 169.254.249.46 169.254.58.158 MOTT 89 Publish Message (id=2) [thermostat/ch®/temp/set]
779 94868435 169.254.58.158 169.254.249.46 MOTT 58 Publish Ack (id=2)
781 94.978982 169.254.58.158 169.254.249.46 MOTT 89 Publish Message (id=1) [thermostat/ch®/temp/set]
782 94.971446 169.254.249.46 169.254.58.158 MOTT 68 Publish Ack (did=1)

~
W

> Frame 782: 6@ bytes on wire (480 bits), 6@ bytes captured (488 bits) on interface @ -~
» Ethernet II, Src: TexasIns_@3:2e:T8 (@@:1a:b6:@3:2e:T8), Dst: LcfcHefe 4d:65:8c (28:d2:44:4d:65:8c)

» Internet Protocol Version 4, Src: 169.254.249.46, Dst: 169.254.58.158

» Transmission Control Protocol, Src Port: 49153, Dst Port: 1883, Seq: 79, Ack: 81, Len: 4 w

Gopo 28 d2 44 4d BS Bc B8 la be B3 2e T8 @8 @@ 45 @0 (-DMe--- --. --E- ~
9@ 2c 81 61 @@ @@ Tf @6 32 al a9 fe f9 2e ad fe rgr@rrr Rerea e
G820 33 9e c@ @1 @7 5b 8@ @@ 19 bc 5c Ba 6a 39 58 18 R A -)

O it MQ Telemetry Transport Protocol: Protocol || Pakietdw: 784 - Wyswietlanych: 9 (1. 1%) || Profil: Default

Figure 5.3. MQTT communication captured by Wireshark

36

As one can see in the example above, MQTT communication starts with connect command sent
by the thermostat. To initiate a connection, the implemented client sends a command message with a
proper content: client id, clean session flag, last will topic, keep alive interval. The broker accepts the
connection and it responds with a connect ack message. This message contains two data entries: session
present flag and connect acknowledge flag. Subsequently, the thermostat sends subscribe request, that
consists of three components: topic length, topic name and requested quality of service. The subscribe
ack message with a return code is then sent back by the broker. The user of the thermostat sends the
publish message with the topic “thermostat/chO/temp/set/read”. The broker forwards the message to
the device and, after processing, the thermostat sends the publish message with a value of the actual
temperature in the payload. Each time the publish message has QOS level 1, the receiver answers with
publish ack.

All tests possible to perform using the evaluation board showed the proper functioning of the designed
firmware.

5.2 Testing the thermostat _max version

Tests of the thermostat max version were made using a manufactured PCB of thermostat, two Peltier
modules with a maximum operating current of 10A, two PTC thermistors (K7Y81-110 fromNXP) and
two Pt1000 RTDs from Jumo.

Figure 5.4. Photograph of a system for testing with PTC thermistors

5.2.1 Functional tests of individual parts of the project

UART communication in the module works correctly, messages about the status of the Ethernet and
MQTT connection appear on the P4/ pin. Figure shows the window of Realterm while validating
UART communication.

37

The module successfully establishes an Ethernet connection and MQTT connection. It was tested
using the Wireshark program.

The web application was tested using two browsers - Firefox v. 65.0.2 and Opera v. 58.0.3135.47.
All application hyperlinks work correctly and lead to correct subpages. If one tries to open a non-existent
subpage, page 404 is displayed. All SSI queries sent by the web client are correctly interpreted by the
microcontroller - correct values returned by the web server appear in the right places. Also, all CGI
requests sent using forms on web pages are well interpreted by the microcontroller.

The part of the firmware responsible for MQTT communication works properly. Using the Mosquitto
broker and the MQOTT Spy application, all designed MQTT topics were tested. For each MQTT
publication from the MQTT Spy, the microcontroller reacts as expected.

The microcontroller correctly handles EEPROM memory, after power cycling values of parameters
are loaded from memory.

The watchdog was tested by adding while loop with condition that is always true so that the watchdog
counter is not loaded. After the relevant time, the module resets and the factory parameters are loaded
when restarting.

The microcontroller successfully communicates through the SPI with the ADC and correctly converts
the values returned by it to the temperature. Setting the PWM signals also works properly — it was tested
using the YF-3503 digital multimeter from YU FUNG.

5.2.2 Functional tests of the entire project

After successfully testing all parts of the thermostat firmware, functional tests of the entire project were
also performed. The purpose of these tests was to verify whether the module works properly after setting
temperature controller parameters. It is expected that after turning on the temperature control in a given
channel, the temperature measured by the sensor will approach the set temperature, and when it is reached,
it will be maintained in the close neighborhood of the set temperature.

The measurement system shown in the picture was set up. PTC thermistors were used as
temperature sensors. This system was used to examine whether the thermostat module works properly
in both channels with PTC/NTC thermistors. It has been noted that the functioning of the module is
correct. When the measured temperature is greater than the set temperature, the device forces the Peltier
current that causes cooling the PTC side of the Peltier module. In turn, when the measured temperature
is lower than the set temperature, the PTC side of the Peltier module heats up.

In order to illustrate the performance of the temperature controller, a script for the MOTT Spy was
written. The script enables temperature control in a given channel, and then every half a second reads the
value of the measured temperature in this channel. In one of the channels, the target temperature was set
to be lower than the ambient temperature and in the second - higher than the ambient temperature. The
test results are presented in the charts below.

38

ath
E 215 F -".__ 3
05F 4]
20 — 3 —

19.5 * '\ *

Temperature [°C]
Temperature [°C]

1 1 175 E 1 L L
100 150 200 0 50 100 150 200

Time [s] Time [s]

Figure 5.5. Temperature measured by the PTC thermistor as a function of time in the channel 0 and /
respectively. P = —2000%‘4, I= —300%, D= _5007”?“

The way the controller works depends on the values of parameters P, I, D. The conclusion from the
above measurements is that the thermostat module works as expected with PTC thermistors. If PID
parameters are tuned, the actual temperature reaches the target temperature and performs smaller and
smaller wobbles around it.

For further tests, PTC thermistors were replaced with Pt1000 sensors. The MQTT Spy script was used
again and measurements were taken. The results are presented in the graphs below.

»Bn5——F———————————————————— 185 —————
23 ; W‘Mﬂ\w- -1
25F 3 18 |]
2E . 1 g 1
— P = 175 -
D st i g "k f
L1} | [
5 g E- F. 1
® [© 17 T
g 2050 1 5 L.]
£ P £
20 Er | | 4
ki 2 # 165 |]
19.5 | B :
E E [E) 1
19 E 16 o P%"T:’-'JW ‘J"M -,jg’ﬁ,ri;ﬂ- e — -
185 [E r 1
18 E I I I 155 L I I I
0 50 100 150 200 0 50 100 150 200
Time [s] Time [s]

Figure 5.6. The left graph shows the temperature measured by Pt1000 on channel 0 as a function of time
(P = —15007”7‘4, I = —145%, D = —2500’”?‘4'5). The right graph shows the same for channel /.

mA mA mA-s
(P =—100074, [= 10074, D = —1500mA=),

39

Bnermm—m —m@0m——————————————————— 3005 — ™m———
05 - % - - I

wE E i _
28EF ¢ : e s
a7 e ... E e
6F E
»BE E
uc]

Temperature [°C]
Temperature [°C]

235 3 2095 - ' oot E
2 E! E [
21 3

20 ¢ E

19 E 1 L L 299 1 1
0 50 100 150 200 50 100 150 200

Time [s] Time [s]

Figure 5.7. The temperature measured by Pt1000 on channel 0 as a function of time. The left graph shows
all measurements, the right graph shows the situation after 50 seconds. P = —ZOOOm—KA, I =-200 ”I}‘g ,
D = —500m2-=

Ve —_— — 1015 ———————
E: 101 [.
17 E E L .]
I] .]
oG E éj 10.05 r.. -
= 15F E| = F
@ E . [-
5 E ot 5 P
B O1E G ER = 10 F
@ Eo @ [~
=% E [y =3
g 13 3 3 E g [i]
T 5, F 995 F -]
E \ E Fow -]
1k 3 [oo]
E 9.9 - & -
E [- j
g - - - - = R— [RN]
9 ; 1 L L 985 L . 1 1]
o] 50 100 150 200 50 100 150 200
Time [s] Time [s]

Figure 5.8. The temperature measured by Pt1000 on channel / as a function of time. The left graph shows
all measurements, the right graph shows the situation after 50 seconds. P = —QOOOm—KA, I =-300 ”I}‘g ,
D = —300ma-=

As one can see, selected parameters of PID controller ensure the maintenance of temperature at the
level of even +15m K around the target temperature. It may be supposed that the use of software PID
tuners of the Sinara team can increase the stability to the target level of ~ ImK.

All the above-presented measurements used data from an analog-to-digital converter as a source of
knowledge about the state of the system. Therefore, they are subject to possible errors related to ADC,
e.g. its non-linearity. In order to make a decisive test of the thermostat, the measuring system shown in
the diagram below was set up.

40

thermostat Pt1000 no. 1 Keysight 34461A

\ Peltier module Pt1000 no. 2

Figure 5.9. Block diagram of a measuring system with a Keysight 34461A4 digital multimeter

One of the Pt1000 sensors was connected to channel 0 of the thermostat device. The second one
was connected to the inputs of Keysight 344614 digital multimeter available at the Institute of Electronic
Systems. Both sensors were placed on one Peltier module connected to channel 0 of the board. The
picture|5.10 shows the Peltier module together with the Pt1000 sensors in the measurement system.

Figure 5.10. Photograph of the Peltier module and Pt1000 sensors

The measurements consisted of the simultaneous use of a digital multimeter and the script for MOTT
Spy. The script was getting temperature values from the thermostat module using the MQTT protocol. At
the same time, the resistance of the second Pt1000 sensor was being measured using the Keysight 344614
multimeter. The Benchvue software made available by the manufacturer under the trial license was used
to operate the multimeter. With the assistance of the Benchvue program, it was possible to save data from
the multimeter to the PC.

Measurements were taken for different set temperatures. The appropriate parameters of the PID
controller have been determined for all measurements. The graphs showing the results of the tests are

listed below.

41

1102 T T 215 T T
1100 = g 21 .
1098 1 i 2051 7
. 20 -
_ 1006 1 o
=) . = 195 F 5
¥ 1094 | 1 e
g . 2 wr .
B 1002 - 4 @
g : g 185(-
o . T
1090 . B =
. 18 . ,
1088 —'_.'! b 175 [l 7
1086 —#www 4 17 _Ln. A NP _
1084 1 L 1 L L 165 L L 1 L 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time [s] Time [s]
Figure 5.11. 150/5000 Left: Pt1000 resistance measured by Keysight 344614 as a function of time.
Right: Temperature measured by thermostat as a function of time. P = —1000’%‘4, I = —400 ”I}‘g ,
_ mA-s
D = —100"4
1114 T T T T 25 T T T
A .
1113 1 | 3
- 245 | .
1112 (3 qu\f"’""&—- 7 :
} : dorh)]
111 1 5 2 '-#-We*,";‘;-’fh NS masia
) L 41 =
s 1110 s 235 | |
§ 1100 1 2
n o L 4
$ 1108 [1 8 2y
e« Q
ki
1107 | g 225 [i
1106 - B
’ 2+ 4
1105 b
1104 L 1 1 1 L 1 215 1 L 1 1 L L
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Time [s] Time [s]
Figure 5.12. Left: Pt1000 resistance measured by Keysight 34461A4 as a function of time. Right:
Temperature measured by thermostat as a function of time. P = —2000’“7’4, I = —300 ’;‘2, D =
mA-s
—20072=

42

1110 ¢ T T 24 T

1105 e X

: 22 B
1100 1 e a1k i
1095 3 e 20 177 7
; 19 | |
1090 - % e :
18 3 B

Resistance [Q]
Temperature [°C]

1085 -} 1 7L

1080 1 163 7
ol \M |
1075 -] - P NN A AN S St . —

14 -

1070 L : L : : 13
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Time [s] Time [s]

Figure 5.13. Left: Pt1000 resistance measured by Keysight 344614 as a function of time. Right:
Temperature measured by thermostat as a function of time. P = —2000%‘4, I = —1000 ”&_‘2, D =
—200072-2

It can be noticed that changes in resistance measured by the Keysight 344614 multimeter are very
similar to the changes in temperature read from the thermostat. This means that thermostat measurements
are not biased by ADC errors more than a high-class multimeter is. The tests can therefore be considered
successful as they showed the correct functioning of the designed firmware.

43

6 Conclusions

The main result of the thesis is the designed firmware for two-channel temperature controller of the
Sinara hardware family. The firmware was created for two versions of the device: the one with
MTD415T chips and the one with MAX1968 chips. The project meets all the requirements presented
in the design assumptions. Temperature can be controlled in two channels independently using web
application or MQTT messaging protocol. All the external libraries used in the project are open-source.
This includes FreeRTOS and IwIP libraries. The configuration of the connection can be modified via
web application if need. The modularity of the firmware as well as using RTOS allows easy modification
in case of any changes of the PCB or need to add functionalities.

Although complex testing of the firmware for the version with Thorlabs chips was not possible due to
abandoning the production of this version, the tests were performed with the use of evaluation board and
USB-UART converter. It turned out, that the firmware works correctly, however, the ultimate validation
of the functioning should be made in case of manufacturing the thermostat thorlabs PCB. The firmware
for the thermostat with MAX1968 chips was thoroughly tested. Besides testing all functionalities of the
firmware, the tests of the whole device were made. It turned out, that, if PID parameters were tuned,
the device managed to quickly reach and hold the target temperature. The maximum stability of the
temperature obtained in tests was at the level of ~ 15m K. However, as the reaching the target stability
level of ~ 1mK was not the purpose of the thesis, tuning the PID controller was left in the hands of
physicists of Sinara project.

Before adopting the device in the ARTIQ system, other tests should be performed, including measur-
ing errors induced by TEC current and measuring the influence of the noise on the device’s measurements.

The thermostat with the designed firmware is meant to be used in the working ARTIQ systems after
the next necessary tests. The further development of the firmware is relatively simple and it should not
be a problem to introduce new solutions. The suggested modifications are:

e simplification of the code, i.e. review of all functions and seek for possible redundancies
e usage of a template system for a web application to ensure easier changes of web pages

e adding a possibility to change the form of the MQTT topic from the web application — it would be
very useful to add a unique identifier of the device to the topic in case of more than one thermostat
in the MQTT system

As for the possible modifications of the device, it is worth considering to replace TM4C1294NCPDT
with STM32 microcontroller and Ethernet PHY chip. It would reduce the cost of the device, while the
cost of the changes in the firmware would be low.

45

List of Figures

2.1 Four-channel universal controller AR654 from Apar [3] 5
2.2 Uniplex III heating controller from Kidpper Therm [3] 6
3.1 Simplified schematic diagram of thermostat_thorlabs| 7
3.2 Block diagram of Ag5300 [2]/. 8
3.3 MTD4IST [22]) « o o o oo e e e e 9
3.4 Simplified schematic diagram of thermostat max| 10
3.5 Block diagram of MAXI968 [11]o i 11
3.6 Block diagram of AD7172-2 1]o oo 12
3.7 WIP1ogo [9] . . - o o o 13
3.8 FreeRTOST10go [8] o o v i 14
4.1 TMA4CI294XL evaluationboard 16
4.2 GUI of Code Composer Studio| 16
43 GUIof Realterm! e 17
4.4 GUILof Wireshark e 17
45 GUIOEMOTT Spy| . o o v o e e 18
4.6 Layoutof the sample webpage| L 24
5.1 AUTOIP mode captured by Wireshark| 35
5.2 Testing of the web application L L 36
5.3 MQTT communication captured by Wireshark 36
5.4 Photograph of a system for testing with PTC thermistors 37
5.5 Temperature control graph for PTC|. 39
5.6 Temperature control for Pt1I000 39
5.7 Temperature control chart in channel 0 for Pt1000 40
5.8 Temperature control chart in channel 7 for Pt1000/ 40
5.9 Block diagram of a measuring system with a Keysight 344614 digital multimeter| 41
5.10 Photograph of the Peltier module and Pt1000 sensors| 41
5.11 Measurements thermostat + Keysight 344614 for a set temperature of 17°C 42
5.12 Measurements thermostat + Keysight 344614 for a set temperature of 24°C" 42
5.13 Measurements thermostat + Keysight 344614 for a set temperature of 14°C° 43

47

List of Tables

3.1

Selected parameters of the TM4C12294NCPDT microcontroller [19].

32

Selected parameters of the MTD415T [22]

4.1

Functions that handle CGI requests and actions performed by these functions|

4.2

Extract of the datasheet of MTD415T . .

49

A Appendix

A.1 Source code of the firmware

A.l.1

IwIPTaskInit

1 uint32 _t
IwIPTaskInit(void)

{

uint32 t ui32User0, ui32Userl;

5 uint8_t puiSMAC[6];
1/
// Get the MAC address from the user registers.
1/

10 MAP FlashUserGet(&ui32User0, &ui32Userl);
if ((ui32User0 == Oxffffffff) || (ui32Userl == Oxffffffff))
{

return (1);

}

15
//
// Convert the 24/24 split MAC address from NV ram into a 32/16 split MAC
// address needed to program the hardware registers , then program the MAC
// address into the Ethernet Controller registers.

20 /1l
puiSMAC[0] = ((ui32User0 >> 0) & O0xff);
pui8BMAC[1] = ((ui32User0 >> 8) & 0xff);
pui8MAC([2] = ((ui32User0 >> 16) & 0xff);
pui8MAC[3] = ((ui32Userl >> 0) & 0xff);

25 pui8MAC[4] = ((ui32Userl >> 8) & 0xff);
pui8MAC[5] = ((ui32Userl >> 16) & 0xff);
1/
// Lower the priority of Ethernet interrupt

30 1/
MAP _IntPrioritySet(INT EMACO, ETHERNET INT PRIORITY);
/1l
// Set the link status

35 /!
g bLinkStatusUp = GPIOPinRead (GPIO PORTF BASE, GPIO PIN 3) ? false : true;
/!
// Initialize IwIP.

40 /1
IwIPInit(g_ui32SysClock , puiSMAC, 0, 0, 0, IPADDR USE DHCP);
/]
// Setup remaining services of TCP/IP

45 1/
tcpip_callback (SetupServices , 0);
return (0);

}
A.1.2 SerialTask

51

1

20

25

30

35

40

45

50

55

60

65

70

52

static void
SerialTask (void *pvParameters)

sEvent;

until a message is put on g QueSerial by interrupt handler.

xQueueReceive (g QueSerial, (void*) &sEvent, portMAX DELAY);

// The first part of the message is type of event.

if (sEvent.eEventType == RX)

f Telnet protocol is enabled, check for incoming IAC character and escape

g _sParameters.sPort[sEvent.ui8Port]. ui8Flags &
PORT FLAG PROTOCOL) == PORT PROTOCOL TELNET)

/!

// 1f this 1is a IAC character , write it twice.

I/

if ((sEvent.ui8Char == TELNET_ IAC) &&
(RingBufFree(&g_sRxBuf[sEvent.ui8Port]) >= 2))

{
RingBufWriteOne(&g sRxBuf[sEvent.ui8Port], sEvent.ui8Char);
RingBufWriteOne(&g_sRxBuf[sEvent.ui8Port], sEvent.ui8Char);
}
//
// If not IAC character, write it just once.
/]

else if ((sEvent.ui8Char != TELNET IAC) &&
(RingBufFree(&g sRxBuf[sEvent.ui8Port]) >= 1))

{

RingBufWriteOne(&g_sRxBuf[sEvent.ui8Port], sEvent.ui8Char);

!

f not Telnet, then write the data once.

RingBufWriteOne(&g_sRxBuf[sEvent.ui8Port], sEvent.ui8Char);

if it is a TX interrupt

// Loop while there is space in the transmit FIFO and characters

{
tSerialEvent
while (1)
{
/1!
// Block
/1l
/1]
/1l
{
/]
/] 1
/!
if ((
{
}
1/
/] 1
/]
else
{
}
}
/!
// Check
/!
else
{
/]
/]
whil
{
b
}
}

e (! RingBufEmpty(&g_sTxBuf[sEvent.ui8Port]) &&
UARTSpaceAvail (g_ui32UARTBase[sEvent. ui8Port]))

//

// Write the next character into the transmit FIFO.

1/

UARTCharPut(g_ui32UARTBase[sEvent.ui8Port],
RingBufReadOne(&g_sTxBuf[sEvent.ui8Port]));

to be sent.

A.1.3 vApplicationldleHook

20

25

30

35

40

45

50

55

60

65

70

void

vApplicationldleHook (void)

{

uint32 t ui32Temp;
portTickType ui32CurrentTick, ui32InitialTick;

1/

// Get current IP address.

/1l

ui32Temp = IwIPLocallPAddrGet();

/]

// See if IP address has changed.

/!

if (vi32Temp != g ui32IPAddress)

{

1

/!

/]
// Save current IP address.
/]
g ui32IPAddress = ui32Temp;

/1

// Display IP address.
/1

DisplayIP (ui32Temp);

// Check for IP update request.

/!

if (g_ui8UpdateRequired)

{

/!

// Check if ”ui32InitialTick” is to be initialized.
/1l

if (bFirst)

{
/]
// Get the initial tick count (to calculate two seconds delay)
/]
ui32InitialTick = xTaskGetTickCount ();
/]
// Reset ’bFirst’
/]
bFirst = false;
}
/]
// Get current Tick count.
/]

ui32CurrentTick = xTaskGetTickCount();

/]

// Check if 2 seconds have lapsed.

/!

if ((ui32CurrentTick — ui32InitialTick) > 2000 / portTICK_RATE_MS)
{

/!

// Updating only IP address?

/1l

if (g ui8UpdateRequired & UPDATE IP ADDR)

/1l
// Update IP address.

53

/]

g ui8UpdateRequired &= ~UPDATE IP ADDR;

75 ConfigUpdateIPAddress ();
)
/1l
// Updating all parameters?
80 /1l
if (g ui8UpdateRequired & UPDATE ALL)
{
1/
// Update all.
85 /]

g ui8UpdateRequired &= ~UPDATE ALL;
ConfigUpdateAllParameters (true);

}
90
1/
// Set ’bFirst’
/]
bFirst = true;
95 }

A.1.4 fs open

err_t fs_open(struct fs file *psFile, const char *pcName)

const struct fsdata file *psTree;

5 err_t err;
/!
// Allocate memory
/!

10 if (psFile == NULL)
{

err = ERR MEM;
return(err);

b
15
/!
// Initialize the file system tree pointer
/!
psTree = FS ROOT;
20
/]
// Search for requested file name.
/!
while (NULL != psTree)
25 {
/]
// Compare the requested name to name in current node.
/1l
if (ustrncmp (pcName, (char *)psTree—>name, psTree—>len) == 0)
30 {
psFile —>data = (char *)psTree—>data;
psFile —>len = psTree—>len;
35 /1l
// Setup read index to end of file
/1l
psFile —index = psTree—>len;
40 /!
// Not using any file system extensions
/!

54

psFile —>pextension = NULL;

45
err = ERR OK;
break;
}
50
/]
// Did not find the file at this node. Get the next element in the list.
1/
psTree = psTree —>next;
55
err = ERR ARG;
}
1/
60 // Didn’t find the file —> psTree will be NULL
1/
if (psTree == NULL)
{
mem_free(psFile);
65 psFile = NULL;
}

return(err);

A.1.5 ConfigSave

1 void
ConfigSave (void)
{
uint8 t *pui8Buffer;
5

1/
// Save working defaults parameter block
1/
EEPROMPBSave ((uint8 t *)&g sWorkingDefaultParameters);

10
I/
// Get pointer to recently saved buffer
1/
pui8Buffer = EEPROMPBGet();

15
/!
// Update default parameter pointer
/1l
if (pui8Buffer)

20 {

g psDefaultParameters = (tConfigParameters *)pui8Buffer;

}
else
{

25 g psDefaultParameters = (tConfigParameters *)g psFactoryParameters;
}

A.1.6 Send Command

1 void Send Command(uint32 t ui32Port, const char *commandBuf, uint32 t ui32Len)

{
ASSERT((ui32Port == 0) || (ui32Port == 1));

unsigned int charNum = 0;
while (charNum < ui32Len)

{

}

if (! SerialSendFull (ui32Port))

{
SerialSend (ui32Port, commandBuf[charNum]);

charNum = charNum + 1;

}

if (! SerialSendFull(ui32Port)) SerialSend(ui32Port, ’\r’);
if (! SerialSendFull(ui32Port)) SerialSend(ui32Port, ’\n’);

A.1.7 Receive_Answer

20

25

30

35

40

45

50

55

56

uint32 t Receive Answer(uint32 t ui32Port, char *answerBuf)

{

ASSERT ((ui32Port == 0) || (ui32Port == 1));

unsigned int charNum = 0;
int32 t buf;
int8§ t cbuf;

int

i=0;

int imax = 3000000; // timeout about 1 second
bool timein = true;

while (timein)

{

cbuf = —1;
if(ui32Port == 0)

while (! UARTCharsAvail (S2E PORTO UART PORT) && timein)
{
if (1 > imax)

{

timein = false;
charNum = OxFF;
}
i =1+ 1;
)
if (UARTCharsAvail (S2E_PORTO UART PORT))
{
buf = MAP_UARTCharGetNonBlocking (S2E_PORTO_UART PORT);
cbuf = (unsigned char)(buf & O0xFF);
}
} else

while (! UARTCharsAvail (S2E PORT1 UART PORT) && timein)
{
if (1 > imax)

{

timein = false;
charNum = OxFF;
}
i =i+ 1;
)
if (UARTCharsAvail (S2E PORT1_UART PORT))
{
buf = MAP_UARTCharGetNonBlocking (S2E_PORT1_UART PORT);
cbuf = (unsigned char)(buf & OxFF);
}
}
if (cbuf !'= —1)
if ((cbuf == ’\r’) || (cbuf == ’\n’) || (cbuf == 0x1b))
{
answerBuf[charNum] = cbuf;
break;
}
else
{

60

65

70

A.1.8

1

20

25

answerBuf[charNum] =

cbuf;

charNum = charNum + 1;

}
}
}
if (charNum == O0xFF)
{
answerBuf[0] = °t’; answerBuf[l] = ’i’; answerBuf[2]
answerBuf[4] = ’o’; answerBuf[5] = ’u’; answerBuf[6]
charNum = 8;
}

return charNum;

m’:

5

— ’t,;

answerBuf[3]
answerBuf[7]

do_connect

void do_connect ()

{

struct mqtt_connect_client_info t ci;
err_t err;

/*

Setup an empty client info structure */
memset(&ci, 0, sizeof(ci));

ip_addr , MQTT PORT,

ci.client_id = ”thermostat”;

ci.will topic = “unexpected exit”;

/* Initiate client and connect to server*/
ip_addr t* ip addr;

ip_addr = (ip_addr_t*) mem_malloc(sizeof(ip_addr_t));
ip_addr—addr = g_sParameters.ui32mgqttip;

err = mqtt client connect(client,

/* Print the result code if something goes wrong*/

if (err != ERR OK) {
UARTprintf(”mqtt_connect return %d\n”, err);

}

mem_free ((void *) ip_addr);

mqtt _connection cb ,

0, &ci);

A.1.9 mqtt_connection_cb

1

20

static void mqtt connection cb(mgqtt client t *client ,

{

err_t err;
if (status == MQTT CONNECT ACCEPTED) {
UARTprintf ("MQTT: Successfully connected\n”);

mqtt_conn = true;

/* Setup callback for incoming publish requests

mqtt_set inpub_callback (client ,

mqtt_incoming publish cb,

*/

void *arg,

/* Subscribe to a topic named “thermostat/#” with QoS level 1,

call mqtt sub request cb with

err = mqtt_subscribe(client , ”“thermostat/#”, 1,

if(err != ERR OK) {

result */

mqtt_sub_request_cb, arg);

UARTprintf ("MQIT Error: mqtt_subscribe return: %d\n”,

}

else

UARTprintf (”"MQIT: Disconnected ,

reason: %d\n”,

status);

err);

mqtt connection status t status)

mqtt_incoming data cb, arg);

57

mqtt_conn = false;
b
)

A.1.10 mgqtt_incoming_publish_cb

1 static void mqtt incoming publish cb(void *arg, const char *topic, u32 t tot len)

{

char *topic_p[6];
5 char *topic_pub = (char *) mem calloc(64,sizeof(char));
int i,topics _number;
for(i = 0; 1 < 6; 1 = i+1) {
topic_p[i] = (char *) mem calloc(32,sizeof(char));

}
10
if (strcmp(topic, “thermostat/reset”) == 0) {
SysCtlReset ();
}
15 topics_number = parse topic(topic, topic _p, strlen(topic));
inpub_id = —1;

/* Decode topic string into a user defined reference */
20 if (topics_number >= 4 && topics_number <= 6) {
if (stremp (topic_p[l], ”ch0”) == 0 || strcmp(topic_p[l], “chl”) == 0) {
strncpy (topic_pub, topic, strlen(topic)—strlen (topic_p[topics number —1])—1);
ui32Port = atoi(topic_p[l1]+2);
if (strcmp (topic_p[2], "gen”) == 0) {
25 if (strcmp (topic_p[3], "ver”) == 0 && strcmp (topic_p[4], “read”) == 0) {
inpub_id = 0;
publish general(client , arg, topic pub);
} else if(strcmp(topic_p[3], 7id”) == 0 && strcmp (topic_p[4], “read”) == 0) {
inpub_id = 1;
30 publish general(client, arg, topic_pub);
} else if(strcmp(topic_p[3], "err”) == 0 && strcmp (topic_p[4], "read”) == 0) {
inpub_id = 2;
publish _general(client, arg, topic_pub);

} else if(strcmp(topic_p[3], "err”) == 0 && strcmp (topic_p[4], "reset”) == 0) {
35 inpub_id = 3;
publish general(client , arg, topic pub);
} else if(stremp(topic_p[2], "tec”) == 0) {
if (strecmp(topic_p[3], “curr”) == 0 && strecmp (topic_p[4], “read”) == 0) {
40 inpub_id = 1;

publish tec(client, arg, topic pub);
} else if(stremp(topic_p[3], “curr”) == 0 && strcmp (topic_p[4], ”lim”) == 0 \
&& stremp (topic_p[5], "set”) == 0) {
inpub_id = 6;
45 } else if(strcmp(topic _p[3], "curr”) == 0 && strcmp(topic_p[4], ”lim”) == 0 \
&& stremp (topic_p[5], "read”) == 0) {
inpub_id = 0;
publish tec(client, arg, topic pub);
} else if(strcmp(topic_p[3], "volt”) == 0 && strcmp(topic_p[4], “read”) == 0) {
50 inpub_id = 2;
publish tec(client, arg, topic_pub);

}
} else if(strecmp(topic_p[2], "temp”) == 0) {
if (strcmp (topic_p[3], "read”) == 0) {

55 inpub_id = 1;
publish_temp(client , arg, topic_pub);
} else if(strcmp(topic _p[3], "set”) == 0 && strcmp (topic_p[4], "set”) == 0) {

inpub_id = 7;
} else if(strcmp(topic_p[3], ”set”) == 0 && strcmp (topic_p[4], "read”) == 0) {

60 inpub_id = 0;
publish _temp(client, arg, topic_pub);
} else if(strecmp(topic_p[3], ”win”) == 0 && strcmp (topic_p[4], "set”) == 0) {

inpub_id = 8§;
} else if(strcmp(topic_p[3], "win”) == 0 && strcmp (topic_p[4], "read”) == 0) {
65 inpub_id = 2;

58

publish temp(client, arg, topic_pub);
} else if(stremp(topic_p[3], ”del”) == 0 && strcmp(topic_p[4], ”set”) == 0) {
inpub_id = 9;

} else if(strecmp(topic_p[3], 7del”) == 0 && strcmp (topic_p[4], "read”) == 0) {
70 inpub_id = 3;
publish temp(client, arg, topic_pub);
¥
} else if(strecmp(topic_p[2], “cloop”) == 0) {
if (stremp(topic_p[3], “gain”) == 0 && strcmp (topic_p[4], "set”) == 0) {
75 inpub_id = 10;
} else if(strecmp(topic_p[3], “gain”) == 0 && strcmp (topic_p[4], "read”) == 0) {

inpub_id = 0;
publish cloop(client, arg, topic_pub);
} else if(strecmp(topic_p[3], ”period”) == 0 && strcmp(topic_p[4], "set”) == 0) {
80 inpub_id = 11;
} else if(strecmp(topic_p[3], ”period”) == 0 && strcmp (topic_p[4], "read”) == 0) {
inpub_id = 1;
publish _cloop(client, arg, topic_pub);
} else if(strcmp(topic_p[3], "cyctime”) == 0 && strcmp (topic_p[4], ”"set”) == 0) {
85 inpub_id = 12;
} else if(strcmp(topic_p[3], “cyctime”) == 0 && strcmp(topic_p[4], “read”) == 0) {
inpub_id = 2;
publish cloop(client, arg, topic_pub);
} else if(strecmp(topic_p[3], "P”) == 0 && strcmp (topic_p[4], "set”) == 0) {
90 inpub_id = 13;
} else if(strecmp(topic_p[3], ”"P”) == 0 && strcmp (topic_p[4], “read”) == 0) {
inpub_id = 3;
publish cloop(client, arg, topic_pub);
} else if(strecmp(topic_p[3], "1”) == 0 && strcmp (topic_p[4], "set”) =
95 inpub_id = 14;
} else if(strecmp(topic_p[3], ”I”) == 0 && strcmp (topic_p[4], “read”) == 0) {
inpub_id = 4;
publish cloop(client, arg, topic_pub);
} else if(strcmp(topic_p[3], ”D”) == 0 && strcmp(topic_p[4], ”set”) == 0) {
100 inpub_id = 15;
} else if(stremp(topic_p[3], "D”) == 0 && stremp (topic_p[4], “read”) == 0) {
inpub_id = 5;
publish cloop(client, arg, topic _pub);

0) {

}

mem_free(topic_pub);
110 for(i = 0; 1 < 6; 1 =1 + 1) {
mem_free(topic_p[i]);

}

A.1.11 mqtt_incoming_data_cb

1 static void mqtt incoming data cb(void *arg, const u8 t *data, ul6 t len, u8 t flags)

{
bool bRetcode;

int32 t i32Value 0;
5 int i = 0;
int j = 0;

char *value;

if(flags & MQTT DATA FLAG LAST & (len > 0)) {
10 value = (char *) mem_calloc(32,sizeof(char));
strncpy (value , (char *) data, len);
/* Last fragment of payload received */

/* Call function or do action depending on inpub_id */
15 if (inpub_id == 6) { //set current limit
bRetcode = ConfigCheckDecimalParam (value, &i32Value);
if (bRetcode) {
if (! Set TEC_limit(ui32Port, i32Value)) {
UARTprintf ("MQIT: incorrect value\n”);

59

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

60

}
} else {
UARTprintf ("MQIT: incorrect value\n”);

} else if(inpub_id == 7) { //set temperature
while (data[i] != ’.’ && data[i] != ’,” && i < len) {
value[i] = data[il];
i =1+ 1;
}
while (i < len — 1) {
value[i] = data[i+1];
if(isdigit(value[i])) ¢
=i+t
}
i=i+1;
}
if(j > 3) {

}

value[i—j+3] = NULL;

}
while(j < 3) {

value[i] = ’07;
i =i+ 1;
U B

)
value[i] = NULL;
bRetcode = ConfigCheckDecimalParam(value, &i32Value);
if (bRetcode) {
if (! Set Temp(ui32Port, i32Value)) {
UARTprintf ("MQTT: incorrect value\n”);

}
}+ oelse {
UARTprintf ("MQTT: incorrect value\n”);
}
else if(inpub_id == 8) { //set temperature window

bRetcode = ConfigCheckDecimalParam(value, &i32Value);
if (bRetcode) {
if (! Set Temp Window (ui32Port, i32Value)) {
UARTprintf ("MQTT: incorrect value\n”);
b

} oelse {
UARTprintf ("MQTT: incorrect value\n”);

else if(inpub_id == 9) { //set temperature diode delay time

bRetcode = ConfigCheckDecimalParam(value, &i32Value);
if (bRetcode) {
if (! Set_ Temp_ Delay(ui32Port, i32Value)) {
UARTprintf ("MQTT: incorrect value\n”);
}

} oelse {
UARTprintf ("MQTT: incorrect value\n”);

)
else if(inpub_id == 10) { //set gain

bRetcode = ConfigCheckDecimalParam (value, &i32Value);
if (bRetcode) {
if (! Set_Gain(ui32Port, i32Value)) {
UARTprintf ("MQIT: incorrect value\n”);
}
} else {
UARTprintf ("MQIT: incorrect value\n”);

)
else if(inpub_id == 11) { //set period

bRetcode = ConfigCheckDecimalParam (value, &i32Value);
if (bRetcode) {
if (! Set_Period(ui32Port, i32Value)) ¢{
UARTprintf ("MQTT: incorrect value\n”);

}
}+ oelse {
UARTprintf ("MQTT: incorrect value\n”);
¥
else if(inpub_id == 12) { //set cycling time

bRetcode = ConfigCheckDecimalParam (value, &i32Value);
if (bRetcode) {
if (!Set CT(ui32Port, i32Value)) {

95

100

105

110

A.1.12

1

20

25

30

35

40

UARTprintf ("MQIT: incorrect value\n”);
}
} else {
UARTprintf ("MQTT: incorrect value\n”);

}

} else if(inpub_id >= 13 && inpub_id <= 15) { //set PID
bRetcode = ConfigCheckDecimalParam (value , &i32Value);
if (bRetcode) {

if (! Set_ PID(ui32Port, inpub_id — 13, i32Value)) {
UARTprintf ("MQTT: incorrect value\n”);
¥
b else {
UARTprintf ("MQTT: incorrect value\n”);
}
}

mem_free(value);

spi_getvalue

int32 t spi_getvalue(uintl6_t *channel) {

uint32 _t command[5];
uint32 t data[5];
uint32 t i;

int32 t result = 0;

command[0] = READ DATA REG;
command[1] = 0x0;
command[2] = 0x0;
command[3] = 0x0;
command[4] = 0x0;

for(i = 0; i <5; i=1+ 1) {
SSIDataPut (SSI1_BASE, command[i]);

}

while (SSIBusy (SSI1_BASE))

{

}

for(i = 0; i < 5; i =1+ 1) {
SSIDataGet (SSI1_BASE, &data[i]);
data[i] &= O0xO00FF;

}

data[4] &= 0x000F;

result = result + (data[l] << 16);
result = result + (data[2] << 8);
result = result + (data[3]);

result = result — 0x800000;
*channel = data[4];

if(data[4] == 0x0 || data[4] == 0x1) {
return result;

} else {
return Oxffffffff;

}

A.1.13 getTemp

61

1 int32 t getTemp(int32 t RawTemp, int32 t TO, int32 t Beta, intl6 t Ratio,\
intl6_t tempmode, int32 t ptA, int32 t ptB)
{

float alpha = ((float) RawTemp)/8388608.0; // raw/2"23

5 float recepT;
float T;
float temp_adiv2b;
float temp ldivb;
int32_t result;

if (tempmode == 0) {
// 1/T = 1/TO + 1/B*In(alpha/(l—alpha)*Rref/RO
recepT = 1.0 / (273.15 + ((float) T0)/1000.0) + \
(1000.0 / ((float) Beta))*logf(alpha/(1.0—alpha)/(((float) Ratio)/1000.0));
15 T = 1.0/recepT — 273.15;

} else if(tempmode == 1 && ptB != 0) {
temp_adiv2b = 1000.0*(((float) ptA)/((float) ptB)) / 2.0 ;
temp_1ldivb = 1000000000000.0 / ((float) ptB);

20 if (ptB > 0) {
T = — temp_adiv2b + sqrt(temp_adiv2b*temp_adiv2b — \
temp_1ldivb + temp_ldivb * alpha/(1.0—alpha)/(((float) Ratio)/1000.0));
} else {
T = — temp_adiv2b — sqrt(temp_adiv2b*temp_ adiv2b — \
25 temp_ldivb + temp_ldivb * alpha/(1.0—alpha)/(((float) Ratio)/1000.0));

}
T =T+ (float) TO / 1000.0;

} else if(tempmode == 1 && ptA != 0) {
30 T = (1000000000.0 / ((float) ptA)) * \
(alpha/(1.0—alpha)/(((float) Ratio)/1000.0) — 1.0);
T=T+ (float) TO / 1000.0;

} else {
T = 666.666;
35
}
result = (int32_t) (T*1000.0); //result in mC
return result;
40 }

A.1.14 PIDTask

1 static void
PIDTask(void *pvParameters)

{
5 uint32_t RawTemp;
uintl6_t channel;
channel = 2;
float integrator max;
float result = 0.0;
10 float err, derivative;
/]
// Loop forever.
//
15
while (1) {
WatchdogClear ();
20
RawTemp = spi_getvalue(&channel);
if (channel == 1) {
ui32RawTempO = RawTemp;
25 i32ActTemp0 = getTemp (RawTemp, g sParameters.i32T00, g sParameters.i32Beta0 ,\\

g sParameters.i32Ratio0 , g sParameters.uil6TempModeO, g sParameters.i32ptA0 ,\\
g sParameters.i32ptB0);

62

30

35

40

45

50

55

60

65

70

75

80

85

90

95

pid _dt0 = xTaskGetTickCount() * portTICK PERIOD MS — pid t0;

pid t0 = xTaskGetTickCount() * portTICK PERIOD MS;
err = (float) g_sParameters.i32SetTemp0 — (float) i32ActTempO;
derivative = (err — (float) pid_error0) / ((float) pid_dt0);
pid_error0 = g _sParameters.i32SetTemp0 — i32ActTempO0;
pid_integral0 = pid_integral0 + pid_error0 * pid _dt0;
if (g _sParameters.il6cli0 != 0) {

integrator_max = fabs(pid_integrallimitO*g sParameters.il6cli0);

if (pid_integral0 > (int32 t) integrator max) {

pid_integral0 = (int32_t) integrator_max;

if(pid_integral0 < — (int32 t) (integrator_max)) {
pid_integral0 = — (int32 t) integrator_max;
}
}

result = ((float) g sParameters.il6clp0)*pid _error0/1000.0 + \\
((float) g sParameters.il6cli0O)*pid _integral0/1000000.0 + \\
((float) g _sParameters.il6cld0)* derivative;

setCurr0 ((int32 t) result);

if (pid_error0 < g sParameters.uil6TempWindow0 && \\
pid _error0 > —g sParameters.uil6TempWindow0) {
SetStat (0, 1);

} else {
SetStat (0, 0);

}

} else if(channel == 0) {

ui32RawTempl = RawTemp;

i32ActTempl = getTemp(RawTemp, g_sParameters.i32T0l, g_sParameters.i32Betal ,\\
g sParameters.i32Ratiol , g sParameters.uil6TempModel, g sParameters.i32ptAl ,\\

g sParameters.i32ptB1);
pid_dtl = xTaskGetTickCount() * portTICK PERIOD MS — pid _tl;

pid_tl = xTaskGetTickCount() * portTICK PERIOD MS;
err = (float) g_sParameters.i32SetTempl — (float) i32ActTempl;
derivative = (err — (float) pid_errorl) / ((float) pid dtl);
pid _errorl = g sParameters.i32SetTempl — i32ActTempl ;
pid_integrall = pid_integrall + pid_errorl * pid_dtl;
if (g _sParameters.il6clil != 0) {
integrator_ max = fabs(pid integrallimitl *g sParameters.il6clil);
if(pid_integrall > (int32 _t) integrator _max) {
pid_integrall = (int32_t) integrator_max;

if (pid_integrall < — (int32 t) (integrator max)) {
pid_integrall = — (int32_t) integrator_max;
)
}

result = ((float) g sParameters.il6clpl)*pid_error1/1000.0 + \\
((float) g sParameters.il6clil)*pid integrall /1000000.0 + \\
((float) g _sParameters.il6cldl)* derivative;

setCurrl ((int32 t) result);

if (pid_errorl < g sParameters.uil6TempWindowl && \\
pid_errorl > —g sParameters.uil6TempWindowl) {
SetStat (1, 1);
} else {
SetStat (1, 0);
}

vTaskDelay (UPDATE TIME/portTICK _PERIOD MS);

63

A.2 Schematics of the device

A.2.1 thermostat_thorlabs [21]

64

S _ 14 € _ [4 T

o.u. uﬁ m“m woyjrewb@moidsexb e _ 351 Md
2101 18905 6Zv2 81 1000 awa g ‘omuﬂmuﬂﬁ] o) TTATHO N3
—____opuds'sqejioy] Jeisowliyl ___dll3 | 0'TA QOI_- 3y By ano Sy 350d¥Nd HYINDLLAVAY HO4 SSINLI ANV ALITVNO
8T02Z/TT/0T - ‘PO 1B uado ..O::N.U TLYE] QaT3IHS ¥-a31 3 AHOLOVHSLLYS ‘ALITISYINYHOYIW 30 ONIGNTONI
- LCEEE) % 3 T oscd—oceras ALNVHAVM G3I1dINI HO SS3HdX3 ANV LNOHLIM
- sgejaoy yeisowasy A¥z/490000 2 POINGUISID ST UONEIUSWINOOP SIL {(THONKO/DI0 W0/
DIMOIISES'S Aq UMEIQ Jawnoog €914 SWHO SLXC EW N TTATHO N30 34h JO SLI3) 34) J3pUN UONEIUBWNO0P
Z3IM0IdSEy S _Jaubisaq 4031 —=—fano S Ay1pouw pue aInquIsIpal Aew oA “T'TA THO N&30 41 Japun
l1d° » 2914 —1 [l pasuaol| uado
g0dlid'sqeioy | JeIsoway] wawdinbaoafoid
— ‘8102 351 LNM Wbukdod
ol S + M» T PNI_30d ans
OA 9__eNi 30
— +OA
uoIsualXx3 |suueyd-y I Wrao Q-8
: - ST =
nﬁ‘w 010
) S = 9T zaaL ¢ e QY N a4 AHd
ot 3 104
- — Sle = tay T
onsdE o +2dal == d ad AHd
5TE0 vz e = o] Taur e 9 N QL AHd
= Xy H 1 Sk =< a1 e —
% X1 = T Tgar T~ JaL AHd
158 ——ic_oxd H ano <
= O L e . R 1
TR Lol T4 arams e gz L SSRETTTOEE CAIT i Taany
EIVIS 0 S _ T ane
B
USOVIZIM
108 r—=5— _
155
- vas <t — geL
£XL_HI3 wmmmﬂm 2031 vas =— AaN9 _ QN9 =l aND
BEIGTE] - 1037 <931 -— XY Y SNIVIS P2
FEINTE] > 2x1 H13 JT<ER] -— X1 SLIYLaVN e
A RETE] > 2xd H13 =— O0A X1 _v1ldvn R I TE]
- SLO YLV [
> TXUTHL3 ey B3 - ve1c
DLHLS P peiHi3 4 a8 AHd J a4 AH Xd PLEVN Ser EENTE]
X4 Hi3 | N_QY_AHd TN __ano EEane
[CINTE] > 0XL"H13 N_Q1_AHd TF o €SNIVIS P
R ORI HL3 d7AL AHd S 5 swiewavn it
XL ELVN 05
— v o & sioenvn EEIL XL HL
E1V. NG 5 Xy ELIVN
2l iE] g g IC g ALl
w « TIvis ON3 [_—55 3 m ano —Hans
= m
20QWS HLT NdO = ——{ @31 10V g2
H13 NdD N wloolonlonl oA @W.ﬁa “MM __,mwm_w%«_ <L G315IN0 i) RS
S A Agia Ao N anok aNs 2 £
Sttt T2 xudl =i XLV
ANDF = ans = TSNIVIS P
s 5 [z |3 L 1nosmd & swd_THvn P
ano +X1dL XLTLEVN 2
S G A — La Xidl S5 Tiavn EIt OXL HI3 ¥
130-1v zZ 2 kB 2 S Loos XY TLHVN (o TRTE] H
Tt Xdiowvn aN9 —=—{ano =
0AZTd +NIA <l X1 ovn 1353y ol 3 —ened 3
€ L =
] ol onlonlonlo 2] 430011 MH ATE Hened E
J s, 2540, Sdie, Sfie 51 2ol LndNIms Aee Hened 5
Ty T T £
o ZNEod anel N
ARSNES f
aNO Q9VS06HNY AND RSNES [ASES
031 TISN3S
ano 1STYALW o3l & oot
$10303UU0J Jeay
aN® dW3L e
T ano PEASIES
= ans oNa
ane oNa
z
sane N [MITTONTS
8 o o 96201
— === 03L 318vN3
To3L_o1
— 3L St
3L Sef oAl snuvis
e XL
EENERNA] N
ESICTERAN
EINTE R i e AN 71 . o=
8801 0AGd =R} Ll -
4
ano 1STYALW |_i|
0ASd N
aNo dwaL 5
T ans PACSES E
= ano ONG | g
£ ano oNG - g
sane N [T T OSNES 2
8 ToRd ofT ,waamwmm 5
80 ——==7—==" 03L 318YN3 L= —aN 24 h X
1n0A —oar e AL snuvis et —o - C—ane aer
EE=Y 2| N we T-gnd ¢OSNES
R 0 s XL a ¢ OSN35 = T0SN3S
2 LNOA O HIS 2T 4y T ano T 0SN3S 5
1NOA [T TE R T -003L
8L Inon od e aye Ao 9801 0ASd #0031
(il 3 519
5T LNOA sedl SR siopauuoo ey 60
ST LNOA AANS 7 dHE
= LNOA I3
e LNoA Q0N 0ASd
¢ 1noa QaAd

1801

1rd : OId9 Mojs

Ajuo
Anjigedes aaup ww-y aney Ing ‘sped O1d9

5 _ v £
0T|ev woorewb@moidsexb 10e1U0D _ 3sI Md
| ot _—
2 40 Z 138YS 62:92:81 8T0Z/TT/OT 31 Wld \QMMH_”M““_%M A | 10} T'TA THO N3
30aQWS'H13 Ndd EIE] OH> Dn_U ay '3S0dUNd ¥V INDILAVAY HO4 SSINLIH ANV ALITVNO
8102/11/L0 - ‘PO 1B uado ..O::&,U)W.OPU(nw_P(w ALIMBVINVHOH3W 30 ONIGNTONI
- LCEEE) ALNVAHVM G31TdWI 5O SSTAX3 ANV LNOHLIM
=T leisowsy | PaINGUISIP S1 UONEIUALINOP S1 L (THONYIIDI0 I0//chlL)
Z51M0I0Sex D AQ UMEIQ —— ano ane T'TA THO N30 341 JO SULI3) 34} J3pUN UONEIUBWNIOP
ZIMOIGSES O _IauBIsaq S J1poul PUE BNQUISIDS) A2 NoA “TTATHO N0 41 J3pun
g0dlid'sqelioy L Jeisoway L wawdinb3poeloid 10/1-L8Y320VVYT ¥ELLAJONYBZIOVIL o W = Tealeo W Eols peseERt vedo
oaan b SToE TS TaE TS 8T 8102 351 LM BuAdod
20aA 5 ZHN00TY0ZZ ¥1-3N4082508
VANS vaaA U EAEd
8 L 84
- AHd1GAAY
A
aan H&
aan HH—1 8
aan 2 —¢{ened
HELLAJONYEZIOVINL N —
SN O AR g g5 NOXLONI NIXMONZ [Srer—mgr—rr— N Q8 Ay aan L —
N QL AHd 9% 4 GOXIONI diXuONT oie— 8 A g G kd > aL e aan 89—
b H aan FE—
svigy ano olsg s OGN aaA (2 eAed Jano
&Ts aNo aaa ¢
1= 08 68)
£6dLO TOSOX +VAUA [og S NS aan £ € jano
8- ano gan ¢ {ano
Hiez 2410 8IH oL2dL S{ano dan [EAEdf— —
aNo QoA
P 7 €AEd
ano} @ L 9820
AE=1E ened 1van T_ozo
anok °T L% JugoT
== T 32n
80 | an HELLAdONYEZIOPNL
]
2 [9008SN/SLOEN/10SZIZI/Sdd
B AHA—LAQAY XHUTN/H10SAIA/Dd LQ0SSN/SLHENAISA0N/7dd
X TLVAXEISS/EZS0Id3/EDd ¥IQ08SN/SLOTN/ADA0N/X1DD LH/0ES0Id/Edd
5 ano 01VAXEISS/Z2S01d3/Z0d LXNO8SN/A1A0N/62501d3/2dd
NOAND SSHEISS/TZS0Id3/Td XL9N/ELVAXEISS/-2/Tdd
M0EIS$/02501d3/00d XHIN/ZLYAXEISS/+Z0/0dd
N Q¥ AHd 1HON/0HdN LTS L/LINd SLOEN/IYTN/IOSZONSESOIGTISNG 4y
z PR HSAON/THAINL/0OOSLION SLHENAHLATNIVASLIZIYESOIdA/ING [
S ol G0Q0N/ZdINL/TdODY L/Sd SLOZN/4SATNIOESOIdI/ENd (<t
ik SLO0N/EYAINL/0dOD LYW SL42N/ADATN/6ZS0IdAING [t
g TdOOEL/ZIS0IdI/ENd SLOTN/ING
m#.Hr* % 0dOOEL/ETS0IdI/CNd SLATNIONG (<7 8EdL
3 TdOOZL/PTSOIdI/TWd
s 0d00ZL/STS0IdF/0Nd NQOESN/TIOOTL/LTd (mer©9ZdL
FEAES dQ08SN/0dIOTLIITd [eeeZdL
o9l — 10N/ TO0L/2 LINVAOW/VASYOZI/r2S01d3/Lod SQ0SSNTIO0L/EESOIdTISTd (g
g TLINVH0N/10SYOZI/SZS0Id3/ T TONF/Id v0ESN/0dO00L9ZS0IdTYd (e
LINMJOW/VYASEQZI/TESOId3/ZaF T0NT/SHHd £008SN/0XN/6ISOIIIOTI/ETd (e
3 aL ARd - 9NMAON/T10SEDZI/ZESOIdF/00T TONT/DId 2Q08SN/08HABTSOIII000/2d [
1 SLOPN/ESOIA/BTNIV/ENd TQ08SN/0VHd/1OSZIZI/LTSOIdA/T1d 15
AHd1AaAY SLUYN/ZSOIdI/BINIV/ZNd 0Q08SN/ELINVAON/VASZIZIIITSOIEAI0Td (e
XLPN/TSOIdI/LINIV/TA
- XUPN/0S0IdI/STNIV/0Nd XLEN/IN s
AHd Laany XHEN/SAdONT/0rd [<ebrt
¥SAON/ESOIdI/EHd
@0Q0N/ZS01d3/ZHd SNMAOW/VSTOZIOTSOIGTOd i
SLOON/TSOId/TH 10STOZIT 3
sL0N id
aNo TIVOXTISS/ANIV/SId [
£QYL/ZIVAXEISS/OLINVAOW/TAZ 0N P3d IHTN/0IYAXTISS/6NIV/Id gt
SIOYLAMOEISS/ENMAON/ESd HLATN/ONIV/ETd [a5e
00 L/SS3EISS/ZNMAON/Z3d QOATN/INIV/ZId Rt
TQYL/0LVAXEISSTWMAON/ZATTONI/THd ¥SATNZNIV/TId [t
208 L/TIVAXEISS/ONMAON/0GTTONI/03d SINTN/ENIVIO3d (gt
114d08SN/SLOZN/TAOOY L/ZLVAXZISS/IWN/YNIV/LAd XLSN/YS0143/-00/20d <> XL HIT
N/S142N/0dO0Y L/ELVAXZISS/SNIV/90d XHSN/SS01d3/+00/90d [2Xe HIZ
XLZN/TDE L/ELYAXTISS/INIV/SAd XLUOVNTOOLH/9S0IdI/+TOISOd (i
X¥2N/0dOOE LZLVAXTISS/ZNIV/vad XYLN/ZS0I63/-TObId [age
TdOOTL/NTOZISS/VASBIZIZINIV/EQd OQL/OMS/EDd [a3e——omr
0d00TL/SS2ISS/10S80ZI/0ZO/ETNIV/ZAd 1a1/20d WQ
Td000L/0LVAXZISS/VASLOZIOTI/YINIV/IAd SWL/OIOMS/TOd [ad—— =
000L/TLVAXZISS10SLIZI/O0D/STNIV/0ad SMOLITOMS/00d oSS
L14d08SN/NIII08SN/X LZN/TOOE LIELVAXOISS/VASY; 3Vd [
N3d308SN/XHZN/04ODE L/ZLVAX0ISS/10S9: :
SLHON/TOTISSIVASSOZITINIV/SEd XLEN/TADIZL/TIVAX0ISSIVASLOZI/SYd ook [CINIE]
eAEd €A SLO0N/SSATISS/10SSOZI/OTNIV/vEd XHEN/0JOZLIOLYAXOISS/IOSLOCPYd g 0Xd HLZ
M1008SN/TdO0SL/VAS00Z1/82S01d3/E8d XLp/TdOOTL aseozl/evd et
415085N/0d005L/10S00¢1/22501d3/28d XapN/04OOTL10ISSI1O88IL2Y i
SNEA0ESN/XLTN/TdO0Y L/VASSIZI/X LINVO/TEd XL0M/TdO00L/VAS6OCI/X LONVOTYA |<2—For €L
Q108SN/XYTN/0dO0Y LMISSITIXUTNYO/08d XHO0N/04000L/1IS6IZI/XHONVIIOVA Jae—as dL

154 se ajesado 2 7d pue 971d sutd bogd ans
‘Aupqedes T
anup = = = = = = = -
WW-g pue -9 -y ‘-z Ajuo yoddns ing sped 2 8 mlhm 2 8 2 8 .wlhm 2 8 M 8 Mlﬁﬁ nwlrm,
0O1d9 1se4 se ajesado [:2]Wd suid Lod N = S i © i ® i~ o B N n
vl
e
EAEd

ven

A.2.2

thermostat_max [20]

67

S _ 14 _ € [4 T

0T|eV woyjrewb@moidsexb e _ 351 Md
| ot p—
2 30T 399U €0:05Z¢_8T0Z/TI/Z0__aea g ‘ommrmmuwusm P 1) TTATHO N
o Jopysiesounsyl A4 | “TA QO \ W,. & anos Syed ‘3S0dUNG YV INDLLEVA Y 504 SSINLIA ANV ALITVNO
8T0Z/TT/L0 - "PON 1581 0T | ado 101 m: vo14 » o[onlonl onl PN AMOLOVASILYS ALIISY.LNVHONIA 30 ONIGNTONI
- LCEEETe) uedo joutred Mv z5 ¥ d13IHS 9N T —seeg—toeeraTT S e S "ALNVRHYM G31TdINI 5O SSRidX3 ANV LNOHLIM
ZoImoIdsey Aq umelq Jejsowsy L €914 Nerdooorel S S Ro| 87| o 2 (THON3O/D10 Mj0//dL)
. X awnooq SWO SLXT §¥ 4} J3pUN LONEIIALIN0P
ZoIm0Idsex D _Jaubiseq ¢ 3 141 AyipO pUE 3INGUISIP3I Aew NOA “T'TA THO N3O a4} Japun
godlidesowsay] wswdinbaaoaford [SE] 1 A1 AN pasusll usdo
: : : * = S S S S ‘8102 351 LNM 14Bukdod
ol + = NI 30 ano S L A
- L oA ERELeT = E E Iz
A 2 B B B
— +OA Zhl 30d
NI 30 Qls
T3 olon » »
— o O Py gD
L e ekl
— g -ay
ZauL w_m ‘H iy N a5 AHd ET
il Ty v M = 309 AHd
3108 L y
NVHO — Qg e Ot N QL AHd
cvd 2vod WL
vod o FTaaL T=>= 3 aL ARd
ano <
UAQY/LNOA < e Roa— S nl0I e L
XEIT GFEDS SN0 OT s wE @, aan
TS _ 2y gne
- &6t
Uil TR NG
TsodIXew WMd _
1 TS04IXeW WA
TERNDEUTAMY TOANIXeW_WMd
Tes WM —
TSI WMd
INGHS L
ST e
TRIN :z\u/.
103U ——50—
o OAXeW WM
050dIXeW” WM o —
u, d|Xew IMd
0BaNIxew” WMd PN AT
0 WM —
ETRE
ONGHS oS
0baig o
5 o e—
00311
108 ==
58
vas <r—oas
203 [
<R}
a3 a1
o5
4 Q4" AHd - V3 gwenedt
Tad”, L
N_QH_AHd a
-y N QY AH [
N_QL AHd Ly ano} M
dpdiyAid d QL AH [H
0AZTd} g
BEET 2
— e VIS g
ZIVIS 5
TIVIS i e < oot o 2
200WS HL3 NdD g TAXeW g
ane H13 NdO N SodXEU MG 755 1em g
NI ,3.&& m HENEE 00£5OV anot
anNo aovsozeuny NGHS m L b [ASES
Doy ——INAHS TTSN3S
Tha13
_ A 00TC
ToaL TRIA
R TY 031 [SREN]
30QUSTBAIP 031 JOAUP DAL N
T 6801
ARWNMA 3Inpow Jod
7l W
S0dIXew” WMd <_| osobée
BONPRUTNMA <o
R m [RES]
onaHS
- e C— O
G ETa S R e OBIA
e (] sod"Janjad 031 [GREN]
20QYISIBALUP D31 J18AUP D31 N H“.«.n”“
B L
SR 2108 _ an e anot
NVHD o s m ToNTS 7 ToNTS anol ¥
2vod s TSN3S T TSNS 2
VO ik piaehae m 0SN3S ToaL onzra4 8
ane uAGITAGG (] YAad/Lnoa 0SN3S GEEN EETh 3
20QY9S 34V s10108uu00 1eay 060 g
EEVA +003L 3
Se09 sanlod H
~go e & NIA = 80T e i o avel H
—— LY ane Z 0SNaS :
1 100 A — VIS s o Tosnas - PAES
0z z ~003L T70SN3S
61 1hon NIAd = V6ZaT . 995y +003L 860
8T aNo anoe ano o8 , Iy
aNo aNo aNod aNd] {hon 9d ~7g —— P —om—ane S10198UU09 T3y
L Inon aans sedl ot e
slaoleslolg ST 1noA &
S==R=——P——\P
oo SIS F[om [& Qaand
L LILIL.IE a2
: oRgg 130T ovzd 801
: v

XLyN/TSOIdI/LINIV/THD
X¥rN/0SO0Id3/9TNIV/ONd

¥SA0N/ESOIdI/EHd
@daon/zsold3/eHd
S120N/TS0Id3/TH

S1don, id

€Q¥L/Z1VAXEISS/0LINVH0N/TAITONI/r4d
ATOYLMTOEISSIEWMAON/ES

0QY L/SSIEISS/ZNMJON/Z3d
TAQYL/0LVAXEISS/TWMJOW/ZA3TON3/Td
Z2QYL/TIVAXEISS/ONMJOW/0A3TONI/04d

1713d08gSN/SLOZN/TdIY.L/ZLVAXZISS/IWN/YNIV/LAd

1rd : OId9 Mojs

Ajuo
Anjigedes aaup ww-y aney Ing ‘sped O1d9
1se se ajesado 2 1d pue 914 suid Lod
‘Aniqedes
anup
Wuw-g pue *-g ‘- -z Ajuo uoddns Inq sped
0O1d9 1se4 se ajesado [:2]Wd suid Lod

vl

s _ v z T
0T|ev woorewb@moidsexb 10e1U0D _ 3sI Md
| ot —
2 30z 399US £0:052¢_8T0Z/TT/Z0__aea g ‘omwﬂm“ﬂ“«ﬁ P 116k 10J T-TATHO NI
—____ 0aWS'HI3 Ndd EIE] 0'TIANdD ay ‘3504¥Nd YV INJLLYVA Y O3 SSINLIF ANV ALITVNO
8102/11/L0 - ‘PO 1B uado ..O::&.O AHOLOVHSLLYS ‘ALITISYINYHOYIW 30 ONIGNTONI
- LCEEE) ALNVHAVM G3I1dINI HO SS3HdX3 ANV LNOHLIM
BRI Rq U leisowsy | PAINQISID S UOREIUBWINGOP SIUL “(THON&ZO/BI0 M0/ dk)
. X Jswnoog ano ano T'TA THO N30 341 JO SULI3) 34} J3pUN UONEIUBWNIOP
ZoIm0Idsex D _Jaubiseq 141 AyipO pUE 3INGUISIP3I Aew NOA “T'TA THO N3O a4} Japun
o 1ad(
godlideisowayl uewdinb3poaford 10/1-18Y320VVvE ¥ELLAdONYBZIOVNL o W = Tealeo W Eols PRt o
iBrAde
2aan i n W‘W W_ W S W_ & =4 '8T0Z 3S1 LNM WbuAdod
2QaA ¢ ZHINOOT D022 ¥1-374082508
VANS VAAA 5 1 U EAEd
aan AHd1AaAY 884
A
aan =&
aan ——1
HELLAdONYEZIOVNL 3N [0 Hened
6L
SN O AR g g5 NOXLONI NIXMONZ [Srer—mgr—rr— N Q8 Ay aan —L—
N QL AHd 95) jox10N3 dixoNg feia—NG8 AHd > qy3gS aL aan 82—
d AL AHd 4§ ¥S d a9 AHd H ane aan &
svigy ano Qls 7] aNo aan 2 EAEd
T3 5] AN QaA & €
€610 TOSOX +VARUA (o5 5| N9 aan = €
ano aan €
5 [
. z8dL6 aiH oLzdL ano aan engd—t
HNSZ 12 o1
ano aan
i a L 9620
AN ¢ LT €AEd
z2 1VEA ano
ans} ST S 4U00T
= T azn
80 e n ¥EL1AdONY6ZIOVNL
S
2 [9008SN/S108N/10SLIN/Sdd
B AHA—LAQAY XHUTN/H10SAIA/Dd LQ08SN/SLIENAISAON/Pdd [
S TLVAXEISS/EZS0ld3/EDd ¥1Q0ESN/SLOTN/AOA0N/TOOL I163/Edd [TNGHS
iy ano 0LVAXEISS/22S01d3/20d LXNOESN/4100N/62501d3/2dd (< ONGHS
dNodND SSHEISS/T2S01d3/TOd XLON/ELVAXEISS/-2O/Tdd [rear
MTOEISS/02501d3/00d XUON/ZLVAXEISS/+2D/0dd
N a9 AHd 1H40N/0YdNL/TdDOS LILING SLOEN/IYTN/IOSZOZI/SESOIdT/SNd
z RN HSAON/THAINL/0IISLION SLMEN/LATN/YASZOZIYESOIdI/PNd
S el 0Q0N/ZHJNL/TOOV LIS SL102n/asarn,
2 SLOON/EYAINLI0AODY LY SLH2n/aoarn,
= o[TdOOEL/ SLOTN/INd
ST 0dDDE L/ SLHTN/ONd
3 TdOOZL/PTSOIdI/TWd
< 0dd0zL WA08SN/TOOTL/LTd
3 fulofo da08sN/0do0TL/gTd
Og O 1H0N/O0 LY/ LINVAOW/VASEIZIFZSO0Id3/ L3Md SQ09SN/TdO0L/EESOIdF/STd
g TLINVH0W/10SPO21/52S01d3/TATTONT/9Nd ¥Q08SN/0d0001/92S01dF/v1d
LINMdOW/YASEDZI/TESOIdI/ZATTONT/SHd £008SN/0XAI/6TS0IdI/OTI/E Td
3 AL ARd > 9NMJOI/1OSEDCI/ZES0Id3/0a3 TONT/PMid 2Q08SN/09HA/8TS0Id3/000/21d
1 SLOPN/ESOIA/BTNIV/EN TA0ESN/0VHA/1SZIZI/LTSOIdF/Td
AHd 1AaAV) NIV/Zid 0Q08SN/ELINVHOW/YASZOZI/TS0Id3/0Td

xLlen/ied
XYEN/SAdONI/0Cd

SWMJOW/vASTOZI/0TSO0Id3/TOd
10STOZI/T

TLVAXTISS/8NIV/S3d
1¥TN/0LVYAXTISS/6NIV/¥3d
¥LATN/ONIV/E3d
adartn/INIv/z3d
¥SATN/ZNIV/T3d
S1YTN/ENIV/03d

uAQy/LNod

O34
AN 00311

X1SN/YS01d3/-00/L0d

N/S1¥2N/0dDDY L/ELVAXZISS/SNIV/9ad X¥SN/5S01d3/+00/90d w
[13 X1ZN/TdODEL/ELVAXTISS/ONIV/SAd XLLN/XMTO0.14/9S01d3/+T0/50d A
3 =5 X4ZN/0dODEL/ZLVAXTISS/LNIV/YAd X¥LN/LSO0Id3/-TO/YOd Z
=< TdOOTL/MTOZISS/VASBIZI/ZINIV/EQd 0dL/OMS/edd 8 OaL
100TL/SS2ISS/10S8IZI/OZI/ETNIV/ZAd 1a1/20d E
TdO20.1/0.LvAXZISS/VYASLOZI/OTO/PINIV/TIAd SW.L/OIAMS/TOd 5 SAL
D00L/TLVAXZISS/TOSLIZI/00D/STNIV/0Ad MNOLMTOMS/00d j
1713d0gSN/N3d308SN/X LZN/TdOOEL/ELVAX0ISS/VASY: 3/Lvd Paiz €dL
N3d308SN/X¥ZN/0dIIEL/ZLVAXO0ISS/T1ISY: o L
SLH0N/MTOTISS/VASSOZI/TINIV/SEd XLEN/TdOZL/TLVAX0ISS/VASLIZI/SVd 8
SL100N/SSATISS/T1OSSOZI/OTINIV/ved X¥EN/0dIOOZL/0LVAXO0ISS/T1OSLIZI/YVd T
M1208SN/TdDISL/VAS0IZ1/82S01d3/E8d X1¥N/TdOITL/SS0ISS/VYASBIZI/EVD 8
d1S08SN/0dD0S.1/10S0021/L2S01d3/28d X¥PN/0dODTL/MTI0ISS/10S8ICI/vd 5
SNAA0ESN/XLTN/TdOOY L/VASSOZI/X LINVI/T18d X10N/TdO20.1/vAS6IZI/X LONVOI/TVd e aXL €dl
a10gSN/XYTN/0dIDYL/TISSITI/XHTNYI/08d X¥0N/0dID0.L/TISEIZI/XHONYI/0Vd <tse axy dl
ven

ano
N
OWDWOWOWOWOWOWMOM
SEtsslsstastantintontavian
e
EAEd

: 1

S 12 € z
EJESEE] [\SASIWWNILTY eRUIS\ISNOISIawoqdoiavd aid
9802 elfensny J0_ 193yS [£0:0G:¢Z PWIL BT0Z/TT/L0 “%ed
MSN - . .
158104 syouly uoISINGY 4 BELTTIING 4 ey eus
Py ybnoiogpoy ezt '€ oL
paywi wnnjy.
sinoy 000T
1310 DB3p 0 < Woo1L @ Mw T > saA1b sinoy 00T / wdd QT 3w JSA0 YuP ure
(T6TLAV 38U J0 10Suas ainjesadua) [eussjul ayy Woly.
pajeInajed uonasL0d e Buikjdde Ag panowsal ag pinod siy Jo ued abie e Jey) ajou)
M/ Mw 20 :063p 0Z = J0ISIWIBY) @ SPLP JUSIGLUE WOLY JOLID [8I0L
063p 0 < WOO0IL ® M / MW T'0>
(0B8p 0z- mojaq anjen sy 03 o doup Isey A1an) O68p 05- @ M / MW T
2(M / wddt) Yup ureb 1818AU0D WLy 10413
(1oisiussayy) 963p 0z @ M/ Mn 2
(101s1u1ay) OBap 0ZT+ 01 263p 0G-) M / XN G¢ >
:(T=ureb @ M / AU 0ST) 1P 135}J0 JBLISAUOD WOIY J01IT
(1o1s1uay)) 963p 0ZT @ M / MW Z'0
MNT <-8S10U ZH 09 / ZH 0S JO AW 00T 0S (1o1s1wa) 963p 0Z M / W T'0
AIANT <-8p 02T (101s1usay)) 06ap 05- @ M / Mw 200
:(zHOT=3a1e1) UON9afa1 Indul 3o UoWIWOD :s101s1s81 3Bpuq Jo (wddg) 0odwa) wouy | painseaw ul 10u3
(Buryrou) in <~ 1ys AU 00E S2AIB asiou Aw 0T SnyL 3N 0T > : 962p ¢ 01 9Bap 0
A/ ANOE <- 9P 06 Mw T°0 > : 9B3p 0ZT+ 01 B3P 0-
:uonoalas Ajddng AU 00S JO 100]} 3S10U SINY ‘ZH 0T=3lel ‘T=uref ay} Je uonn|osay
“yup pue asiou Ajddns Jamod wouy s10113 + (X0T = 5z4) JoisiuLiayy [221dA) e ynm soueWLIONIBY
ano ano
ZNYat61.av
00Al—7— AdAd aN9a —=—ano
20N aany anov ano N TSN3S_|
0z 8T
— DIOW ONIE3Y o] aND
—For DIOW (INIH3Y e+ <_d TSN3s
[2v9d zvod MSQd8 —
[TV9d Tvod
—=> dW3L ON ot adNo +HRIA
SEA BT S22 ano ano
D0A—ZZ+ Tda0
—=> 13S0
[NVHD NVHO NIV
an NMOad ENIV I <_N_0SN3S
UAGH/LNOQ < AQY/LNOA NIV
[108 198 NIV
o <_d 0SN3S
L
VEAEd
W GZ'0 SMeIp Wie 30UaIaJeY
YW G SMEIP JSUBAU0D
alod zH 005 <- 4N0T + ¥EE
:Bunay Ajddns 1amod
L S v € z

L 9 S 14 €

20QUISIBALIP DT 1)

L\SWI3WWNILTY eIeuIS\SNOIS3AX0qdoiayd alid

9802 el[ensny J0_ 193yS [£0:0G:¢Z PWIL BT0Z/TT/L0 “%ed
MSN . . .
158104 syouly uoISINGY 4 BELTTIING 4 ey eus
Py ybnoiogpoy ezt '€ oL
papwI] wnnjy
199N => AXeI
AXBW P = XeW D31~ A "86e1j0A DI | wnwixew s1es AXe ano ano
JPUA x €12 = NIXRIN 188 /Z 0} JIWI| JUa1Ind aANeBaU 3y} 105 0 o' T T
JOUA | NIdIXRIN x VE = N/dXeN| 4u00T 4u00T |92
“Aq 38s s1 i) 3y L “swiaLng
031 anmsod pue aAneBaU WnwiXew 18s dIXeN pue NIXen| 120
_ . AXEW WM
O3LI 140 + J9¥A = 0311 sy 2y
:0311 Aq pasonuow juaLnd 93] ano ano
TSO A<ZSO A 'JOdA <ITLD A UsUp
(BYA-1TLO A)xZ =031 | 4uo0T 400t |¥2D
“11.L0 Aq 395 Wauno 93]
fire}
SodIXew M
SOdIualINDXe] eza zza
ano ano
ane ane 4u00T 4u00t |22
ano B
BT o S BaNIXew Wmd
51lo T2d ozy
ano S
ans ano
Juoor [T = =
o3 Sz_|
020 R e Ju00T Juo0t | 810
o N 610
) 300 EL) 2 185 WM
1 e R g ’ AT L BAD BSIRUNOT rT e
< mw: Janjsd ||mNU |H| ST 1S0
o) 110 o TS
Ve Hng'9 X1
uo1193UU09 JaN|ad ™1
X1
2
S
llHH 8
L+IN3BIETXVIN
dNo
2ol OASd

ano ST0 10 €10

= = =
£ £ £
B b b

OASd ZPPAd “TPPAd ‘PPA J0 yoea Joy Buijdnosaq

Bibliography

[1] AD7172-2 Data Sheet (Rev. A). URL: https://www.analog.com/media/en/
technical-documentation/data-sheets/AD7172-2.pdf.

[2] Ag5300 Data Sheet. URL: https://www.silvertel.com/images/datasheets/
Agb300-datasheet-smallest-30W-Power-Over-Ethernet-Plus-Module-PoEplusPD.
pdf.

[3] ARG654 Data Sheet. URL: https://www.apar.pl/v/product/cat_ar654_eng.pdf.
[4] ARTIQ overview. URL: https://m-1labs.hk/artiq/index.html.

[5] Autoip - Iwip wiki. URL: https://lwip.fandom.com/wiki/AUTOIP.

[6] Cave - Wikipedia. URL: https://en.wikipedia.org/wiki/Cave.

[7] Code Composer Studio - Wikipedia. URL: https://en.wikipedia.org/wiki/Code_
Composer_Studio.

[8] FreeRTOS home page. URL: https://www.freertos.org/.
[9] IwIP Wiki. URL: https://lwip.fandom.com/wiki/LwIP_Wiki.
[10] M-Labs - Wikipedia. URL: https://en.wikipedia.org/wiki/M-Labs.

[11] MAX1968/MAX1969 Data Sheet Rev. 3, 5/15. URL: https://datasheets.
maximintegrated.com/en/ds/MAX1968-MAX1969.pdf.

[12] MCU Market on Migration Path to 32-bit and ARM-based Devices. URL: http://www.
icinsights.com/data/articles/documents/541.pdf.

[13] Mosquitto home page. URL: https://mosquitto.org/.

[14] Mqtt essentials part 5: Mqtt topics & best practices. URL: https://www.hivemq.com/blog/
mgtt-essentials-part-5-mqtt-topics-best-practices/.

[15] Realterm home page. URL: https://realterm.sourceforge.io/.

[16] Sinara - An open-source hardware ecosystem for quantum physics. URL: https://sinara-hw.
github.io/.

[17] Sinara hardware. URL: https://m-labs.hk/artiq/sinara.html.
[18] Sinara Open Hardware Project. URL: https://github.com/sinara-hw.

[19] Texas Instruments, Tiva C Series TM4C1294NCPDT Microcontroller Data Sheet (Rev. B). URL:
http://www.ti.com/1it/ds/symlink/tm4c1294ncpdt.pdf.

[20] Thermostat’s github. URL: https://github.com/sinara-hw/Thermostat.

73

https://www.analog.com/media/en/technical-documentation/data-sheets/AD7172-2.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD7172-2.pdf
https://www.silvertel.com/images/datasheets/Ag5300-datasheet-smallest-30W-Power-Over-Ethernet-Plus-Module-PoEplusPD.pdf
https://www.silvertel.com/images/datasheets/Ag5300-datasheet-smallest-30W-Power-Over-Ethernet-Plus-Module-PoEplusPD.pdf
https://www.silvertel.com/images/datasheets/Ag5300-datasheet-smallest-30W-Power-Over-Ethernet-Plus-Module-PoEplusPD.pdf
https://www.apar.pl/v/product/cat_ar654_eng.pdf
https://m-labs.hk/artiq/index.html
https://lwip.fandom.com/wiki/AUTOIP
https://en.wikipedia.org/wiki/Cave
https://en.wikipedia.org/wiki/Code_Composer_Studio
https://en.wikipedia.org/wiki/Code_Composer_Studio
https://www.freertos.org/
https://lwip.fandom.com/wiki/LwIP_Wiki
https://en.wikipedia.org/wiki/M-Labs
https://datasheets.maximintegrated.com/en/ds/MAX1968-MAX1969.pdf
https://datasheets.maximintegrated.com/en/ds/MAX1968-MAX1969.pdf
http://www.icinsights.com/data/articles/documents/541.pdf
http://www.icinsights.com/data/articles/documents/541.pdf
https://mosquitto.org/
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/
https://realterm.sourceforge.io/
https://sinara-hw.github.io/
https://sinara-hw.github.io/
https://m-labs.hk/artiq/sinara.html
https://github.com/sinara-hw
http://www.ti.com/lit/ds/symlink/tm4c1294ncpdt.pdf
https://github.com/sinara-hw/Thermostat

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

74

thermostat_thorlabs github. URL: https://github.com/sinara-hw/thermostat_thorlabs.

Thorlabs, MTD415T Data Sheet Rev. 1.0. URL: https://www.thorlabs.com/drawings/
86e5095db682f685-F39DDF82-06B5-5331-4CF5B79D7EODE6GA2/MTD415T-DataSheet . pdf.

Tiva C Series TM4C1294 Connected LaunchPad Evaluation Kit (Rev. C). URL: http://www.ti.
com/lit/ug/spmu365c/spmu365c. pdf.

UNIPLEX III Data Sheet. URL: https://www.kloepper-therm.de/fileadmin/pdf/
Uniplex-Flyer_EN.pdf.

Using the Stellaris Ethernet Controller With Lightweight [P (IwIP). URL: http://www.ti.com/
lit/an/spma025c/spma025c.pdf.
Eric Brown. Linux and Open Source on the Move in Embedded,

Says Survey. URL: https://www.linux.com/news/event/elce/2017/
linux-and-open-source-move-embedded-says—-survey.

D.R. White et al. Guide on secondary thermometry — thermistor thermometry, 2014. URL: https:
//www.bipm.org/utils/common/pdf/ITS-90/Guide-SecTh-Thermistor-Thermometry.
pdf.

Richard M. Murray. Karl Johan Astrom. PID Control. 2019. URL: http://www.cds.caltech.
edu/~murray/books/AM08/pdf/fbs-pid_01Jan19.pdf.

Krzysztof Paprocki. Mikrokontrolery stm32. praca pod kontrola freertos. URL: https://ep.com.
pl/files/2434.pdf.

Michat Gaska Pawel Kulik, Grzegorz Kasprowicz. Driver module for quantum computer ex-
periments: Kasli, 2018. URL: https://doi.org/10.1117/12.2501709, doi:10.1117/12.
2501709.

HiveMQ Team. MQTT Essentials: Part 1 — Introducing MQTT. URL: https://www.hivemnq.
com/blog/mqtt-essentials-part-1-introducing-mqtt/.

Joseph Wu. A basic guide to rtd measurements, 2018. URL: http://www.ti.com/lit/an/
sbaa275/sbaa275. pdf.

https://github.com/sinara-hw/thermostat_thorlabs
https://www.thorlabs.com/drawings/86e5095db682f685-F39DDF82-06B5-5331-4CF5B79D7E9DE6A2/MTD415T-DataSheet.pdf
https://www.thorlabs.com/drawings/86e5095db682f685-F39DDF82-06B5-5331-4CF5B79D7E9DE6A2/MTD415T-DataSheet.pdf
http://www.ti.com/lit/ug/spmu365c/spmu365c.pdf
http://www.ti.com/lit/ug/spmu365c/spmu365c.pdf
https://www.kloepper-therm.de/fileadmin/pdf/Uniplex-Flyer_EN.pdf
https://www.kloepper-therm.de/fileadmin/pdf/Uniplex-Flyer_EN.pdf
http://www.ti.com/lit/an/spma025c/spma025c.pdf
http://www.ti.com/lit/an/spma025c/spma025c.pdf
https://www.linux.com/news/event/elce/2017/linux-and-open-source-move-embedded-says-survey
https://www.linux.com/news/event/elce/2017/linux-and-open-source-move-embedded-says-survey
https://www.bipm.org/utils/common/pdf/ITS-90/Guide-SecTh-Thermistor-Thermometry.pdf
https://www.bipm.org/utils/common/pdf/ITS-90/Guide-SecTh-Thermistor-Thermometry.pdf
https://www.bipm.org/utils/common/pdf/ITS-90/Guide-SecTh-Thermistor-Thermometry.pdf
http://www.cds.caltech.edu/~murray/books/AM08/pdf/fbs-pid_01Jan19.pdf
http://www.cds.caltech.edu/~murray/books/AM08/pdf/fbs-pid_01Jan19.pdf
https://ep.com.pl/files/2434.pdf
https://ep.com.pl/files/2434.pdf
https://doi.org/10.1117/12.2501709
http://dx.doi.org/10.1117/12.2501709
http://dx.doi.org/10.1117/12.2501709
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
https://www.hivemq.com/blog/mqtt-essentials-part-1-introducing-mqtt/
http://www.ti.com/lit/an/sbaa275/sbaa275.pdf
http://www.ti.com/lit/an/sbaa275/sbaa275.pdf

	Contents
	1 Introduction
	1.1 About temperature stabilization
	1.2 About Sinara project

	2 Review of existing solutions and the purpose of the thesis
	2.1 Review of existing solutions
	2.2 The purpose of the thesis

	3 Design assumptions and design concept
	3.1 About thermostat project
	3.2 Design assumptions
	3.3 Design concept

	4 Design of the firmware
	4.1 Prototyping
	4.2 Description of the firmware for thermostat_thorlabs
	4.3 Description of the firmware for thermostat_max

	5 Testing of the firmware
	5.1 Testing the thermostat_thorlabs version
	5.2 Testing the thermostat_max version

	6 Conclusions
	List of Figures
	List of Tables
	A Appendix
	A.1 Source code of the firmware
	A.2 Schematics of the device

	Bibliography

