Sinara: An Open Hardware Ecosystem for Quantum Physics

D. Allcock¹, C. Ballance², S. Bourdeauducq³, J. Britton⁴, M. Gaska⁵, T. Harty², J. Jarosinski⁵, R. Jördens³, P. Kulik⁵, D. Nadlinger², K. Pozniak⁵, T. Przywozki⁵, D. Slichter⁶, M. Sowinski⁵, W. Zhang², G. Kasprowicz⁵ ¹University of Oregon, ²University of Oxford, ³M-Labs Ltd., ⁴Army Research Laboratory, ⁵Warsaw University of Technology, ⁶National Institute of Standards and Technology

Abstract

Sinara is a modular, open-source measurement and control hardware ecosystem dedicated to quantum applications that require deterministic high-resolution timing. It is based on industrial standards and consists of over 50 scalable card-based modules built to perform a variety of analog (dc to microwave), and digital input and output tasks with precision timing. The hardware is controlled and managed by the ARTIQ open-source software platform, which provides nanosecond timing resolution and sub-microsecond latency via a high-level programming language.

Production Hardware Over 100 crates deployed in labs worldwide

• 4HP or 8 HP 100x160mm Eurocards • Ribbon cables between controllers and extension modules each provide 12V power, 8 channels LVDS data, and I²C bus

Eurocard Extension Module (EEM) standard:

Prototype Hardware

Prototype modules have been produced in small quantities and tested but require further revision before being released to production.

- **Stabilizer** CPU-based servo • Dual 16-bit 2MS/s ADC with PGA Dual 16-bit 2MS/s DAC Cortex M7 CPU @400MHz • Ethernet (+PoE) and EEM interfaces Capable of PID with 500kHz bandwidth
- **Booster** 8-ch power amplifier • 40-500 MHz • P1dB 36 dBm, 40 dB gain
 - >35% total power efficiency
 - Protection, monitoring
 - Remote control

• Thermistor input

Cortex M4 CPU

• 8W TEC/heater drive

• Ethernet interface (+PoE)

- **Pounder** 2-ch PDH lock generator Add-on card for Stabilizer 4-ch 500MS/s DDS + phase detectors
 - **DIO_MCX** 16-ch I/O MCX connectors • 3.3V, 50R capable outputs Switchable direction & 50R term.
- **Phaser** 2-ch arbitrary waveform generator • 4-ch 1.25 GS/s 16-bit DAC • 2-ch IQ mixer upconversion to 0.3-4.8 GHz • 2-ch of 5 MS/s ADC
- Artix XC7A100T FPGA
- **Mirny** 4-ch programmable synthesizer • 30 MHz to 6 GHz (12 GHz with planned Mezzanine board) • CPLD for IO and SPI mux
- Fastino 32-ch 16-bit DAC • ±10V range • 2 MS/s per channel, 1 GS/s aggregate • High speed version of Zotino
- Humpback EEM carrier for single board computers • Compatible with Nucleo 144, Beaglebone Black, Orange Pi Zero, ESP32, Wiznet WIZ550web Provides power, mounting, and connectivity
- **Banker** Versatile 128-ch GPIO ICE40 FPGA • 3.3V or 5V with 50R drive capability DIN-rail breakout boards for D-sub, BNC, SMA, screw term.

Thermostat 2-ch temperature controller

How do I find out more about the hardware? FAQ

Planned Hardware

asli SoC Controller	Zapper 8-ch piezo driver
ZYnQ 7030 (dual ARM core)	• 16-bit DAC
Kasli form factor	 100, 150, or 200V range
huttler 16-ch fast DAC	Aux PSU 3-ch power supply
125 MS/s	 Switch selectable output voltages
FMC form factor	

Fast Servo FPGA servo Stabilizer form factor

Driver Diode laser current source Metlino/Sayma/RFSoC

• 16-bit DAC • 100, 150, or 200V range • Multi-GS/s DACs and ADCs uTCA form factor • Will allow Sinara to be used for Superconducting and spin qubits

To sync yo experiments

Line Trigger 50/60Hz line trigger

Infrastructure Improvements **CPCIS**

uTCA

- Forthcoming upgrade for EEM ecosystem
- Switch from ribbon cables to CompactPCI backplane
- Passive adapter to convert existing boards
- Compatible with CERN Distributed I/O Tier (DI/OT)

ARTIQ

- The hardware designs are open source and available on our GitHub: https://github.com/sinara-hw
- Documentation uses the GitHub wiki: https://github.com/sinara-hw/meta/wiki
- Issue tracking is done using the GitHub issue tracker on each repository

Where do I obtain hardware?

- Two commercial vendors (Creotech and TechnoSystem) can supply bare tested boards
- Two systems integrators (M-Labs and Quartiq) can provide assembled and tested crates as well as access to gateware/software build system
- As the hardware is open, you are free to produce your own boards

Who develops Sinara?

- Sinara is a collaboration between electrical engineering academics, commercial software and hardware suppliers, and the AMO research groups who form the end users.
- G. Kasprowicz at Warsaw Technical University is the hardware lead.

Can physics groups without electrical engineers or FPGA developers contribute?

- Yes! Use production boards, submit bug reports, and make suggestions based on your lab experience
- Much of the documentation is user-contributed and there are many gaps that need filling
- Fund new gateware/software development to add new features and help bring prototype boards to production I have a use case not covered by current or planned hardware:
 - Open a new request for comments at: https://github.com/sinara-hw/meta/issues and we'll take it from there

- Advanced Real-Time Infrastructure for Quantum physics, integrated software/gateware system that controls atomic physics experiments
- High performance -- nanosecond resolution, hundreds of ns latency
- Expressive -- describe algorithms with a few lines of code written in a subset of Python
- Portable -- treat hardware (FPGA boards) as commodity, make software quickly and reliably deployable
- Modular -- separate components as much as possible: managing/scheduling experiments, driving distributed devices, analyzing/displaying/archiving results
- Open -- developed with and for research groups worldwide as open source software (LGPLv3)

