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Estimation of cell type reference signatures from scRNA-seq. Given cell type 502 
annotation for each cell, the corresponding reference cell type signatures 𝑔",$, which represent 503 
the average mRNA count of each gene 𝑔 in each cell type 𝑓 = {1, . . , 𝐹}, can be estimated 504 
using a negative binomial regression model, which allows for combining data across batches 505 
and technologies (see below and Suppl. methods).  506 

Cell2location model. An untransformed spatial expression count matrix 𝑑-,$ is used 507 
for input, as obtained from the 10X SpaceRanger software (10X Visium data). Cell2location 508 
models the elements of 𝑑-,$ as Negative Binomial (NB) distributed, given an unobserved gene 509 
expression level (rate) 𝜇-,$ and a gene-specific over-dispersion 𝛼$:  510 
 511 

𝑑-,$ ∼ 𝑁𝐵(	𝜇-,$, 𝛼$).	512 
 513 

The expression level of genes 𝜇-,$ in the mRNA count space is modelled as a linear 514 
function of expression signatures of reference cell types 𝑔",$: 515 
 516 
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 518 
where, 𝑤-," denotes regression weight of each reference signature 𝑓 at location 𝑠, which can 519 
be interpreted as the number of cells at location 𝑠 that express reference signature 𝑓; 𝑚$ is a 520 
gene-specific scaling parameter, which adjusts for global differences in sensitivity between 521 
technologies; 𝑙- and 𝑠$ are additive variables that account for gene- and location-specific shift, 522 
such as due to contaminating or free-floating RNA. 523 

To account for the similarity of location patterns across cell types, 𝑤-," is modelled 524 
using another layer of decomposition (factorization) using 𝑟 = {1, . . , 𝑅} groups of cell types, 525 
that can be interpreted as cellular compartments or tissue zones (Suppl. Methods). Unless 526 
stated otherwise, 𝑅 is set to 50.  527 

Approximate Variational Inference is used to estimate all model parameters, 528 
implemented in the pymc3 framework 52, which supports GPU acceleration. For full details see 529 
Supp. Methods. 530 

Note on selecting scRNA-seq profiles for constructing reference cell type data. 531 
It is important to aim for a comprehensive and detailed cell-type reference, which includes as 532 
many of the cell types and subpopulations that are present in-situ as possible, for example, 533 
by generating a paired snRNA-seq reference from the same tissue sample. However, 534 
imperfect matching of cell populations is often acceptable (see Fig 4, Fig S4D). In such 535 
instances, the stability of the model fit, which can be assessed using multiple random restarts, 536 
can serve as diagnostic criteria (see Supp. Methods). 537 

Note on selecting the method for estimating reference signatures of cell types. 538 
The first step of our model is to estimate reference cell type signatures from sc/snRNA-seq 539 
profiles, by providing the model with annotated cell type and subpopulation labels for each 540 
cell. The cell2location software comes with two implementations for this estimation step: 1) a 541 
statistical method based on Negative Binomial regression and 2) hard-coded computation of 542 
per-cluster average mRNA counts for individual genes. We generally recommend using NB 543 
regression, which allows to robustly combine data across technologies and batches (Fig S23), 544 
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which results in improved spatial mapping accuracy (Fig S22B). However, when the batch 545 
effects are small a faster hard-coded method of computing per cluster averages provides 546 
similarly high accuracy (Fig S22A). We also recommend the hard-coded method for non-UMI 547 
technologies such as Smart-Seq 2.  548 

Hyperparameter selection. The cell2locaiton model has 4 hyper-priors, which can be 549 
set by the user taking known experimental and biological characteristics of a given dataset 550 
into consideration: 551 

1) Expected number of cells per location 𝑁V 552 
2) Expected number of cell types per location 𝑌X 553 
3) Expected number co-abundance cell type groups per location 𝐴Z  554 
4) Expected mean of gene-specific technology sensitivity parameter 𝜇[ 555 

The Fig S24 provides a flowchart of how the values of these hyper-priors can be determined.  556 
Expected cell abundance 𝑁V per location is a tissue-level global estimate, which can be 557 

derived from histology images (H&E or DAPI), ideally paired to the spatial expression data or 558 
at least representing the same tissue type. This parameter can be estimated by manually 559 
counting nuclei in a 10-20 locations in the histology image (e.g. using 10X Loupe browser, Fig 560 
S8), and computing the average cell abundance. An appropriate setting of this prior is 561 
essential to inform the estimation of absolute cell type abundance values, however, the model 562 
is robust to a range of similar values (Fig S5). In settings where suitable histology images are 563 
not available, the size of capture regions relative to the expected size of cells can be used to 564 
estimate 𝑁V (Slide-Seq V2, Fig S24). For all analysis in this manuscript, a single tissue-level 565 
estimate was used, however, as an advanced feature, cell2location can utilise the per-location 566 
number of cells. 567 

Expected number of cell types per location 𝑌X	and	expected number co-abundance cell 568 
type groups per location 𝐴Z. The value of these hyper-priors has minimal effect on model 569 
accuracy (Fig S5). Consequently, we recommend setting their values to 7, a single global 570 
estimate. 571 

The difference in technology sensitivity mean 𝜇[ and variance 𝜎[` parameters can be 572 
chosen by comparing the average total number of mRNA per cell in the reference cell type 573 
data to the average total number of mRNA per location in the spatial data divided by 𝑁V (Fig 574 
S24). 575 

While good choices of these hyper-parameters can have a positive impact on 576 
accuracy, the estimate of relative cell abundance is robust to a range of suboptimal choices 577 
(Fig S5). The estimation of absolute cell abundance requires appropriate settings of 𝑁V and 578 
𝜇[ in particular.  579 

Constructing a synthetic spatial transcriptomics data set  580 

Simulated spatial transcriptomics data were generated by combining expression 581 
profiles of cells drawn from each one of 49 cell types in the mouse brain snRNA-seq reference 582 
data (see below), to generate abundance profiles at 2,500 locations. snRNA data from the two 583 
most homogenous mouse brain snRNA-seq samples were split into one dataset used to 584 
generate the synthetic data (50% of cells) and a second dataset used to evaluate cell2location 585 
and alternative approaches (50% of cells), similarly to the strategy proposed by Andersson et 586 
al3. Hyperparameters for data simulation were chosen to mimic (the typically low) cell counts 587 
observed for cell types in real tissues, additionally matching sparsity profiles as observed in 588 
real data. Cell type abundances were simulated according to either a spatially ubiquitous 589 
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pattern (8 cell types), or a regional pattern (41 cell types). Regional patterns are represented 590 
by 12 tissue zones defined by co-located cell types that mimic the organisation of real tissues. 591 
The assignment of 41 regional cell types to the 12 tissue zones is shown in Fig S2, with each 592 
cell type belonging to 1-3 tissue zones and each tissue zone containing 2-8 cell types. The 593 
number of cell types present at each location, as well as the absolute abundance (the number 594 
of cells per location), were simulated according to either low or high average cell type 595 
abundance (Fig 1B), stratified by ubiquitous and regional location pattern (see below). The 596 
mathematical description and the step-by-step procedure to simulate abundance of cell types 597 
across locations and to generate multi-cell mRNA counts is described in detail below in three 598 
sections: 1) generating abundance of cell types across locations, 2) generating expected multi-599 
cell mRNA expression of genes across locations, 3) generating multi-cell mRNA integer counts 600 
weighted by technology difference effect. 601 
 602 

First, follow this step-by-step procedure to generate ground truth spatial abundance 603 
𝑤-,", integer cell count 𝑐𝑜𝑢𝑛𝑡-," and fraction of mRNA captured 𝑓𝑟𝑎𝑞-," for cell types 𝑓 across 604 
locations 𝑠: 605 

1. Assign cell types to ubiquitous (n=8) and regional (n=41) abundance patterns (denoted 606 
as 𝑟). 607 

2. Perform binary assignment of 41 sparse cell types to 12 tissue zones and 8 ubiquitous 608 
cell types to 8 ubiquitous patterns (total n=20), shown in Fig S2A and denoted as 𝑥L,". 609 

3. Stratified by location pattern, randomly assign up to 20% of cell types to high 610 
abundance groups and all other cell types to low abundance groups. Generate per cell 611 
type average abundance 𝑑", which is different for 4 groups shown in Fig 1B: 612 
 a) Ubiquitous and low density: 5 cell types present in most locations at 613 
density: 614 
  𝑑" 	∼ 𝐺𝑎𝑚𝑚𝑎(𝜇 = 1.0, 𝜎` = 𝜇	/	5). 615 
 b) Ubiquitous and high density: 3 cell types present in most locations at 616 
density: 617 
  𝑑" 	∼ 𝐺𝑎𝑚𝑚𝑎(𝜇 = 2.8, 𝜎` = 𝜇	/	5). 618 
 c) Sparse and low density: 32 cell types present in sparse tissue zones at 619 
density: 620 
  𝑑" 	∼ 𝐺𝑎𝑚𝑚𝑎(𝜇 = 1.0, 𝜎` = 𝜇	/	5). 621 
 d) Sparse and high density: 9 cell types present in sparse tissue zones at 622 
density: 623 
  𝑑" 	∼ 𝐺𝑎𝑚𝑚𝑎(𝜇 = 2.8, 𝜎` = 𝜇	/	5). 624 
By following this procedure, sparsity and density parameters for each cell type were 625 
generated that produced an average total number of cells per location close to 10, 626 
mimicking cell count observed by nuclear segmentation of the mouse brain histology 627 
images (Fig S8, Suppl Methods). 628 
Per cell type maximum abundance	𝑑" was used to scale 𝑥L," = 	 𝑥L," 	∗ 	𝑑", thus defining 629 
the average abundance of each cell type across patterns 𝑟. 630 

4. Generate spatial abundance 𝑧-,L for locations 𝑠 for 20 location patterns (denoted as 𝑟)  631 
representing 12 tissue zones and 8 ubiquitous cell types. Gaussian Process in 50x50 632 
grid of locations was used with randomly generated bandwidth parameters: 633 

𝑏𝑤	 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜇 = 8.0, 𝜎` = 𝜇	/	1.2) 635 
 a) 8 ubiquitous patterns with for non-zero density in most locations: 634 
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𝑧-,L 	∼ 𝐺𝑃(𝜇 = 0, 𝑒𝑡𝑎 = 0.5, 𝑏𝑤 = 𝑏𝑤) 642 
 b) 12 tissue zones with𝑧-,L 	∼ 𝐺𝑃(𝜇 = 0, 𝑒𝑡𝑎 = 1.5) for sparse locations  636 

𝑧-,L 	∼ 𝐺𝑃(𝜇 = 0, 𝑒𝑡𝑎 = 1.5, 𝑏𝑤 = 𝑏𝑤) 643 
To ensure positive scale, cell abundance for each pattern 𝑧-,L were softmax-637 
transformed 𝑧-,L 	= 	𝑒𝑥𝑝(𝑧-,L)	/	∑L	𝑒𝑥𝑝(𝑧-,L). Next, to ensure that maximum for each 638 
location pattern 𝑟 is equal to 1 further normalisation was applied: 𝑧-,L 	= 	𝑧-,L/	∑-	𝑧-,L, 639 
which is needed to use abundances established in step 3 as average value for each 640 
cell type. 641 

5. Per cell type abundance for each location 𝑠 was generated as 𝑤-," 	= 	 (∑L	𝑧-,L	𝑥L,")	𝑞-,"	 644 
(shown in Fig S2B), where 	𝑙𝑜𝑔(𝑞-,") 	∼ 	𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 0.35) introduces 645 
randomness to abundances of individual cell types. This additional variability mimics 646 
the observation that co-located cell types in real tissues do not have perfectly 647 
correlated abundance within tissue zones.  648 

6. Cell abundance 𝑤-," was used to generate integer cell count 𝑐𝑜𝑢𝑛𝑡-," and fraction of 649 
mRNA captured 𝑓𝑟𝑎𝑞-," for each location and cell type as follows: 650 
 a) generate 𝑐𝑜𝑢𝑛𝑡-," by rounding 𝑤-," to the smallest integer, such that 651 
𝑐𝑜𝑢𝑛𝑡-," >= 	𝑤-,"(⌈𝑤-,"⌉). 652 
 b) Compute the fraction of mRNA captured as 𝑓𝑟𝑎𝑞-," = 𝑤-,"	/	𝑐𝑜𝑢𝑛𝑡-,". 653 

 654 
Second, follow this step-by-step procedure to use 1) the integer cell count 𝑐𝑜𝑢𝑛𝑡-," 655 

and 2) the fraction of mRNA captured 𝑓𝑟𝑎𝑞-," for each cell type 𝑓 in a given location 𝑠 to 656 
generate expected multi-cell mRNA count profiles 𝑒𝑑-,$ for every gene 𝑔 in a given location 𝑠 657 
by combining cells 𝑐 drawn from reference cell types 𝑓 in the snRNA-seq data 𝑗:,$ as follows: 658 

1. Randomly select indices of cells 𝑐	 ∈ 	𝑓 that form a subset 𝑝	 ⊂ 	𝑐 containing 𝑛 =659 
𝑐𝑜𝑢𝑛𝑡-," cells. 660 

2. Construct per cell type expected mRNA abundance profiles for a given location and 661 
cell type: 662 
 𝑒𝑑-,",$ = (∑:	∈	K	𝑗:,$)	𝑓𝑟𝑎𝑞-," 663 

3. Construct multi-cell expected mRNA abundance profiles by adding mRNA across all 664 
cell types: 665 

𝑒𝑑-,$ = ∑"	𝑒𝑑-,",$ 666 
 667 

Third, follow this step-by-step procedure to generate multi-cell mRNA integer counts 668 
𝑑-$. In this step, gene-specific scaling was applied, denoted as 𝑚$, to mimic the difference in 669 
sensitivity between technologies and counts were samples from Poisson distribution: 670 

𝑑-,$ 	∼ 	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑒𝑑-,$	𝑚$), 671 
where 𝑚$ characterises the difference between the mouse brain Visium data and single 672 
nucleus RNA-seq reference (Fig S2C, estimated by cell2location). Using these values makes 673 
the simulated data representative for mapping single nucleus RNA-seq derived reference cell 674 
types.  675 
Under this simulation, the total number of mRNA per location mimics that observed in mouse 676 
brain data (Fig S2D). 677 


