

Singularity Global Client: Google Build
These sections will detail use of the Google Build client for sregistry , which means using the Google Build API to build a container,

and then sending it to Google Storage. If you are interested in just pushing a container to Google Storage, see the google-storage client.

Getting Started

If you are using the sregistry image, the client is likely already installed. If you want to install this natively (or build a custom container)

the command to install the module extras is:

pip install sregistry[google-build]

or locally
git clone https://www.github.com/singularityhub/sregistry-cli.git
cd sregistry-cli
pip install -e .[google-build]

The next steps we will take are to first set up authentication, and then define your Storage Bucket (and other settings) via environment

variables. The main di�erence between Google Build and other clients is that since we are building containers remotely, the “push”

command is out of scope (and you would use push with the google-storage client to handle instead.

What would you like to know? Singularity Global Client

https://www.github.com/singularityhub/sregistry-cli/tree/master/docs/clients/google-build.md
https://cloud.google.com/cloud-build/docs/api/reference/rest/
https://singularityhub.github.io/sregistry-cli/client-google-storage
http://127.0.0.1:4000/sregistry-cli/

Environment

Singularity Registry Global Client works by way of obtaining information from the environment, which are cached when appropriate for

future use. For Google Build, you will first need to set up authentication by following those steps. It comes down to creating a file and

saving it on your system with the variable name GOOGLE_APPLICATION_CREDENTIALS . This variable will be found and used every time

you use the storage Client, without needing to save anything to the secrets.

Thus, only required variable is the following:

GOOGLE_APPLICATION_CREDENTIALS should point to the file provided.

SREGISTRY_GOOGLE_PROJECT should be the name of your Google Project.

Optional variables include:

SREGISTRY_GOOGLE_BUILD_CACHE : a�er build, do not delete intermediate dependencies in cloudbuild bucket (keep them as

cache for rebuild if needed). Defaults to being unset, meaning that files are cleaned up. If you export this as anything, the build

files will be cached.

SREGISTRY_GOOGLE_BUILD_SINGULARITY_VERSION : if you want to specify a version of Singularity. The version must coincide with

a container tag hosted under singularityware/singularity. The version will default to the latest release, 3.0.2-slim If you want to

use a di�erent version, update this variable.

SREGISTRY_GOOGLE_STORAGE_BUCKET: is the name for the bucket you want to create. If not provided, we use your username

prefixed with “sregistry-“. Additionally, a temporary bucket is created with the same name ending in _cloudbuild. This bucket is for

build time dependencies, and is cleaned up a�er the fact.

SREGISTRY_GOOGLE_STORAGE_PRIVATE : by default, images that you upload will be made public, meaning that a user that

stumbles on the URL (or has permission to read your bucket otherwise) will be able to see and download them. If you want to

make an image private (one time or globally with an export in your bash profile) you should export this variable as some derivative

What would you like to know? Singularity Global Client

https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started
https://hub.docker.com/r/singularityware/singularity/tags
https://cloud.google.com/storage/docs/json_api/v1/buckets
http://127.0.0.1:4000/sregistry-cli/

of yes/true. If no variable is found, images are made public by default. If you set the variable once, it will be saved in your

configuration for all subsequent images.

For a detailed list of other (default) environment variables and settings that you can configure, see the getting started pages. For the

globally shared commands (e.g., “add”, “get”, “inspect,” “images,” and any others that are defined for all clients) see the commands

documentation. Here we will review the set of commands that are specific to the Google Storage client:

bulid: [remote] build a container remotely, and save to Google Storage.

pull: [remote->local] pull an image from Google Storage to the local database and storage.

search: [remote] list all image collections in Google Storage

For all of the examples below, we will export our client preference to be google-build

SREGISTRY_CLIENT=google-build
export SREGISTRY_CLIENT

but note that you could just as easily define the variable for one command:

SREGISTRY_CLIENT=google-build sregistry shell

Build

Let’s get o� to a running start and build! Note that we have a build recipe in the present working directory, and we also want to provide

the context (all the recursive files that are alongside and below it). Let’s ask for help first:

$ sregistry build --help
usage: sregistry build [-h] [--preview] [--name NAME]
 [commands [commands ...]]

What would you like to know? Singularity Global Client

http://127.0.0.1:4000/getting-started
http://127.0.0.1:4000/getting-started/commands.md
http://127.0.0.1:4000/sregistry-cli/

positional arguments:
 commands Google Build + Storage
 --
 build [recipe] [context] -------------------------------
 build [recipe] . ---------------------------------------
 build [recipe] file1 file2 -----------------------------

optional arguments:
 -h, --help show this help message and exit
 --preview, -p preview the parsed configuration file only.
 --name NAME name of image, in format "library/image"

Don’t forget to export these variables:

export SREGISTRY_GOOGLE_PROJECT=my-project
export GOOGLE_APPLICATION_CREDENTIALS=/path/to/application-credentials.json

Now let’s launch a build, and provide the entire present working directory as context. Notice that we haven’t exported

SREGISTRY_GOOGLE_BUILD_CACHE=yes so we won’t save intermediate build files.

Example Recipe

Let’s say we’ve created a folder called “test” and added some Singularity recipe in it. If you have local filesystem dependencies (files to

add to the container), put them in this folder. Here is the recipe - this is just about the simplest and smallest you can get:

Bootstrap: docker
From: busybox:latest

Next, cd into the folder and run the build. Note that we don’t end with “.” so we only need the Singularity recipe as a build context.

What would you like to know? Singularity Global Client

http://127.0.0.1:4000/sregistry-cli/

$ cd test

sregistry build --name <name> <recipe> <context>
$ sregistry build --name vanessa/llama Singularity

The above says “Build a container with name vanessa/llama using the Singularity recipe.” The tags defaults to latest. If we had other

dependencies to upload in the folder, you could do either:

$ sregistry build --name vanessa/llama Singularity .
$ sregistry build --name vanessa/llama Singularity file1 file2

Then you’ll see the build package generation (the dependency files from the present working directory), the upload (in the case that the

files were not cached from a previous build) and then the build progressing from having status QUEUED, to WORKING, to (hopefully)

SUCCESS. The message is updated every 15 seconds.

$ sregistry build --name vanessa/llama Singularity
[client|google-build] [database|sqlite:////home/vanessa/.singularity/sregistry.db]
[bucket][sregistry-gcloud-build-vanessa]
LOG Generating build package for 1 files...
LOG Uploading build package!
PROJECT singularity-static-registry0/0 MB - 00:00:00
BUILD singularityware/singularity:3.0.2-slim
LOG build b73d08bb-2599-4f06-9d01-023d1894638f: QUEUED
LOG build b73d08bb-2599-4f06-9d01-023d1894638f: WORKING
LOG build b73d08bb-2599-4f06-9d01-023d1894638f: WORKING
LOG build b73d08bb-2599-4f06-9d01-023d1894638f: SUCCESS
LOG Total build time: 45.74 seconds
SUCCESS gs://sregistry-gcloud-build-vanessa/vanessa-llama-latest.sif
LOG https://storage.googleapis.com/sregistry-gcloud-build-vanessa/vanessa-llama-latest.sif
LOG https://console.cloud.google.com/gcr/builds/b73d08bb-2599-4f06-9d01-023d1894638f?project=287055059824

What would you like to know? Singularity Global Client

http://127.0.0.1:4000/sregistry-cli/

When the build finishes, if you haven’t exported SREGISTRY_GOOGLE_STORAGE_PRIVATE and the container is public, it will show you the

public link to the container (a direct link), and the Google Cloud Console link to view output logs. You are encouraged to look at the logs

page, as there is a lot of meaningful information here, especially if you need to debug your build!

Given the https link, you can directly pull and run the container using Singularity:

$ singularity pull https://storage.googleapis.com/sregistry-gcloud-build-vanessa/vanessa-llama-latest.sif
WARNING: Authentication token file not found : Only pulls of public images will succeed
 756.00 KiB / 756.00 KiB [==

What would you like to know? Singularity Global Client

http://127.0.0.1:4000/sregistry-cli/

If you use the interactive (from within Python) method, you are also returned this direct link to the container

(response['public_url']) and you are free to put that in whatever database you are using to keep track of your containers. This is

shown in the next section Shell. If you want to search your storage later, see Pull.

Shell

Next, let’s do this from the interactive shell. Note that we have exported SREGISTRY_CLIENT above, as we are looking to interact with a

shell for the google-build sregistry client.

sregistry shell

[client|google-build] [database|sqlite:////home/vanessa/.singularity/sregistry.db]
[bucket][sregistry-gcloud-build-vanessa]
Python 3.6.4 |Anaconda custom (64-bit)| (default, Jan 16 2018, 18:10:19)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.2.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

Here we see straight away that we are using the default bucket name (sregistry-gcloud-build-vanessa) and the google-build client.

The printing of the bucket on the first line indicates we successfully connected to it, and we’ve also connected to the bucket of the same

name ending with _cloudbuild (sregistry-gcloud-build-vanessa_cloudbuild). Next, we just need to provide the same arguments

to the function to run the build.

> recipe = "Singularity"

[vsochat@sh-ln06 login /scratch/users/vsochat/share]$ singularity run vanessa-llama-latest.sif
Singularity> What would you like to know? Singularity Global Client

http://127.0.0.1:4000/sregistry-cli/

> context = '.' # All files in present working directory and below
> name = 'vanessa/avocados' # The name of the container to build, tag is optional and defaults to latest

> response = client.build(name=name,
 recipe=recipe,
 context=context)

The output will be the same as shown previously. You are again encouraged to look at the logs link if the build isnt’ a success. With the

interactive shell mode, you can also provide the preview argument to just inspect the configuration for the build:

> config = client.build(name=name,
 recipe=recipe,
 context=context,
 preview=True)

{
 "steps": [
 {
 "name": "singularityware/singularity:3.0.2-slim",
 "args": [
 "build",
 "vanessa-pusheen-latest.sif",
 "Singularity"
]
 }
],
 "source": {
 "storageSource": {
 "bucket": "sregistry-gcloud-build-vanessa_cloudbuild",
 "object": "source/8937958aa81fa7b81d8b6fc6eb89daca6c176cd99895c903517d74fc575a9dc9.tar.gz"
 }
 },

What would you like to know? Singularity Global Client

http://127.0.0.1:4000/sregistry-cli/

 "artifacts": {
 "objects": {
 "location": "gs://sregistry-gcloud-build-vanessa",
 "paths": [
 "vanessa-pusheen-latest.sif"
]
 }
 }
}

Pull and Search

Now let’s say that we built an image (some long time ago!) and want to find it in Google Storage. We would want to pull the image to our

local sregistry database.

Search

A search without any parameters will essentially list all containers in the configured storage bucket. But how do we know what is a

container?

a container is defined by having the metadata key “type” with value “container” and this is set by the upload (push)

client.

Thus, if you do some fancy operation outside of using the client to upload containers to storage, make sure that you add this metadata

value, otherwise they will not be found. Let’s do a quick search to get our list in Google Storage. This action has no dependency on a

local storage or database. Let’s say we just built the container vanessa/omgtacos:latest . Can we find it?

$ sregistry search
[client|google-build] [database|sqlite:////home/vanessa/.singularity/sregistry.db]
[bucket][sregistry-gcloud-build-vanessa]

What would you like to know? Singularity Global Client

http://127.0.0.1:4000/sregistry-cli/

[gs://sregistry-gcloud-build-vanessa] Containers
1 1 MB vanessa/avocados-latest

There it is! Then to look at details for a more specific search, let’s try searching for “vanessa/avocados”

$ sregistry search vanessa/avocados
[client|google-build] [database|sqlite:////home/vanessa/.singularity/sregistry.db]
[bucket][sregistry-gcloud-build-vanessa]
[gs://sregistry-gcloud-build-vanessa] Found 1 containers
vanessa-avocados-latest.sif
id: sregistry-gcloud-build-vanessa/vanessa-avocados-latest.sif/1550267799739163
uri: vanessa/avocados-latest
updated: 2019-02-15 21:56:52.139000+00:00
size: 1 MB
md5: GJ4jl2mFfaa+ckZhJuOwJg==

Pull

Finally, let’s say we’ve found the container that we like, and we want to pull it.

$ sregistry pull vanessa/avocados:latest
[client|google-build] [database|sqlite:////home/vanessa/.singularity/sregistry.db]
[bucket][sregistry-gcloud-build-vanessa]
Searching for vanessa/avocados:latest in gs://sregistry-gcloud-build-vanessa
Progress |===================================| 100.0%
[container][update] vanessa/avocados-latest@1e38ac7437da5afbfd89937115f052e0
Success! /home/vanessa/.singularity/shub/vanessa-avocados-latest@1e38ac7437da5afbfd89937115f052e0.sif

and if we list images, we see our container:

What would you like to know? Singularity Global Client

http://127.0.0.1:4000/sregistry-cli/

 Singularity Hub Singularity Registry

$ sregistry images
Containers: [date] [client] [uri]
1 February 15, 2019 [google-build] vanessa/avocados:latest@1e38ac7437da5afbfd89937115f052e0

The di�erent versions (of the same name and tag) are listed. To get a path to any of the files:

$ sregistry get vanessa/avocados:latest@1e38ac7437da5afbfd89937115f052e0
/home/vanessa/.singularity/shub/vanessa-avocados-latest@1e38ac7437da5afbfd89937115f052e0.sif

You can also see in the pull output that on the backend of pull is the same search as you did before. This means that if you want to be

precise, you should ask for the complete uri (version included). If you aren’t precise, it will do a search across name fields and give you

the first match. Be careful, my linux penguins.

For debugging scripts, see Google Cloud Debugging.

Singularity Global Client is maintained by Vanessa Sochat.
Contribute on GitHub.

What would you like to know? Singularity Global Client

https://www.github.com/singularityhub/sregistry-cli
http://127.0.0.1:4000/sregistry-cli/pdf.html
https://www.singularity-hub.org/
https://www.singularityhub.github.io/sregistry
http://127.0.0.1:4000/sregistry-cli/client-google-debugging
http://localhost:4000/
https://singularityhub.github.io/sregistry-cli
https://www.github.com/singularityhub/sregistry-cli
http://127.0.0.1:4000/sregistry-cli/

