
Project presentation 1

Project presentation
Content:

Create relational database as first backend #13

Install Python packages in the plpython3u extension

Connect from pgAdmin and psql from Linux and Windows to the Linux PostgreSQL server

Use relational database (first backend) for clustering #29

Kmeans plpython3u stored procedure prototype

Put the result of plpython3u in the right format or save it to the db

Webserver as second backend for the mobile app #38

New TimescaleForge Webserver

API for the javascript mobile frontend to the Postgresql Webserver backend

Create relational database as backend #13
Install Python packages in the extension
I tried to get a more recent version of the Docker container of timescaleDB-PostgreSQL above, but
it does not work with timescaledb:latest-pg11 till timescaledb:latest-pg13, since the Dockerfile
throws the error:

postgresql-plpython3 (no such package): required by: .plpython3-deps-20210819.182405 [postgresql-plpy
thon3]

It seems as if only PostgreSQL 10 gives you the chance to use plpython with that timescaleDB
container.

To check whether timescale on Docker is the only way to go, I installed PostgreSQL 10 on
Windows with the official EDB installer and on top of that, using Stack Builder to add pl/python to
the EDB installation, which is recommended. When this still did not work, I copied the pyhton37.dll
into the Windows\System32 directory as a known trick, but it still did not work. That is why it seems
that this timescaleDB-PostgreSQL container is perhaps the only configuration on the net with a
working pl/python extension. It was pure luck to find out about the timescaleDB-PostgreSQL
container, that is why this is disappointing PostgreSQL service. Funny enough, timescaleDB does
not offer plpython on the web server which could mean that plpython is just too insecure to be
allowed on production systems and therefore was ignored by the recent developments.

That is why I must take the 2016 PostgreSQL 10 on a timescaleDB only to test plpython. Very
strange, and likely not the best way to go. It all rather hints at Spark to replace PostgreSQL, as
planned in issue #17.

https://github.com/siradam/DataMining_Project/issues/13#

Project presentation 2

After a full day invested into installing additional basic packages like pandas in the Alpine Docker
container of PostgreSQL10 and timescale 0.9.0 (FROM timescale/timescaledb:0.9.0-pg10) I had to
find out that apk (Alpine form of apt) does not support (well enough or not at all) basic packages in
exactly this old Python 3.6 version, see Installing pandas in docker Alpine. I have installed Poetry
to get the dependencies right, but it did not work.

After having tried getting Python extension and the packages to run on Windows and on an
outdated Alpine Docker container, I have now eventually succeeded in installing PostgreSQL and
plpython3u on Linux (WSL2).

There is an official guide for Linux installations at PostgreSQL Downloads and PostgreSQL Wiki.

This is how to install it:

Create the file repository configuration:
sudo sh -c 'echo "deb <http://apt.postgresql.org/pub/repos/apt> $(lsb_release -cs)-pgdg main" > /etc/
apt/sources.list.d/pgdg.list'

Import the repository signing key:
wget --quiet -O - <https://www.postgresql.org/media/keys/ACCC4CF8.asc> | sudo apt-key add -

Update the package lists:
sudo apt-get update

Install the latest version of PostgreSQL.
If you want a specific version, use 'postgresql-12' or similar instead of 'postgresql':
sudo apt-get -y install postgresql

After this, install the extension, but check before whether you have two postgresql versions
installed by running

service postgresql start

If you see two or more, as I had versions 12 and 13, consider either deleting the unneeded or
changing the config and settings by following this link.

Install the plpython3u extension following PostgreSQL: how to install plpythonu extension:

sudo apt-cache search ".*plpython3.*"
sudo apt-get install postgresql-contrib postgresql-plpython3-13

Now change to the postgres user:

sudo su postgres

If you have two postgresql versions installed, you need to run psql with the right port.
If your 13 version is at port 5433, run

psql --5433

https://stackoverflow.com/questions/54890328/installing-pandas-in-docker-alpine
https://www.postgresql.org/download/
https://wiki.postgresql.org/wiki/Apt
https://stackoverflow.com/a/20671030/11154841
https://stackoverflow.com/a/62150830/11154841

Project presentation 3

If you only have one version installed, run

psql

After this, follow the typical testing of plpython3u by creating the return_version() function of above
and checking its results.

Half a day invested into getting an import of Python packages done for a plpython3u stored
procedure. No way up to now. The installation of pandas in Python 3.8.2 has no effect on the
Python version 3.8.10 reported by PostgreSQL, the kmeans test function still asks for pandas. I did
not understand how to use the solution of “Module not found” when importing a Python package
within a plpython3u procedure.

This is done now. The easy mistake I made was to install the packages without sudo in front. We
are now able to use the full range of python in stored procedures on database level.

Next steps are at #29.

Use relational database for clustering#29
Starting point, see #13:

relational database

working plpython3u extension

Python packages can be installed.

I changed the kmeans test function so that it returns not a pickle dump, but a table (a merger of the
df and the new column for the kmeans cluster).

CREATE OR replace FUNCTION kmeans3(input_table text, columns text[], clus_num int) RETURNS table(lon
 float, lat float, k float) AS

$$

from pandas import DataFrame
from sklearn.cluster import KMeans
#from pickle import dumps

all_columns = ",".join(columns)
if all_columns == "":
 all_columns = "*"

rv = plpy.execute('SELECT %s FROM %s;' % (all_columns, plpy.quote_ident(input_table)))

frame = []

https://stackoverflow.com/questions/57774168/module-not-found-when-importing-a-python-package-within-a-plpython3u-procedure
https://github.com/siradam/DataMining_Project/issues/29#

Project presentation 4

for i in rv:
 frame.append(i)
#df = DataFrame(frame).convert_objects(convert_numeric =True)
#df = pandas.to_numeric(DataFrame(frame))
df = DataFrame(frame).astype(float)
print(df.shape)
kmeans = KMeans(n_clusters=clus_num, random_state=0).fit(df._get_numeric_data())
df['kmeans'] = kmeans.labels_ #.astype(float)
return df.values

$$ LANGUAGE plpython3u;

You can ask for the results with:

SELECT * FROM kmeans3('stokes', ARRAY['lon', 'lat'],3);
 lon | lat | k
-------------------+--------------------+---
 5.171320915222168 | 43.288516998291016 | 0
 4.982897758483887 | 43.29656219482422 | 2
 4.962841033935547 | 43.29465103149414 | 2
 5.100956439971924 | 43.28042221069336 | 0
 5.134312629699707 | 43.29485321044922 | 0
 5.279866695404053 | 43.274662017822266 | 1
 5.095328330993652 | 43.30269241333008 | 0
 5.301522731781006 | 43.29117202758789 | 1
 5.205143928527832 | 43.30012512207031 | 1
(9 rows)

Strangely, it seems necessary to have k column as float in the return value, although there are
clearly just integers in it. Typecast to int was not accepted. But it must be possible to export other
data types to the same table. Small TODO.

To save the table result to a postgres table directly, either create the table in advance and insert:

create table tab_kmeans1(lon float, lat float, k float);
insert * into tab_kmeans1 SELECT * FROM kmeans3('stokes', ARRAY['lon', 'lat'],3);

or create a new table from the output table:

select * into tab_kmeans1 FROM kmeans3('stokes', ARRAY['lon', 'lat'],3);

Webserver as backend for the mobile app#38

https://github.com/siradam/DataMining_Project/issues/38#

Project presentation 5

Created a new Webserver and the menu on TimeScale has changed, therefore some new
screenshots:

Details:

Service name: tsdb-8edbcb8
• Cloud: timescale-aws-eu-central-1
• Plan: timescale-dev-only

Project presentation 6

Project presentation 7

Connection information

Service URI: postgres://tsdbadmin:rdbt9yr168bi80jw@tsdb-8edbcb8-marine-
ad06.a.timescaledb.io:25145/defaultdb?sslmode=require

Database Name: defaultdb
Host: tsdb-8edbcb8-marine-ad06.a.timescaledb.io
Port: 25145
User: tsdbadmin
Password: rdbt9yr168bi80jw
SSLmode: require
CA Certificate: Download
Connection Limit: 100

CA Certificate, if needed:
filename: ca.pem
-----BEGIN CERTIFICATE-----
MIIEQTCCAqmgAwIBAgIUPVry8oOWmxx4eHNWRAlKvdPPMSkwDQYJKoZIhvcNAQEM
BQAwOjE4MDYGA1UEAwwvZDk2ZDM4MzQtNmFmMS00NmFlLWEyMjUtZGMwMDE1MDU0

http://tsdb-8edbcb8-marine-ad06.a.timescaledb.io/

Project presentation 8

YjJlIFByb2plY3QgQ0EwHhcNMjEwOTA2MDQyMDA3WhcNMzEwOTA0MDQyMDA3WjA6
MTgwNgYDVQQDDC9kOTZkMzgzNC02YWYxLTQ2YWUtYTIyNS1kYzAwMTUwNTRiMmUg
UHJvamVjdCBDQTCCAaIwDQYJKoZIhvcNAQEBBQADggGPADCCAYoCggGBALUjayZk
aZ5yjj3vjbtyPe8okGHniMwplI/gyTuhuQcqu2rxcZPDRlkgAjgYYVwmx+pf8DVY
A2xNB8Lxol+Kt2kBHW24/dBzD3UOqmDcwSgufwYtSB1Ql9vaWWtCPgod1uf31mSv
BW+XyoUYY/KRrK9+GslQTn70xDL5vxFumqLe9MkAS28NdPk2Gl7aNHKrEHAMCsl9
MOEgbe6tuKFbfYjMUrkGNaYXSpEok92gvKRcYhoK+ocgS8aQEuSS6ah2bqnF8Cf0
rYyXIC3CUdkVL1/mDTTVgaJb+2k2HisIZ86/oauuYepE5zhMaVp8zrfTz2LcB9Wv
878EYO0zwiggxjI7AHMiqooZaxPlhi7vvTWaqGJkLhK0NY0sthlOqEX14MFQJKO4
9m4WH1zcntGIxOTPV3vzsOIq86SWSctkd3HipM2CXgbbSaGbRQO5SHTqomhJu7p+
TYIsL1bW17ddG1BDLXxgPbOYpX+XuxM8Z6CPUzLxv9+aSQoVGTdfFFNGEwIDAQAB
oz8wPTAdBgNVHQ4EFgQUqOut8Uppgng2BLIekQ8WQOtFPc8wDwYDVR0TBAgwBgEB
/wIBADALBgNVHQ8EBAMCAQYwDQYJKoZIhvcNAQEMBQADggGBAJrnDwKGvzV3FKd7
+OylOI+M/PI4MnYKDtyECTlOVmIIJzJ6IrbqhZ04gH/uGs4xGpAxmAtSwx6s9AdR
U8wIkhmcb9ytWFC/hyoK7v1EDEJWidxhTRtooE01y/mdZYiTFKOL9L0f/8H0tlGf
V937TBZjmp4jyINMN/urR2LSiNYYuJo2ZgiAZv8Lw8TfKbolgzqstRCUn2G1MYFg
HKTehiiBMoOaixSZ3K1Kq3o7JBwAT4r1eo2rz4FDNMV37vP52K2BpA/h3259bBTE
ig7lTNeb2bxUBR2gmDj6uy0UTmErfv9HBb0mtqEq3H4y1hG0vnfXH6jPf7U5LeEq
MAgLOX3gFVvBjM3eTc6LZugniyNK99114CSU8vKW08A6NNRHFLIFK7+cRjv76wSo
KLXEfYabqoagaw/2EhrC2UfpBfdpMYAf/FQCaRFB+lPRrm/ds6gHbh94g03UpUW1
5oFysnUa2wmcqyqv86bVcPfQfupJ383rXxtRwOPcVOEdP4eSdg==
-----END CERTIFICATE-----

Since SSL is required, the above certificate needs to be used to connect to the database. I am still
trying to figure that out on Windows.

It seems to be rather supported on Linux only.

The connection URL and other parameters as well as the certificate are now available for
everyone, see above. The database is still empty, though, I first need to find out how to connect.
(TODO) DONE

Connection with root certificate for SSL encryption is now DONE

On Windows, with pgAdmin 4 v5:

Project presentation 9

Project presentation 10

Choose the "ca.pem" certificate:

Project presentation 11

Result:

Project presentation 12

On Windows, with psql

Server [localhost]: tsdb-8edbcb8-marine-ad06.a.timescaledb.io
Database [postgres]: defaultdb
Port [5432]: 25145
Username [postgres]: tsdbadmin
Passwort für Benutzer tsdbadmin: rdbt9yr168bi80jw

This only worked after setting the pgAdmin SSL properties and loading the database. The
certificate seems to be saved in the system, perhaps encrypted, since I could not find it anywhere.

On Linux, with psql
Put the ca.pem certificate in ~/geomar/certificates . Then in bash, go to ~/geomar/certificates and
enter:

PGSSLMODE=require PGSSLROOTCERT=ca.pem psql -h tsdb-8edbcb8-marine-ad06.a.timescaledb.io -p 25145 -U
 tsdbadmin -d marinedb

Once the certificate has been loaded in the environment variables like this, it seems to hold for
roughly half an hour before you have to load it again into the PGSSLROOTCERT , but that could also
have come because I might have overwritten the var with a wrong value in the meantime.

Project presentation 13

PGSSLMODE=require psql -h tsdb-8edbcb8-marine-ad06.a.timescaledb.io -p 25145 -U tsdbadmin -d defaultd
b

API for the mobile frontend to the PostgreSQL Webserver
backend
This is mainly the API with some very small SQL parametrisation in the insert and delete
command. A parametrization prototype is given also for the select command, but I did not yet get
this to work (ReferenceError: request is not defined). It should still run later in the app with npx
create-react-app react-postgres and perhaps, even the Premises that were used in the original code
need to be there.

The main aim was the API to connect to the server at all and get the needed endpoint (JSON)
format as a result in the browser.

The certificate that you need to save at /etc/certificates/ca.pem:

----BEGIN CERTIFICATE-----
MIIEQTCCAqmgAwIBAgIUPVry8oOWmxx4eHNWRAlKvdPPMSkwDQYJKoZIhvcNAQEM
BQAwOjE4MDYGA1UEAwwvZDk2ZDM4MzQtNmFmMS00NmFlLWEyMjUtZGMwMDE1MDU0
YjJlIFByb2plY3QgQ0EwHhcNMjEwOTA2MDQyMDA3WhcNMzEwOTA0MDQyMDA3WjA6
MTgwNgYDVQQDDC9kOTZkMzgzNC02YWYxLTQ2YWUtYTIyNS1kYzAwMTUwNTRiMmUg
UHJvamVjdCBDQTCCAaIwDQYJKoZIhvcNAQEBBQADggGPADCCAYoCggGBALUjayZk
aZ5yjj3vjbtyPe8okGHniMwplI/gyTuhuQcqu2rxcZPDRlkgAjgYYVwmx+pf8DVY
A2xNB8Lxol+Kt2kBHW24/dBzD3UOqmDcwSgufwYtSB1Ql9vaWWtCPgod1uf31mSv
BW+XyoUYY/KRrK9+GslQTn70xDL5vxFumqLe9MkAS28NdPk2Gl7aNHKrEHAMCsl9
MOEgbe6tuKFbfYjMUrkGNaYXSpEok92gvKRcYhoK+ocgS8aQEuSS6ah2bqnF8Cf0
rYyXIC3CUdkVL1/mDTTVgaJb+2k2HisIZ86/oauuYepE5zhMaVp8zrfTz2LcB9Wv
878EYO0zwiggxjI7AHMiqooZaxPlhi7vvTWaqGJkLhK0NY0sthlOqEX14MFQJKO4
9m4WH1zcntGIxOTPV3vzsOIq86SWSctkd3HipM2CXgbbSaGbRQO5SHTqomhJu7p+
TYIsL1bW17ddG1BDLXxgPbOYpX+XuxM8Z6CPUzLxv9+aSQoVGTdfFFNGEwIDAQAB
oz8wPTAdBgNVHQ4EFgQUqOut8Uppgng2BLIekQ8WQOtFPc8wDwYDVR0TBAgwBgEB
/wIBADALBgNVHQ8EBAMCAQYwDQYJKoZIhvcNAQEMBQADggGBAJrnDwKGvzV3FKd7
+OylOI+M/PI4MnYKDtyECTlOVmIIJzJ6IrbqhZ04gH/uGs4xGpAxmAtSwx6s9AdR
U8wIkhmcb9ytWFC/hyoK7v1EDEJWidxhTRtooE01y/mdZYiTFKOL9L0f/8H0tlGf
V937TBZjmp4jyINMN/urR2LSiNYYuJo2ZgiAZv8Lw8TfKbolgzqstRCUn2G1MYFg
HKTehiiBMoOaixSZ3K1Kq3o7JBwAT4r1eo2rz4FDNMV37vP52K2BpA/h3259bBTE
ig7lTNeb2bxUBR2gmDj6uy0UTmErfv9HBb0mtqEq3H4y1hG0vnfXH6jPf7U5LeEq
MAgLOX3gFVvBjM3eTc6LZugniyNK99114CSU8vKW08A6NNRHFLIFK7+cRjv76wSo
KLXEfYabqoagaw/2EhrC2UfpBfdpMYAf/FQCaRFB+lPRrm/ds6gHbh94g03UpUW1
5oFysnUa2wmcqyqv86bVcPfQfupJ383rXxtRwOPcVOEdP4eSdg==
-----END CERTIFICATE-----

Project presentation 14

Of course, you can also save it elsewhere, but then you also need to change the path in the Pool
class of the code below.

Following the guide at Getting started with Postgres in your React app: an end to end example
where you also find more about the code that was used here. For digging deeper into this, How to
quickly build an API using Node.js & PostgreSQL might help as well.

The Webserver must be running to test this. You need to follow the guide at first and install node
and express.

Then create two files, merchant_model.js and index.js

merchant_model.js:

const Pool = require('pg').Pool
const fs = require('fs');
const pool = new Pool({
 user: 'tsdbadmin',
 host: 'tsdb-8edbcb8-marine-ad06.a.timescaledb.io',
 database: 'marinedb',
 password: 'rdbt9yr168bi80jw',
 port: 25145,
 ssl: {
 ca: fs
 .readFileSync("/etc/certificates/ca.pem")
 .toString()
 }
});

const getStokes = () => {
 const obs = parseInt(request.params.obs)
 pool.query('SELECT * FROM stokes WHERE obs = $1 ORDER BY obs ASC', [obs])
}

// Comment this out when you only want the request on select query.
// But only this query which does not use a request can be shown in the test browser at localhost:300
1
// Therefore, this is still needed for testing.
const getStokes = () => pool.query('SELECT * FROM stokes ORDER BY obs ASC')

const createStoke = (body) => {
 const { obs, traj } = body
 pool.query('INSERT INTO stokes (obs, traj) VALUES ($1, $2) RETURNING *', [obs, traj])
}

const deleteStoke = () => {
 const obs = parseInt(request.params.obs)
 pool.query('DELETE FROM stokes WHERE obs = $1', [obs])
}

module.exports = {
 getStokes,
 createStoke,
 deleteStoke,
}

Side note: In contrast to the guide, I use an SSL connection so that I need to define fs at the start,
see How to establish a secure connection (SSL) from a Node.js API to an AWS RDS.

Now, being in the project directory, you can run it with node index.js .

https://github.com/nsebhastian/react-node-postgres
https://www.enterprisedb.com/postgres-tutorials/how-quickly-build-api-using-nodejs-postgresql
https://medium.com/nexton/how-to-establish-a-secure-connection-from-a-node-js-api-to-an-aws-rds-f79c5daa2ea5

Project presentation 15

The index.js , a full copy of the guide, only getStokes gets run, it seems:

const express = require('express')
const app = express()
const port = 3001

const Stoke_model = require('./marine_model')

app.use(express.json())
app.use(function (req, res, next) {
 res.setHeader('Access-Control-Allow-Origin', '<http://localhost:3001>');
 res.setHeader('Access-Control-Allow-Methods', 'GET,POST,PUT,DELETE,OPTIONS');
 res.setHeader('Access-Control-Allow-Headers', 'Content-Type, Access-Control-Allow-Headers');
 next();
});

app.get('/', (req, res) => {
 Stoke_model.getStokes()
 .then(response => {
 res.status(200).send(response);
 })
 .catch(error => {
 res.status(500).send(error);
 })
})

app.post('/Stokes', (req, res) => {
 Stoke_model.createStoke(req.body)
 .then(response => {
 res.status(200).send(response);
 })
 .catch(error => {
 res.status(500).send(error);
 })
})

app.delete('/Stokes/:id', (req, res) => {
 Stoke_model.deleteStoke(req.params.id)
 .then(response => {
 res.status(200).send(response);
 })
 .catch(error => {
 res.status(500).send(error);
 })
})
app.listen(port, () => {
 console.log(`App running on port ${port}.`)
})

If that runs, you should see

App running on port 3001.

in the command prompt, with the command still running. Then you open a browser and enter
localhost:3001 to see

Project presentation 16

if you do not use a where condition on the select (the test table has just 9 rows).

App
The React app on top of this is yet to come. Perhaps, it will even need the Premises that were used
in the original merchant_model.js.

It will be a GUI where you can enter the obs so that you can control what you want to insert or
delete (or, if also parametrised, what to delete).

Project presentation 17

DONE

After following the installation guide (remove the content of react-postgres/src dir and put App.js +
a new index.js in the react-postgres/src dir), I can send the parametrised requests.

In the project dir:

npx create-react-app react-postgres

App.js to be put in the subfolder /src:

import React, {useState, useEffect} from 'react';
function App() {
 const [stokes, setStokes] = useState(false);
 useEffect(() => {
 getStoke();
 }, []);

 function getStoke() {
 fetch('<http://localhost:3001>')
 .then(response => {
 return response.text();
 })
 .then(data => {
 setStokes(data);
 });
 }
 function getStoke() {
 let obs = prompt('Enter stoke obs');
 fetch('<http://localhost:3001>')
 .then(response => {
 return response.text();
 })
 .then(data => {
 setStokes(data);
 });
 }
 function getStoke() {
 let obs = prompt('Enter stoke obs');
 let traj = prompt('Enter stoke traj');
 fetch('<http://localhost:3001>', {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 },
 body: JSON.stringify({obs, traj}),
 })
 .then(response => {
 return response.text();
 })
 .then(data => {
 setStokes(data);
 });
 }

 function createStoke() {
 let obs = prompt('Enter stoke obs');

Project presentation 18

 let traj = prompt('Enter stoke traj');
 fetch('<http://localhost:3001/stokes>', {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 },
 body: JSON.stringify({obs, traj}),
 })
 .then(response => {
 return response.text();
 })
 .then(data => {
 alert(data);
 getStoke();
 });
 }
 function deleteStoke() {
 let obs = prompt('Enter stoke obs');
 fetch(`http://localhost:3001/stokes/${obs}`, {
 method: 'DELETE',
 })
 .then(response => {
 return response.text();
 })
 .then(data => {
 alert(data);
 getStoke();
 });
 }
 return (
 <div>
 {stokes ? stokes : 'There is no stoke data available'}

 <button onClick={createStoke}>Add stoke</button>

 <button onClick={deleteStoke}>Delete stoke</button>
 </div>
);
}
export default App;

index.js to be put in the subfolder /src:

import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';

ReactDOM.render(<App />, document.getElementById('root'));

Then in the /react-postgres dir:

npm start

and you get:

Project presentation 19

and a browser opens:

asking you to:

Entering 0 here to select all obs with value 0 does not show any data, but it normally should show
the full table of 9 rows since all obs are 0. (TODO)

This is still almost finished.
The create does not work since the full table columns would need to be inserted, not just obs and
traj (I guess so).

It should be easy to find out about this since there is a Merchant table as the example that would
probably work. And then it is a small step to add other columns to the parameters.

