Rate of yield

Michael A. Spence

My issue was with how the rate of catch is calculated. In order to illustrate the problem I will consider a model without growth and with all mortality being fishing mortality, hence all dead fish are the catch.

1 Continuous time model

The McKendrick-von Foerster equation with no growth, $\frac{\partial g(w) N(w)}{\partial w}=0$ (and $\frac{d w}{d t}=0$), or non-fishing mortality is

$$
\begin{equation*}
\frac{d N(w)}{d t}=-F N(w) \tag{1}
\end{equation*}
$$

as $\mu(w)=F$ for all sizes. Integrating both sides to get biomass then this becomes

$$
\frac{d B}{d t}=-F B
$$

which has the exact solution for time Δt

$$
B(t+\Delta t)=B(t) \exp (-F \Delta t)
$$

where $B(t)$ is the biomass at time t. All lost biomass is catch, i.e.

$$
B(t)-B(t+\Delta t)=(\exp (F \Delta t)-1) B(t+\Delta t)
$$

hence the rate of catch is

$$
\frac{(\exp (F \Delta t)-1) B(t+\Delta t)}{\Delta t} \neq F B(t+\Delta t)
$$

except $\lim _{\Delta t \rightarrow 0}$, which is currently how it is currently calculated.

2 Discrete time model

The model was a discrete time model that moves with time step δt,

$$
\begin{equation*}
B(t+\delta t)=\frac{B(t)}{1+F \delta t} \tag{2}
\end{equation*}
$$

as calculated in mizer currently, then the catch would be

$$
\begin{aligned}
B(t)-B(t+\delta t) & =B(t+\delta t)(1+F \delta t)-B(t+\delta t) \\
& =B(t+\delta t) F \delta t
\end{aligned}
$$

which as a rate becomes $B(t+\delta t) F$, exactly as currently done in mizer and the getYield function. Therefore the getYield function is the solution to the discrete time model (equation 1) and not the McKendrick-von Foerster model (equation $2)$, although as the time step gets smaller it does.

We can calculate the actual fishing mortality rate, μ_{f}, that was put on the stock as a rate parameter by combining the two models,

$$
\frac{B(t)}{1+F \delta t}=B(t) \exp \left(-\mu_{F} \delta t\right)
$$

which means

$$
\mu_{F}=-\frac{1}{\delta t} \log \left(\frac{1}{1+F \delta t}\right) \neq F
$$

except $\lim _{\Delta t \rightarrow 0} . \mu_{F}$ is equivilant to the fishing mortality that come out of the assessments. I'm not sure if this only holds when growth is zero though.

