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Abstract

Real-world complex networks are composed of non-random quantitative interactions. Identifying
communities of nodes that tend to interact more with each other than the network as a whole is a
key research focus across multiple disciplines, yet many community detection algorithms only utilise
information about the presence or absence of interactions between nodes. Weighted modularity
is a potential method for evaluating the quality of community partitions in quantitative networks. In
this framework, the optimal community partition of a network can be found by searching for the
partition that maximises modularity. Attempting to find the partition that maximises modularity is a
computationally hard problem requiring the use of algorithms. QuanBiMo is an algorithm that has
been proposed tomaximise weightedmodularity in bipartite networks. This paper introduces two new
algorithms, LPAwb+ and DIRTLPAwb+, for maximising weighted modularity in bipartite networks.
LPAwb+ and DIRTLPAwb+ robustly identify partitions with high modularity scores. DIRTLPAwb+
consistently matched or outperformed QuanBiMo, whilst the speed of LPAwb+ makes it an attractive
choice for detecting the modularity of larger networks. Searching for modules using weighted data
(rather than binary data) provides a different and potentially insightful method for evaluating network
partitions.

Introduction

Bipartite networks are the representation of interactions between two distinct classes of nodes, such
that nodes can only interact with nodes from the other class [1]. Such networks can be used for ex-
ample to represent the way in which certain actors are related to certain events in social networks [2],
to represent industrial trade networks [3]; and in ecology to represent the interactions between plant
species and pollinator species [4]. Identifying structure within networks is useful in explaining their
formation, function and behaviour and is an important challenge in a diverse set of disciplines. Com-
munity detection algorithms are designed to identify clusters, or modules, of nodes within a network
that are more likely to interact amongst themselves than with the rest of the network [5]. Modularity
is an evaluation of the way in which nodes are partitioned into separate subsets, forming modules.
This is done by assessing the extent to which interactions in the network occur within modules rather
than between modules, relative to a null model [6, 7]. One (of many) community detection methods is
to find the partitioning of nodes into modules that will maximise the modularity of a network. Several
modularity maximisation algorithms have been designed to attempt to achieve this [5].
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Modularity maximisation was originally developed for unipartite (in which all nodes are allowed to
interact with one another) networks [6]. Modularity is highest when each module appears isolated
from the rest of the network. This occurs when nodes interact often with nodes in the same module
and there are few between module interactions. Negative modularity scores imply fewer interactions
occur within modules than expected in a random network. But, positive modularity indicates that within
module connectivity is higher than expected. The smallest and largest possible modularity scores that
can be found are network dependent [1].
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Figure 1: (a) The olesen2002flores bipartite network of 12 species of pollinators (blue nodes (top))
visiting 10 plant species (red nodes (bottom)). The width of the edges linking the nodes represents
the number of pollinator-plant visitations, whilst the width of the nodes represents the marginal total of
visits made by a pollinator species or received by a plant species. (b) The same network represented
by the incidence matrix denoted Ã in the text, where the plant species are represented as rows and the
pollinator species as columns and the presence of visitations between a pollinator and plant species is
represented by a 1. (c) The incidence matrix Ã is the binary equivalent of W̃ , the weighted interaction
matrix shown here. The cell numbers correspond to the number of observed pollinator-plant visitations
that occurred (where there is no number in a square there were 0 visitations)

There are several definitions of modularity used in bipartite networks. Guimerà’s modularity [8] and
Barber’s modularity [7] were recently reviewed [9] in the context of ecological networks. Guimerà’s
modularity uses weighted projections to identify separate communities within each node type. In
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contrast, Barber’s modularity identifies joint communities composed of both types of node. In this
paper I concentrate on the modularity definition proposed by Barber and its extension to weighted
networks [10] to search for communities composed of both node types, which in the context of this
study are communities of plants and their respective pollinators.

Modularity is a major feature of plant-pollinator networks [4] and may contribute to network stability in
these systems. They can be represented as bipartite networks with interactions between pollinators
and plants. Pollinating species cannot pollinate other pollinating species, while plants cannot visit each
one another – the only allowed interactions are between different plants and pollinators (an example
network is shown in figure 1).

Whilst it is possible to utilise interaction weights to perform community detection [11, 10], the majority
of approaches only focus on whether two nodes have an association, regardless of the strength of
such associations [5]. Recently QuanBiMo [10] was introduced as the first algorithm to use quan-
titative interaction strengths to perform community detection via maximising weighted modularity in
bipartite networks. QuanBiMo is an algorithm to maximise modularity in bipartite networks based on
hierarchical random graphs [12] and simulated annealing. Many approaches to modularity maximi-
sation have been developed for binary bipartite networks, which do not necessarily reach the same
result [5, 13, 14]. There may be danger in relying on a single approach to maximise modularity in
weighted networks, but as yet there is no other method to compare the results of QuanBiMo against.
It may be possible to adapt some of the methods used for detecting communities in binary networks to
deal with quantitative information, rather than having to discard this important data dimension. In this
paper I consider modifying the LPAb+ algorithm [13], that uses label propagation and multi-step ag-
glomeration to attempt to maximise modularity in binary bipartite networks. The LPAb+ algorithm has
been shown to outperform seven other available methods for binary networks [13, 14] whilst retaining
fast time complexity. These qualities make it a good candidate for extension to the case of weighted
networks. Additionally LPAb+ and QuanBiMo both operate to maximise Barber’s modularity in binary
networks. Thus, if LPAb+ can be modified to maximise the weighted modularity function proposed by
QuanBiMo, the results can be directly compared.

The definitions of binary and weighted modularity are presented. I show how to alter the LPAb+ algo-
rithm so it can detect weighted modularity and denote this algorithm LPAwb+. A further modification
allowing a more thorough search of modularity space is also presented. I call this DIRTLPAwb+.
First, the performance of LPAwb+ and DIRTLPAwb+ are assessed using an ensemble of synthetic
weighted networks with a given modular structure. Then, all three algorithms for maximising weighted
modularity are compared on an empirical dataset containing 23 plant-pollinator networks. I find that
QuanBiMo is highly sensitive to its input parameters, which may lead to reporting of modularity far
below the optimal value in a given network. QuanBiMo reported less consistent modularity scores
than either LPAwb+ or DIRTLPAwb+. These experiments show that DIRTLPAwb+ and QuanBiMo
performed well on smaller networks, whilst the speed of LPAwb+ makes it particularly suitable for
use on larger datasets. The inclusion of quantitative information in networks alters the structure of
detected modules, which may have implications for how modularity is used.

Methods

Modularity

Barber’s modularity

Bipartite or two-mode networks are made of two disjoint sets of nodes such that interactions only occur
between nodes of opposite types. To generalise we say there are two node types: red and blue - and
that interactions are only allowed between red and blue nodes. If there are r nodes of the red type
and c nodes of the blue type, the adjacency matrix A is given in block diagonal form as:
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A =

(
0r×r Ãr×c

ÃT
c×r 0c×c

)

where Ã is the incidence matrix describing the connections between the different types of nodes (here
T indicates the matrix transpose). This formulation allows bipartite modularity to be written as [7]:

QB =
1

m

r∑
u=1

c∑
v=1

(
Ãuv − Puv

)
δ (gu, hv)

=
1

m

r∑
u=1

c∑
v=1

(
Ãuv −

kudv
m

)
δ (gu, hv) (1)

where P is the null model matrix describing the expected probability of interactions between red and
blue nodes given the degree distributions of Ã [7]. This is calculated by finding: m, the matrix fill - the
number of edges in Ã; k, that describes the node degree for red nodes (the number of blue nodes
each red node interacts with); and d, that describes the node degree for blue nodes (the number of
red nodes each blue node associates with). Red node labels are denoted g , whilst h are the labels
for blue nodes and the Kronecker delta function δ (gu, hv) is equal to one when nodes u and v are
classified as being in the same module (i.e. they have the same label value) or zero otherwise.

Weighted bipartite modularity

Weighted bipartite modularity, QW , can be defined as [10]:

QW =
1

M

r∑
u=1

c∑
v=1

(
W̃uv − Ẽuv

)
δ (gu, hv)

=
1

M

r∑
u=1

c∑
v=1

(
W̃uv −

yuzv
M

)
δ (gu, hv) (2)

where Ẽ is the matrix of the null expectations of interaction between two nodes, y is the row marginal
totals and z is the column marginal totals of W̃ , the weighted incidence matrix. In a binary network W̃
is equivalent to the binary incidence matrix Ã, the marginal totals will equal the node degrees (y = k
and z = d) and M , the sum of edge weights will equal m, the fill. Thus equation (2) will reduce to
equation (1) for a binary network. Furthermore equation (2) can be reformulated into its matrical form
[7, 15] to allow for vectorised computation as:

QW =
1

M
tr
(
R
(
W̃ − Ẽ

)
C
)

(3)

where for a network with F communities, R is the F×r red label matrix and C is the c×F blue label
matrix. R (and C) are binary matrices with a single 1 in each row (column) indicating which community
each red (blue) node belongs to (this information is held by the red and blue labels). These definitions
of weighted bipartite modularity can now be used in the modified framework of the LPAb+ algorithm.
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Weighted modularity maximising algorithms

QuanBiMo

The quantitative bipartite modularity algorithm (QuanBiMo) of [10], based on the hierarchical random
graph algorithm [12], uses a simulated annealing method to attempt to maximise weighted bipartite
modularity. It is a C++ routine that is available in the R package bipartite [16] through the func-
tion computeModules. The default settings available in bipartite version 2.04 were used (steps= 106,
tolerance= 1−10).

LPAwb+

The LPAwb+ algorithm is made from two stages - a ‘bottom up’ step that maximises modularity on a
node-by-node basis using label propagation; and a ‘top down’ step that joins modules together when
it results in increased network modularity. A bipartite network can have at the most F = min(r, c)
communities with our chosen definition of modularity. The LPAwb+ algorithm is initialised by giving a
unique label to each of the nodes in the smallest of the two sets.

Stage 1 - label propagation stage - bottom up Asynchronous updating of blue, then red labels on
the network is performed to locally maximise modularity (equation (2)). For a particular red node x
this can be written as choosing a new label gx by trying to maximise the condition:

gx =
(∑c

v=1

(
W̃xv − yxzv

M

))
δ (g, hv)

=
(∑c

v=1 W̃xvδ (g, hv)−
∑c

v=1

(
yxzv
M

)
δ (g, hv)

) (4)

Red nodes only use information about the blue nodes to update their labels (g) and similarly blue
node labels (h) are updated only using information about the red nodes. Simplifying equation (4) and
creating an analogue for the updating rules for blue node labels leads to the following set of conditions:


gnewx = argmax

g

(
Nxg − yxZg

M

)
hnew
x = argmax

h

(
Nxh − Yhzx

M

) (5)

where the new label assigned to node x of type g (red) or h (blue) is that which maximises g or h on
the right-hand side (if more than one solution exists, one is chosen at random). Here Nxg is the sum
of interactions from nodes connecting to x labelled g, while Zg is the sum of the marginal sums of blue
nodes labelled g and Yh is the sum of the marginal sums for red nodes labelled h. As these ‘bottom-up’
updating rules (equation (5)) are mutually exclusive of one another they are applied asynchronously
such that blue labels are updated, then red nodes are updated, then blue nodes are updated and so
on until modularity (equation (2)) can no longer be increased.

Stage 2 - agglomeration stage - top down When modularity can no longer be increased via stage
1’s ‘bottom-up’ steps, a localised maximum of modularity for the network is reached, however this may
not be the global maximum. The second stage seeks to prevent the algorithm getting stuck at local
maxima bymerging groups of communities together. Each identified community module t is composed
of blue and red nodes that share the same label i.e. when gu = hv . If there are F communities in
total, then the merging of two different communities ti and tj can only occur if this would result in an
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increase in network modularity and if there is no third community tk (1 ≤ k ≤ F , i ̸= j ̸= k ) whose
merger with either of ti or tj would result in a larger increase to modularity. Pseudo-code representing
these steps is shown in algorithm 2.

Once this merger of modules is completed, stages 1 and then stage 2 are repetitively performed until
it is no longer possible to increase network modularity by merging any of the possible communities
together. These modules (communities) and the modularity of this partition are the solution provided
by the LPAwb+ algorithm. A key feature of the LPAwb+ algorithm is that it simplifies to the previously
described LPAb+ algorithm [13] when a binary network is used as input. The LPAwb+ algorithm is
stochastic - this can lead to different values of modularity being reported. To combat this issue it has
been suggested that the LPAb+ algorithm is run multiple times on a given network to find the greatest
modularity score [13].

Algorithm 1 LPAwb+ pseudo-code
Inputs : an incidence matrix
Output : row module labels, column module labels, modularity score

1 start
2
3 Find the smallest of the matrix dimensions and make these the red nodes
4 Initialise and randomly assign a unique label to each red node
5 Initialise the blue labels
6 run Stage1: Repeatedly update labels to locally maximise modularity
7
8 find the number of communities
9
10 while joining communities will result in increased modularity: {
11 run Stage2: Merge two communities that will increase modularity most
12 run Stage1: Repeatedly update labels to locally maximise modularity
13 find the number of communities
14 }
15
16 Assign red and blue labels to row and column labels (see line 3)
17
18 return row labels, column labels and modularity

Algorithm 2 Agglomeration pseudo-code
1 F = number of modular communities
2 for each module: modA = 1:(F-1)
3 for each module: modB = (modA+1):F
4 if merging modules modA and modB would increase network modularity (Q)
5 if joining modA with modB increases Q more than joining modA with any other
module and if joining modA with modB increases Q more than joining modB with any other
module
6 Then merge modA with modB

DIRTLPAwb+

Exploratory research with QuanBiMo and LPAwb+ revealed LPAwb+ often got stuck in a suboptimal
solution with a larger number of modules, when compared with QuanBiMo, as LPAwb+ starts by iden-
tifying the largest possible number of modules, then iteratively merges them until modularity cannot
be increased.
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Knowing that LPAwb+ is sensitive to node label initialisation [13] and that it performs faster than Quan-
BiMo I designed a new algorithm, DIRTLPAwb+ (see algorithm 3). DIRTLPAwb+ computes LPAwb+
multiple times with different random initialisations of node labels chosen from µ unique possible labels;
and returns the solution which finds the greatest modularity score.

DIRTLPAwb+ takes three inputs; the incidence matrix for the network of interest, the number of times
that LPAwb+ should be run for each value of µ, and the minimum number of unique labels (modules)
to start running LPAwb+ with. Therefore µ ranges between this minimum value and the number of
modules returned by a single execution of the LPAwb+ algorithm (when each node is initialised with
a unique label) which is used as an upper limit.

Algorithm 3 Pseudo-code for DIRTLPAwb+
Inputs : an incidence matrix, minimum number of modules, repetitions
Output : row module labels, column module labels, modularity score

1 start
2
3 Sol1 = run LPAwb+
4 M = number of modules found in Sol1
5
6 for each value A from minimum number of modules up to M: {
7 for every repetition: {
8 Sol2 = run LPAwb+ with A initial modules
9 if Sol2 has greater modularity than Sol1:
10 Sol1 = Sol2
11 }
12 }
13
14 return row labels, column labels and modularity from Sol1

Setting the minimum number of modules to search for small, and the number of repetitions high will
increase the chance of detecting the global modularity optimum for a network; but is likely to be com-
putationally costly. I chose to give DIRTLPAwb+ default settings of ten repetitions for each value of
µ, starting from a minimum of four modules (note this does not preclude solutions with fewer mod-
ules being identified due to the merging process in LPAwb+) as the speed taken to perform these
calculations appeared favourable to QuanBiMo for the test datasets.

Comparing Modularity

Normalised Modularity

The modularity values of QB and QW found above are network specific - properties such as the size
and number of links in a network affect the magnitude of modularity that can be found [1, 9, 10]. In
order to compare the strength of assortative mixing across different network studies it is necessary
to account for the possibility of these effects. [10] recommend using a null model to generate an
ensemble of networks from which the standardised effect size of modularity can be assessed as a
z-score. However, it is unclear what would make an appropriate null model for weighted networks. An
alternative method is to normalise the modularity values by the maximum value that modularity can
take, found in the ‘perfectly mixed’ network, in which all edges are assigned to a module and there
are no links between different modules [1]. Extending this for weighted bipartite networks gives:
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Qmax =
1

M

(
M −

r∑
u=1

c∑
v=1

yuzv
M

)
δ (gu, hv) (6)

where as before M is the sum of the edges in the incidence matrix with marginal row totals, y and
marginal column totals z. Then normalised modularity is found as:

Qnorm =
Q

Qmax
(7)

Realised Modularity

Realised modularity [17] has been suggested as a posterior measure of modularity that classifies
the proportion of links in a network that are within, rather than between modules. Here I extend this
measure so it can be applied to weighted as well as binary networks. If M is the sum of all edge
weights in a network and H is the sum of all within-module edge weights, then realised weighted
modularity is expressed as:

Q
′

R = 2

(
H

M

)
− 1 (8)

Q
′

R takes values between −1, indicating that no edges exist between nodes in the same module,
and 1, when all edges are interactions within-modules. If Q′

R = 0 half of the edge weights in the
network are found connecting nodes within the same module and the remaining edge weights are
node connections between different modules. Note that in a weighted network Q′

R says nothing about
the actual number of edges between or within modules, only the strength of the connecting edges.

Normalised Mutual Information

The normalised mutual information criterion is used as a way to compare the similarity of network
structures found by different community detection methods [18, 9]. For two different partitions A and
B of the same network with a total of n nodes (red and blue), with CA and CB modules respectively,
the normalised mutual information is:

NMI(A;B) =
−2
∑CA

i=1

∑CB

j=1 Nij log
(

Nijn
NiNj

)
∑CA

i=1 Ni log
(
Ni

n

)
+
∑CB

j=1 Nj log
(

Nj

n

) (9)

where N is the confusion matrix with elements Nij which indicate the number of nodes that appear in
the ith module of partition A and the jth module of partition B; Ni is the number of nodes in module i
of partition A and Nj is the number of nodes in module j of partition B. If NMI(A;B) = 0 there is no
shared information between partitions A and B - they each have identified very different community
structures; whilst if NMI(A;B) = 1 the information given by partitions A and B is identical - the same
community structure has been found by A and B.
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Data

Synthetic networks

An ensemble of 800 synthetic networks were generated to evaluate the algorithms. Networks, all
with 30 row nodes and 50 column nodes, were assigned either 2 or 10 modules which are randomly
positioned such that sizes of modules differed between the networks. Edge weights were then as-
signed to all cells within a module using random numbers derived from a skewed negative binomial
distribution (following work in QuanBiMo [10]) with the dispersion parameter set to either size = 0.5
(a network with lower connectance) or size = 2.5 (a network with higher connectance) in both cases
using a mean of 4 (see Figure S2 for histograms of these distributions). This provided four different
treatments of levels of modules and connectance. Ten initial networks were calculated for each of
the four treatments. Each of these 40 “perfectly modular” networks was then subjected to noise in-
troduced by rewiring a proportion of the edges in a network such that node connections are altered;
in this case the higher the level of noise – the less modular (and more random) the network structure
becomes. Five replicates for four different levels of noise (noise = 0, 0.01, 0.25, 0.5 ) were applied to
each of the 40 initial networks.

Plant-pollinator networks

I used the 23 plant-pollinator networks [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 4, 33,
34, 35] available in the bipartite R package (22 of which were used in [10] and the additional junker2013
network) taken from theNCEAS dataset
(https://www.nceas.ucsb.edu/interactionweb/resources.html). These networks show the number of
observed visitations by each recorded pollinator species to each recorded plant species at different
field sites across the world. Some network properties are shown in Table S1.

Computing Modularity

Synthetic networks

LPAwb+ and DIRTLPAwb+ were each run once on each of the 800 quantitative synthetic networks.
The performance of these algorithms at detecting weighted modular structure was assessed using
three indicators: the ratio of the number of modules between the detected and synthetic networks, the
ratio of modularity between the detected and synthetic networks and the normalisedmutual information
between that detected and that in the synthetic networks.

Plant-pollinator networks

I computed the binary and quantitative networks for each of the datasets, removing rows and columns
that contained no interaction data from the analysis. QuanBiMo, LPAwb+ and DIRTLPAwb+ were run
100 times for each binary and each weighted network in order to assess the modular structures found
and the fidelity of the algorithms. I then quantified the differences between the modular structures
found by the binary and weighted algorithms using the normalised mutual information criterion and
investigated the differences in normalised and realised modularity.

Code implementations for the LPAwb+ and DIRTLPAwb+ algorithms are currently available online for
the Julia, MATLAB/Octave and R programming languages. This and the R code used to create the
figures and perform the analysis presented in this paper is available in a supporting online deposi-
tory [36]. For fair comparison in timing the algorithms all computations were performed in R version
3.2.2 using version 2.05 of the bipartite package on an Intel(R) Core(TM) i7-5960X CPU @ 3.00 GHz
desktop computer.
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Results

Evaluating LPAwb+ and DIRTLPAwb+ on weighted networks

Three indicators were used to assess the ability of the LPAwb+ and DIRTLPAwb+ algorithms to detect
modularity in the synthetic ensemble of weighted networks, shown in Figure 2. As the amount of
noise in the synthetic networks increased the ability to discern the embedded community structures
decreased. However, overall DIRTLPAwb+ outperformed LPAwb+ as it was less likely to over-report
the number of modules detected and more likely to identify community structure and modularity scores
closer to that of those in the synthetic networks.
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Figure 2: Evaluation of the LPAwb+ and DIRTLPAwb+ algorithms against synthetically generated
weighted networks with known modular structure for given levels of noise. (a) shows the ratio of
detected modules to known modules , (b) shows the ratio of detected modularity (QW ) to the modu-
larity of the implanted structure. The dotted lines represent the ability to perfectly detect the synthetic
community partitions. Finally (c) shows the normalised mutual information (NMI) between detected
community structure and the embedded community structure.

Community detection is affected by the level of network noise, as well as by other factors such as the
number of modules and network connectance (see Figure S3). Over-reporting bias of the number of
modules was reduced when the number of synthetic modules was greater, andmore similar modularity
scores were achieved when connectance was lower.

Comparing weighted modularity algorithms using plant-pollinator networks

Having shown LPAwb+ and DIRTLPAwb+ have some capacity for detecting weightedmodularity I now
focus on a dataset of plant-pollinator ecological networks where these two algorithms are compared
to QuanBiMo. Figure 3 shows the maximum modularity scores detected by each algorithm (from 100
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replicates) for each of the networks. Full details are shown in Table 1 for binary networks and Table 2
for weighted networks. As expected (by definition) DIRTLPAwb+ scores were always equal or greater
than those detected by LPAwb+. Each algorithm detected similar maximummodularity scores for each
network, with the exception of the datasets of kato1990, junker2013, barrett1987 and elberling 1999 in
binary networks (Figure 3a) and kato1990, junker2013, elberling1999, kevan1970 and barrett1987 for
weighted networks (Figure 3b) in which LPAwb+ and DIRTLPAwb+ detected much greater modularity
scores than QuanBiMo.
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Figure 3: Comparing themaximum detectedmodularity scores by each algorithm (from 100 repetitions
on each of the 23 plant-pollinator networks). The dotted line indicates a consensus i.e. QuanBiMo and
the other algorithms are in perfect correspondence. Points below the dotted line indicate QuanBiMo
maximises modularity more effectively; whilst points above the dotted line show that LPAwb+ ( +
) or DIRTLPAwb+ ( × ) detected partitions with greater modularity than QuanBiMo. (a) shows a
comparison of binary modularity scores,QB , whilst (b) shows the weighted modularity scores, QW .

Table 1 shows the greatest modularity scores detected by each algorithm, the number of modules in
these partitions and the average execution time for each algorithm in the analysis of binary networks.
The same partition was found by all three algorithms in only the schemske1978 network; both Quan-
BiMo and DIRTLPAwb+ found the same partitions for another 16 networks; whilst DIRTLPAwb+ found
the greatest modularity score for 6 networks and QuanBiMo found the best modularity score in the in-
ouye1988 network. LPAwb+ was by far the algorithm with the quickest execution time. DIRTLPAwb+
performs faster on small networks than QuanBiMo and more slowly on larger networks, however it
generally found a much greater modularity score than QuanBiMo for these networks. The partitions
found by LPAwb+ had more modules than those found by the solution with the greatest modularity.

For weighted networks Table 2 shows there were 5 networks for which the same maximummodularity
was detected by all three algorithms, 10 networks in which QuanBiMo and DIRTLPAwb+ found the
greatest modularity, 7 networks for which DIRTLPAwb+ found the greatest modularity and a single
network, small1976, that was maximised by QuanBiMo. QuanBiMo had a similar average perfor-
mance time to the binary networks, with LPAwb+ finding modularity more quickly in weighted than in
binary networks. DIRTLPAwb+ has a similar performance time for smaller networks as under binary
conditions and performs faster for the larger networks - which can be ascribed to the lower number of
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modules detected by LPAwb+ for the weighted networks. LPAwb+ detects partitions which generally
have more modules than that with the greatest modularity, while QuanBiMo generally finds partitions
with fewer modules than the solution found with greatest modularity.
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Figure 4: Comparison of median modularity scores found by each algorithm (from 100 repetitions on
each of the 23 plant-pollinator networks) to the maximum of the modularity scores found across the
algorithms - the consensus maximum modularity. (a) shows results for binary networks, whilst (b)
shows the results for weighted networks. The dotted line represents algorithm efficacy, where median
modularity score is equal to the maximum consensus modularity score that was detected.

Figure 4 shows themedian detectedmodularity scores for each algorithm against the overall maximum
modularity score for each network. Figure 4a shows that DIRTLPAwb+ consistently finds modularity
scores closest to the maximal value, that LPAwb+ scores were close, but not so close and that whilst
QuanBiMo could achieve consistency as good as the DIRTLPAwb+, for several networks QuanBiMo
had a median value much lower than the maximummodularity detected. Similarly in Figure 4b DIRTL-
PAwb+ shows high consistency as does LPAwb+ (more so than for binary networks), whilst QuanBiMo
in general performs less consistently for weighted networks than binary networks.

12



QuanBiMo LPAwb+ DIRTLPAwb+
Network QB M t QB M t QB M t

Safariland 0.558 6 1.044 0.519 9 0.012 0.558 6 0.521
barrett1987 0.263 4 11.587 0.470 11 0.061 0.486 8 2.708
bezerra2009 0.230 3 1.491 0.218 5 0.011 0.230 3 0.186
elberling1999 0.300 5 26.208 0.458 22 0.187 0.497 14 17.22
inouye1988 0.427 9 17.277 0.351 31 0.337 0.415 6 40.224
junker2013 0.161 7 42.724 0.433 55 3.06 0.489 19 328.953
kato1990 0.035 5 1551.827 0.544 74 13.243 0.581 32 5510.003
kevan1970 0.391 6 29.179 0.341 23 0.228 0.434 5 20.781
memmott1999 0.322 4 10.677 0.268 19 0.145 0.342 5 11.714
mosquin1967 0.479 6 0.992 0.393 11 0.015 0.479 6 0.774
motten1982 0.313 6 2.394 0.281 10 0.028 0.313 6 1.284
olesen2002aigrettes 0.340 4 1.063 0.314 7 0.010 0.340 4 0.303
olesen2002flores 0.444 4 0.923 0.422 7 0.008 0.444 4 0.216
ollerton2003 0.445 6 7.282 0.439 8 0.038 0.445 6 1.383
schemske1978 0.370 6 1.778 0.370 6 0.009 0.370 6 0.197
small1976 0.266 5 1.684 0.242 8 0.019 0.266 5 0.729
vazarr 0.542 7 1.348 0.512 9 0.014 0.542 7 0.576
vazcer 0.619 6 1.970 0.565 9 0.014 0.619 6 0.586
vazllao 0.576 6 1.103 0.550 8 0.015 0.576 6 0.542
vazmasc 0.547 6 1.27 0.522 8 0.010 0.547 6 0.342
vazmasnc 0.527 6 2.184 0.512 8 0.015 0.527 6 0.508
vazquec 0.497 4 1.412 0.474 7 0.011 0.497 4 0.311
vazquenc 0.549 5 0.855 0.514 7 0.009 0.549 5 0.254

Table 1: Comparison of QuanBiMo, LPAwb+ and DIRTLPAwb+ algorithms on binary ecological inter-
action networks. QB is the greatest value of binary modularity from 100 replicates on the network, M
is the corresponding number of modules found in this partition and t is the mean time taken (seconds)
to compute each algorithm once. Numbers have been rounded to 3 d.p. Numbers shown in bold are
those with the highest QB score.
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Figure 5: Average computational time for each algorithm (measured over 100 replicates) on the (a)
binary and (b) quantitative representations of each plant-pollinator network.

QuanBiMo LPAwb+ DIRTLPAwb+
Network QW M t QW M t QW M t

Safariland 0.430 5 1.193 0.427 7 0.012 0.430 5 0.347
barrett1987 0.482 4 8.898 0.567 9 0.049 0.569 7 1.889
bezerra2009 0.223 5 1.69 0.223 5 0.012 0.223 5 0.19
elberling1999 0.270 6 25.367 0.493 18 0.129 0.517 12 10.362
inouye1988 0.598 9 22.543 0.582 22 0.186 0.619 14 15.785
junker2013 0.143 6 91.534 0.533 33 1.335 0.566 16 102.635
kato1990 0.061 5 2210.35 0.611 48 6.217 0.632 20 1000.365
kevan1970 0.375 3 33.674 0.525 10 0.094 0.536 5 4.525
memmott1999 0.249 5 13.261 0.297 10 0.075 0.305 6 3.420
mosquin1967 0.444 6 0.935 0.440 7 0.009 0.444 6 0.252
motten1982 0.382 4 3.038 0.367 6 0.019 0.382 4 0.434
olesen2002aigrettes 0.259 5 1.083 0.259 5 0.007 0.259 5 0.117
olesen2002flores 0.497 5 0.938 0.497 5 0.006 0.497 5 0.085
ollerton2003 0.413 6 5.879 0.395 7 0.021 0.413 6 0.587
schemske1978 0.320 4 2.26 0.320 4 0.012 0.320 4 0.011
small1976 0.527 8 1.861 0.516 11 0.024 0.525 7 1.057
vazarr 0.442 6 1.672 0.441 7 0.013 0.442 6 0.359
vazcer 0.604 6 2.184 0.591 7 0.014 0.604 6 0.389
vazllao 0.561 6 1.335 0.558 8 0.012 0.561 6 0.418
vazmasc 0.663 6 1.424 0.655 7 0.009 0.663 6 0.301
vazmasnc 0.401 6 2.162 0.400 7 0.012 0.401 6 0.335
vazquec 0.511 6 2.027 0.504 7 0.013 0.511 6 0.350
vazquenc 0.450 4 0.828 0.450 4 0.007 0.450 4 0.006

Table 2: Comparison of QuanBiMo, LPAwb+ and DIRTLPAwb+ algorithms on weighted ecological
interaction networks. QW is the greatest value of weighted modularity from 100 replicates on the
network, M is the corresponding number of modules found in this partition and t is the mean time
taken (seconds) to compute each algorithm once. Numbers have been rounded to 3 d.p. Numbers
shown in bold are those with the highest QW score.
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The average time to run each algorithm is shown in Figure 5. Performance time is network dependent;
where it takes longer to compute and report modularity for larger networks. LPAwb+ performed the
quickest on all networks by roughly 2 orders of magnitude. Performance on the binary (Figure 5a) and
quantitative (Figure 5b) network representations was similar. However, QuanBiMo performed faster
for binary (rather than quantitative) inputs on 17 of the 23 networks. On the other hand, LPAwb+ ran
quicker with quantitative network representations (19 out of 23), as did DIRTLPAwb+ (20 out of 23).
For the five cases where DIRTLPAwb+ took longer than QuanBiMo, DIRTLPAwb+ found a partition
with greater modularity four times and QuanBiMo found the greatest modularity score once (the binary
representation of inouye1988).

Differences in community structure between the algorithms

For each algorithm the community partitions achieving the greatest modularity scores on each net-
work were compiled and then compared against those found by the other algorithms using NMI. The
results of these pairwise comparisons are shown in Table 3. Cells are highlighted when one algorithm
detected modularity scores greater than the opposing algorithm (see tables 1-2) and NMI is given as a
range when one of the algorithms detected multiple partitions resulting in its largest modularity score
(see column U in tables S2-S3). In almost all cases where the same greatest modularity score was
detected – this corresponded to the same community partition. The exception is the binary vazmasc
network where two solutions were identified by both QuanBiMo and DIRTLPAwb+. These solutions
are similar as the given NMI scores are high.

Where the differences in modularity scores detected by QuanBiMo and DIRTLPAwb+ were greatest
also corresponded to greater differences in the community partitions being identified. In general the
community partitions identified by the LPAwb+ algorithm were found to be more similar to those found
by DIRTLPAwb+ than QuanBiMo, which is perhaps unsurprising given the similarities in the algorithms
themselves.

Details of the actual partitions for the plant-pollinator networks evaluated in Table table 3 are provided
in the supporting information.

Contrasting Binary and Quantitative Modular Structure

Maximising binary modularity and maximising weighted modularity results in different identified modu-
lar structures. Figure 6a shows the partition with the greatest binarymodularity for the olesen2002flores
network, whilst figure 6b shows the partition with the greatest weighted modularity. The same dataset
has qualitatively different structure between its weighted and binary representations. The shared nor-
malised mutual information for these two partitions is NMI = 0.619 indicating the identified partitions
may share some similarities, but are overall quite different from each other.

Figure 7a shows the differences in normalised modularity and normalised mutual information between
the binary and weighted network representations. Only 3 of the networks (vazquenc, vazmasnc and
vazcer) have a normalised mutual information greater than 0.8 - indicating major differences in iden-
tified binary and quantitative modular structures. The strength of assortative mixing, measured by
normalised modularity, was generally greater in weighted than binary networks. However, 4 networks
(olesen2002aigrettes, vazarr, bezerra2009, vazmasnc) showed greater assortative mixing in their bi-
nary representations and for 2 networks (olesen2002flores, vazllao) the assortative mixing strength
was nearly the same in both binary and weighted networks - though the community partitions are very
different.

Not only were the detected modularity scores different between the binary and weighted networks - but
the number of modules found in each partition of these networks also differed. Only 8 of the networks
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had the same number of modules under binary and weighted conditions; whilst 8 had more modules
in the weighted networks and 7 had more modules in the binary network representation (tables1-2).

There appears to be a weak positive relationship between realised modularity and modularity (Figure
8a), however normalised and realised modularity appear to be much more strongly correlated (Figure
8b). There does not appear to be a relationship between the binary and quantitative measures for
each network.

B
o
m

b
u
s
.r

u
d
e
ra

tu
s

C
o
lia

s
.c

ro
c
e
a

A
p
is

.m
e
lli

fe
ra

L
a
s
iu

s
.n

ig
e
r

C
a
lli

p
h
o
ra

.v
e
m

it
o
ri

a

M
u
s
c
a
.d

o
m

e
s
ti
c
a

L
u
c
ili

a
.s

e
ri

c
a
ta

E
ri

s
ta

lix
.t
e
n
a
x

H
a
lic

tu
s
.s

p
.

A
g
ro

ti
s
.i
p
s
ilo

n

A
n
o
th

o
m

y
ia

.p
lu

v
ia

lis

S
e
p
s
is

.t
h
o
ra

c
ic

a
Silene:vulgaris

Beta:vulgaris

Reseda:luteola

Chamomilla:suaveolens

Solidago:sempervivens

Daucus:carota

Crithmum:maritimum

Freesia:refracta

Lotus:corniculatus

Azorina:vidalii

7 30

8

9 11

42 21 23

141 22

102 8 11

83 93 12 87

11 12

47 21 9

9 9 89 37 13 23 98 51

A
p
is

.m
e
lli

fe
ra

L
a
s
iu

s
.n

ig
e
r

C
a
lli

p
h
o
ra

.v
e
m

it
o
ri

a

S
e
p
s
is

.t
h
o
ra

c
ic

a

L
u
c
ili

a
.s

e
ri

c
a
ta

E
ri

s
ta

lix
.t
e
n
a
x

H
a
lic

tu
s
.s

p
.

A
g
ro

ti
s
.i
p
s
ilo

n

M
u
s
c
a
.d

o
m

e
s
ti
c
a

A
n
o
th

o
m

y
ia

.p
lu

v
ia

lis

B
o
m

b
u
s
.r

u
d
e
ra

tu
s

C
o
lia

s
.c

ro
c
e
a

Freesia:refracta

Lotus:corniculatus

Chamomilla:suaveolens

Daucus:carota

Solidago:sempervivens

Silene:vulgaris

Beta:vulgaris

Crithmum:maritimum

Reseda:luteola

Azorina:vidalii

11 12

9 47 21

21 42 23

8 11 102

141 22

30 7

8

87 93 12 83

9 11

89 37 13 51 98 23 9 9

Figure 6: A visual comparison of the modular structures identified for the olesen2002flores dataset of
plant-pollinator visitations as a (a) binary (QB = 0.444 , 4 modules,Qnorm

B = 0.625) and (b) quantitative
(Qw = 0.497 , 5 modules, Qnorm

W = 0.625) network. Modules are identified in red. The normalised
mutual information shared between these two modular compositions is NMI = 0.619 indicating a
qualitative difference in the revealed modular structure.
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Figure 8: (a) The greatest modularity scores (QB and QW ) for each network and their corresponding
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using the partitions with greatest modularity scores plotted against their corresponding realised mod-
ularity scores. Each red line joins together the binary and quantitative scores of the same network.
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Discussion

I tested the efficacy of three algorithms maximising Dormann and Strauss’s weighted version of Bar-
ber’s bipartite modularity in plant-pollinator networks. One of the major results from this paper is that
different modular structures were found for each of the binary and weighted representations of plant-
pollinator networks. In binary networks modules are formed by attempting to maximise the density of
edges; whilst in quantitative networks modules are formed that maximise the density of edge weights.
In the former, strongly interacting nodes are just as important as nodes that only rarely interact; whilst
in the latter modules are likely to form around the strongest node-node interactions. It is unclear to me
how to interpret these network structural differences, but I hope that presenting this data will facilitate
discussion to understand what these differences mean. Binary and weighted plant-pollinator modular
structures for example may both provide useful information that can be used to inform conservation
policy.

It was also possible to compare and evaulate the performance of each of the three algorithms. LPAwb+
and DIRTLPAwb+ gave more consistent modularity scores than those found by QuanBiMo across the
test networks. The robustness of modularity maximisation algorithms is important when considering
the reproducibility of results and how many times a community detection algorithm should be applied
to be able to report a representative value for the maximum modularity of a network. QuanBiMo
struggled to report “good” modularity scores in the larger datasets. All three algorithms were able to
detect greater modularity than previously reported (Figure 6 in [10]) and were generally performed
well on the binary and quantitative test networks (a binary network can be seen as a special case of a
quantitative network). But, QuanBiMo has the potential to fall into below par solutions and there is no
diagnostic to show when this occurs. There is no guarantee that the greatest possible modularity was
found in any of the test networks here; indeed maximising bipartite modularity is an NP-hard problem
[37] and it may be difficult to find an algorithm which performs well on this problem for any possible
network. While LPAwb+ was not able to maximise modularity so well as DIRTLPAwb+ or QuanBiMo
on the majority of datasets (though the modularity found was near the maximal value found here), its
fast performance makes it an ideal algorithm for exploratory research and for investigating modularity
in larger networks, where parallelisation of the algorithm [13] may become useful.

The QuanBiMo algorithm takes two input values; the number of algorithmic steps that should be per-
formed to attempt to find greater modularity than the current partitions modularity; and the tolerance
threshold for greater modularity scores. Clearly the default values were not appropriate for some of
the networks assessed here; where much greater modularity was detected by the new algorithms.
However, there is no diagnostic to tell that QuanBiMo has returned a sub-par modularity value without
comparisons (which may be a lengthy process); or what suitable input parameters may be for a partic-
ular network. There is a strong tradeoff between computational effort and the accuracy of the returned
modularity. On the other hand LPAwb+ takes no input parameters and was able to quickly find mod-
ularity scores near to the consensus maximum modularity. DIRTLPAwb+ has two input parameters;
the minimum number of modules to search for and the number of times that LPAwb+ should be ini-
tialised for each module number. By running the LPAwb+ algorithm multiple times with different initial
module labels DIRTLPAwb+ is able to explore more of the modularity landscape than LPAwb+, which
allowed it to find partitions with greater modularity. Unlike LPAwb+ and QuanBiMo, DIRTLPAwb+ is
allowed multiple attempts to climb the modularity landscape, from many different initial points within
the modularity landscape. Additionally and unlike QuanBiMo, the parameters used by DIRTLPAwb+
have physical meaning in the context of the network – and the time complexity of this algorithm can
be estimated from the number of calls that will be made to the LPAwb+ algorithm (as LPAb+’s time
complexity is known [13]).

There are four challenges to address when attempting to maximise modularity [38] which are also
relevant to weighted modularity. Any modularity maximisation algorithm only uses information within
the incidence matrix and is thus agnostic to hierarchies within the dataset - the algorithm will find
communities at the resolution that has the greatest modularity it can compute; which may be different
to the resolution which corresponds best with any additional information known about the network.
This is further complicated as several hierarchical levels may exist within an individual network. Some
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work has started to address this problem in terms of visualising the network as a multiscale structure
[39, 15, 10], but this requires finding a suitable starting resolution. As found with QuanBiMo, the
ability of algorithms to maximise modularity can be highly dependent on network properties such as
size. Finally it is recognised that the modularity landscape is “glassy” - there are many local modularity
maxima; but detecting the global peak is extremely difficult and finding an algorithm that can capably
traverse this “glassy” landscape is a challenge.

A further challenge will be to find appropriate null models to test weighted modularity against in order to
standardise the effect size of modularity in different networks [10]. In principle it would be good to test
against a null ensemble in which both the allowed interactions and the strength of these interactions
are allowed to vary. However, in this paper I have only focussed on the optimisation of weighted
modularity.

Another limitation of the weighted modularity definition explored here is that it is only valid on networks
where all connections are positive. However, methods have been created to search for modules in
weighted networks with positive and negative link strengths in unipartite networks that could easily be
extended for bipartite networks [40].

I focussed on a specific definition of modularity in this paper - but note that others do exist [8, 41].
Thébault [9] compared two binary bipartite modularity based measures that have been applied in
ecology and concluded that different forms of modularity may be useful in different contexts; but that
the form of modularity used here [7, 10] corresponded well with that for unipartite networks [6, 11] -
and is well suited for identifying densely connected modules. Other modularity measures [8, 41] do
not identify joint communities made of both types of nodes – but rather identify communities within
each type of node, though neither of these approaches has yet been extended to weighted networks
to my knowledge.

The major advantage in a definition of weighted modularity is that it allows for much more information
about a network to be used to detect communities. Both binary and weighted measurements contain
different information about a network and may be useful - though I expect weighted measurements
may in general contain more relevance for the analysis of real world networks – the strength of in-
teractions is undoubtedly an important component of network structure. Other modularity definitions
and their weighted extensions are also in need of further investigation to consider communities within
each type of node and how these may overlap with the joint communities considered here.

Additionally I looked at two alternative ways of reporting modularity; normalised modularity and re-
alised modularity. Normalised modularity measures the strength of assortative mixing and is a useful
network index that can be used as a comparison indicator across different network studies. Modular-
ity by itself is often used as a network indicator - but this is not appropriate when comparing different
networks whose theoretical modularity maximums may differ. I find normalised modularity is strongly
correlated with the proportion of within module interactions (realised modularity) which is an intuitive
way for understanding modularity. I recommend future studies investigating modularity to report one
or both of these measures.

Conclusions

Real world networks are not formed of binary interactions. I encourage researchers to apply weighted
modularity measures to their datasets and evaluate the community partitions that are identified.

LPAwb+ is an algorithm that would be well suited for exploratory analysis and use on large networks
- as it is fast and, whilst it did not return the best modularity values of the methods tested here, the so-
lutions it did find were consistently high. Care has to be taken with both QuanBiMo and DIRTLPAwb+
in setting appropriate input parameter settings such that the analysis is not computationally infeasi-
ble. I would recommend using DIRTLPAwb+ over QuanBiMo; as DIRTLPAwb+ has more meaningful
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input parameters, can perform no worse than LPAwb+ and its performance was less variable than
QuanBiMo on the networks tested in this study.

I have made the code for the LPAwb+ and DIRTLPAwb+ algorithms; as well as the analysis performed
in this paper available online [36] to allow researchers to replicate my findings and encourage those
with access to potentially interesting weighted bipartite datasets to analyse them using these methods.
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