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1. Notation

{an}

x € RP
e ()
[T f()

diag(ajl, cee

I(-)

ox

a:I:N)

Same as {an}fj:1 and {ai,...,an} — denotes a set of sequence
D-dimensional real-valued vector.

Shorthand for > | f(-) (for an arbitrary index letter).
Shorthand for [TX_; f(-) (for an arbitrary index letter).
Diagonal matrix formed from the elements z1,...,zxy.
Indicator function, equal to 1 if the argument is true, O otherwise.
Dirac measure on a set X. Defined for a given x € X and any
measurable set A C X by 0,(A4) =0if x ¢ A and 1 if z € A.
Dirac measure (above).

Indicator, same as [(z = y).

Natural numbers, i.e. positive integers, {1,2,3,...}

Natural numbers including zero, {0,1,2,...}



2. Basics

2.1. Probability distributions
Summarised in Table 2.1

2.2. Directed graphical models
2.3. Undirected graphical models

2.4. Gaussian distribution

The density of x ~ NV (u, 2),x € R is
1

) = e 5= ) (2.1)
— (2m) PRI exp [ 5 x— TR k- ) (2.2)

2.4.1. Linear Gaussian model

Given the marginal and conditional distributions to be

p(x) = N(x; 1, A7) (2.3)
p(y | x) =N(y;Ax+b, L")

the marginal distribution of y and the conditional distribution of x given y are given by

ply) =N (y; Ap+b L7+ AA‘lAT) (2.5)
px|y) =N (X; DY {ATL(y —b)+ Au} , 2) (2.6)
where B
p g (A + ATLA) (2.7)
Why it works

2.4.2. Joint Gaussians
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3. Bayesian parameter estimation

Given a set of data D = {x,,}, we impose a probability distribution f with parameters
0, which we call the model parameters, on each data point, x,, ~ f(0),n=1,..., N, so
that the likelihood becomes p(D | ) = [],, f(xn | ). We also impose a distribution g
on 6 with parameters a which we call the hyperparameters. We call this distribution
the prior distribution over 8. Bayesian parameter estimation evaluates the posterior
distribution, p(@ | D), and the posterior predictive distribution, p(x | D), where X is a
new data point we want to predict.

When the prior g(0 | a) is a conjugate prior for a given likelihood distribution f(- | €),
the posterior has the same distribution as g, just with different parameters. We call these
updated hyperparameters and denote them by adding an apostrophe: /. In other words,
the posterior becomes g(0 | @’). Table 3 summarises the quantities of interest for several
conjugate pairs, followed by the derivations.

3.1. Beta-Bernoulli model
D = {x,, : o ~ Ber(0)},0 ~ Beta(a, ).
Likelihood.
p(D [ 6) = 6™ (1 —6)™
where Ny = 3, I(z, = 1) and No = 32, I(zn = 0).

Posterior.

p(6 [ D) o< p(D | 0)p(0)
o N1 (1 — g)Noga—1(1 — 9)P!
— 9a+N1—1(1 . 9)B+N0—1

o« Beta(f | « + Ny, 5 + No)
Posterior predictive.

p(z,0 | D)do

—

p(z |0, D)p(0 | D)do
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= [ p(@ 00| D)o
. /e 6 Beta(0, o/, 8') df

= IEGNBeta(o/ B [9]

al

Oé,—‘rﬁl

5 o
—> I ~ Ber <a’+ﬁ’>

3.2. Beta-Binomial model
D = {zy : &, ~ Bin(T,, 0)} for some fixed total counts {T,,}, 6 ~ Beta(a, ).
Likelihood.
p(D|0) = HBin(a:n | Ty, 0)
o [ (1 — )"

= 020 (1 — §)2n Tnmn
=0°(1—-0)""
x Bin(x | T, 6)

where x =3 zpand T'= 3, T,.

Posterior.

p(0 | D) o< p(D | 0)p(6)
= Bin(z | T, 0) Beta(d | o, )
x 07(1 — 0)7 91 (1 — )P
— QOH‘x_l(l — 0)B+T—$—1

x Beta(0 | a4z, +T —x)

= Beta (9 |+, B+ (T~ :cn))

Posterior predictive. (New data point # for some fixed total count T').
p(@ | D7) = [ p(a.61D.T)df
0

— [ p(@|6.D.T)p(0 | D.T)do
0

11



Bin(7
K%)efu—a)f—fl [ L prra g1 ag

B(o/, B')
T\ Y [ aiarayy T
(~>B(o/,ﬂ')/99 (1-0) a6
_(T\ B« +&8 +T )
“\z B(o/, 3')
= BetaBin(i | T, o/, 8')

where B(a, ) is the normalisation constant for a Beta distribution, Beta(c, ), which

is [z Y1 —2)’"1dx or 72(22556))

3.3. Poisson-Gamma model
D = {xy : xy ~ Poi(\)}, A ~ Gamma(a, ().
Likelihood.

p(D | A) =[] Poile, | A)

Posterior.
p(A | D) ocp(D | A)p(N)
= (H Poi(z,, | )\)) Gamma(A | a, f)

o< [H fr: exp(—/\)] {)\“_1 exp(—/\ﬁ)}

n n

ox A®F 2L exp(—A(8 + N))

o Gamma, (Ma—i—Z:vn,ﬁ—FN)

Posterior predictive.

p(@ | D) = | p(&,A|D)dA

S—

p(Z | A, D)p(A | D)dA

12



= [ p(@ | Vp(r | D) ax
- /)\Poi(f | A) Gamma(A | o, ) dA

\® 1 ,
_/Ai!exp(—)\)G(a/B/)/\a ~Loxp(—B'A) dA

= # z4+a’'—1 _ /
T #G(,B) /AA e exp(—A(8 + 1)) dA

B G +x,8+1)
ZIG(o, B
O/‘i’fi') B/a

/

- Fa:(n!r(o/) (B + 1)o'+E | ~
S (-w) (7))

where G(a, ) is the normalisation constant for a Gamma distribution, Gamma(a, 3),

Lo _ r
which is [, 1 exp(—Bz)dz or 6(3)

3.4. Dirichlet-Categorical model
D = {z, : z, ~ Cat(0),0 € RE}, 6 ~ Dir(a), o € RE.
Likelihood.

p(D16)=]]06:"
k

where ni =Y, I(z, = k).

Posterior.

p(6 | D) < p(D | 0)p(6)
=[]0+ Dir(6 | @)

k

< T10 T
k k

= [Tope+mt
k

o« Dir (0 | a+(n17---,”K)T)

13



Posterior predictive.

p(z | D) p(z,6 | D)de

I
s~

(i | 6,D)p(6 | D) do

s

p(z | 8)p(6 | D) deo

I
s~

— /9 Cat(7 | 0) Dir(0 | o)
_ / 0: Dir(0 | o) d0
7]

= EgDir(ar)[0z]
o

>k a;c

Evidence.
_p(D]6)p(6)
PP)=" 6] D)
(L0 0] o)
Dir (0 | a + (n1,...,nx)7)

e ] (e
F(NJFZk k) (Hk 9?k+nk*1)

[, T(er+nk)
L'(N + g o) I, Tow) .

3.5. Dirichlet-Multinomial model
D= {xn i Xy, ~ Mult(7),,0),%x,,0 € RK} for fixed total counts {7, }; @ ~ Dir(a), @ €
RE.

Likelihood.
p(D|0)= HMult(xn | 10, 0)

x ﬂ (670

— pm nKg
— g

o Mult(x | T, 0)

where ng, = >, o,k = 1,..., K are the total counts for the side £ of the die, x =
YonXn,and T'=3" T,

14



Posterior.
p(0 | D) x p(D | 0)p(6)
= Mult(x | T7,0) Dir(0 | )
oc (67" 0) (65705
— 9?1+OA1*1 . QHKKJrOAK*l

x Dir (0 | a + x)
= Dir (0 | o + an> (3.2)

Posterior predictive. (New data point % for a given total count T = 37, &).
p(%|D) = [ p(x,6|D,T)d8
6
— [ p(x16.D.T)p(6| D, 7)o
6

= [ px 0. T)p(6 | D)o

_ / Mult(% | T,60) Dir(6 | ) d6

Hx 1 aj—1
- ln ot 1 |y 1147 0
B 1 o +Tp—1
= Hk w1 Dled) /01'[9 de
o D(a' +%)
CIL#!  D()
_ T e T + @) TSk o)
[ @kt TOCp o +2e) 11 T(ag)
_ T+ T(Sa) HF(%Jri’k)
LT+ 1 (T+Spap) % Tlok)
= DirMult(x | o/, T)

where D(a) is the normalisation constant for the Dirichlet distribution, Dir(e), which

. ap— (o)
is [o TTp " Ydx or %

15



3.6. Normal-Normal model

3.7. Normal-Inverse gamma model

3.8. Normal-Normal inverse gamma model

3.9. Multivariate normal-Multivariate normal model
3.10. Multivariate normal-Inverse Wishart model

3.11. Multivariate normal-Normal inverse Wishart model

16



4. Advanced models

4.1. Linear regression

We have training data {xn e RP= y, € R}

RP which gives us the features ¢, = ¢(x,),n = 1,...,N. We also group the vari-
ables into outputs y = [y1,...,yn]?, inputs X = [xi,...,xy]7 and features ® =
[@1,...,0N]T. We also collectively notate data D = {X,y}. The model is:

N
;2 mapping to feature space ¢ : RP+ —
n—

yn:WT(bn—l-e,n:l,...,N (4.1)
e ~N(0,0%)
i.e.
T 2 _
Yn ~N(w' ¢,,0°),n=1,...,N (4.3)

We can write the likelihood and prior as follows:
p(D|w) =[N | w'é,,0°)
= N(y | dw,o°T) (4.4)
p(w) = N(w | mg, Sp) (4.5)

4.1.1. Posterior

The posterior can be evaluated using the results from 2.4.1 with the following mappings:
X w,y—y pu—myA !l —S;,A—®b—0,L = %I toget

p(w | D) =N(w | my,Sy) (4.6)
1
my = Sy (Sglmo + 02<I>Ty> (4.7)
B 1
Sy =S, + ;@ch (4.8)

4.1.2. Posterior predictive

The posterior predictive for a new data point x* (¢* = ¢(x)) can be evaluated as

Py | D.x) = [ ply"sw | Dox) dw (+9)

17



= y* | w,D,x")p(w | D,x*)dw (4.10)
= y* | w,x")p(w | D)dw (4.11)

_ /N(y* | w¢*, 0?) N(w | my,Sy) (4.12)

Using the results from 2.4.1 with the following mappings: x — w | D,y — y* |
D,x*,up—>my, A 5 Sy, A= ¢, b0, L' = o2, we get

Py | Dx) =N (v | ¢ my, 0 + ¢* Sy o") (4.13)

4.1.3. Sequential learning

We can learn the posterior of w sequentially, i.e. by considering yesterday’s posterior to
be today’s prior, which turns out to be equivalent to learning in batch. We need to prove
that we get the same posterior for w in both cases for any number of old data points
N € Ny and any number of new data points to predict K € N. We introduce the notation
D = {(xi,9i),---,(x5,y5)},0 < i < j < N. Learning sequentially means treating

P (D(NH):(NJFK) ] W) as the likelihood, p (w | D1.n) as the prior, p (w | D(NH):(NJFK))

as the posterior and p (D( N4+1):(N+ K)) as the evidence. The posterior of w when learning
in batch can be expressed as

p (Wv Dl:(N+K)>
p (Dl:(N+K))
p(W | Drn)p(D1N)p (D(N+1):(N+K) \ W7D1:N)
P (DI:(N—i-K))

p(w|Din)p (D(N+1):(N+K) | W7D1:N>

p (W | Dl:(N+K)) =

p (D(N+1):(N+K) | Dl:N)
p(w|[Din)p (D(N+1):(N+K) | W)

p <D(N+1):(N+K))

which is in the same form as if w was learnt sequentially, i.e. W | Dy i1y, (v4K) Was
evaluated with the aforementioned modifications to the likelihood, prior and evidence.

4.1.4. Relationship to ML, MAP and least-squares estimation

Assume mgy = 0,Sy = o 'I. Then the log of the posterior becomes
Inp(w | D) = lnp(D | w) + Inp(w) + const.

202 Z wlp,)? —W w + const.

18



Therefore MAP estimation is equivalent to least-squares estimation with squared regu-
larisation term §||w||2. MLE arises when the prior is flat, i.e. & — 0, in which case it is
equivalent to least-squares estimation without regularisation.

4.2. Logistic regression

4.3. Mixture models

In mixture models, we have discrete latent states Z = {z,,z, € {1,...,K}},n=1,...,N
and observed states X = {xn, X, € RD} ,n=1,...,N. We set the priors and the class
conditional likelihoods to be p(z,) = Cat(w),® = (71,...,7x) and p(xy, | 2, = k;0) =
pr(xn | €). We can thus express the likelihood of the observed variables to be:

K
p(xn | 6) = Zp(xmzn =k;0)

T
I

p(Xn | zn = k; 0)p(zn =k | 0)

=

B
Il
—

Tkpk(Xn | 6) (4.14)

=

e
Il
—

We can also express the posterior probability that point n belongs to cluster k, or the
responsibility r,i(0) (often abbreviated as r,j) of cluster k for point n to be:

Tok(0) 2 p(z, = k | xp;0)
_ p(xn | Zn = k;e)p(zn =k | 0)
25:1 p(Xn | 20 = K;0)p(2n =K' | 0)

Evaluating the above is called soft clustering. Hard clustering finds the MAP estimate
as follows:

(4.15)

*
z, = argmaxTnk
k

= arg max {log p(xy, | zn = k;0) +log(z, =k | 0)} (4.16)
k

Unidentifiability refers to the fact that the posterior distribution for the parameter
p(0 | D) can be multimodal (with equal peaks) and hence cant find a unique ML/MAP
estimate.

We distinguish between two log likelihoods — log likelihood for the observed data,
denoted by ¢(€) and log likelihood for complete data, denoted by ¢.(0). These two
quantities can be expressed as:

£(0) =1logp(D | 6)
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n=1
N K
:log{H Zp(xmzn k|9)}
n=1 k=1

0:(8) = logp ({xXn, 20} | 0)
= IOng Xnsy Zn | 0)

= Zlogp(xn,zn | 0)

(4.17)

(4.18)

The log likelihood for observed data, £(8) can’t be guaranteed to be convex so it might
be intractable to find ML /MAP estimates. Alternatively, we just express these terms as

0(0) =logp(X | 0) and £.(0) =logp(X,Z | 9).

4.3.1. EM algorithm
Maximise the likelihood

Goal is to maximise

p(X]0)

Assume it’s easy to maximise the auxiliary function
Q (0, BOId) = IEz~~|x;ev°1d [£c(0)]
w.r.t. 8. Note that this function can be rewritten as either
o) (0,001@‘) =S (z | X;oold) Inp(X,Z | 6)
Z
or

Q(0,0°) =By _ |y 00 Inp (X, Z | 0)]
=Ey . xo [Z Inp (X, 2, | 9)]
= ZE ~ o [I0D(Xn, 20 | O)]
= ZZ}) (20 = & | %0 0°9) I p(x, 20 = o | O)
= ZZ% ( )1n (mp(Xn | 20 = k3 0))
= ernk (6°') (7 + np(xc, | 2 = 3 6))
w
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(4.20)

(4.21)
(4.22)
(4.23)
(4.24)
(4.25)

(4.26)



We can express Inp(X | 0) as

Inp(X | 0) = L(g,0) +KL(q || p) (4.27)
where
_ p(X,Z|0)
L(q,0) = zzjq(z)l @) (4.28)
_ L PZ]X.6)
KL(q || p) = ijq(z)l @) (4.29)
because

RHS = £L(q,0) + KL(q || p)

X,7Z |80 7 |X,0
= zzzq(Z) lnpi< «Z) ) —zZ:q(Z) lnp( q‘(Z) )
B np(X7 Z|0)
=2 12 71X )
=Y q(Z)Inp(X|0)

Z
—lnp(X | 6)
= LHS

The actual algorithm is as follows

Algorithm 1 EM algorithm for maximising the likelihood

1: Initialise ™",

2: repeat

3. Gold - @rew

4 E step: Set ¢(Z) =p (Z | X, BOId).

5: M step: Hold ¢(Z) fixed and set 8" = arg maxgy Q (0, 0°ld).
6: until convergence.

E step. Hold 6°¢, maximise £ (q, 001(1) w.r.t. . Since the quantity Inp(X | 6) in

(4.27) is constant w.r.t. ¢, we can maximise £ (q, BOId) by minimising KL(q || p). This
can be done by setting the KL to 0 by setting ¢(Z) = p(Z | X; 6°'9).

M step. Hold ¢(Z) = p(Z | X;6°'9) fixed, maximise £ (q,0) w.r.t. 8 to get 6"V, We
can rewrite £ (q, 0) as

_ (X7 6)
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Z JInp(X,Z | 0) Zq )Ing(Z

Z
Sp (z | X; eold) Inp(X,Z | 6) Zp(z | X;oold) 1np(z | X;eold)
VA Z

=0 (0, 9°1d> + constant w.r.t. 0

from which we can see that we should maximise Q (0, 9°ld). In both steps, the value of
L(q,0) increases.

Maximising the posterior

Goal is to maximise
p(0 | X)

Assume it’s easy to maximise
Q(0,6°) +np(6) (4.30)

w.r.t. 6.
We can express Inp(0 | X) as
Inp(@|X)=Inp(X |6)+1Inp(@) — Inp(X)
= L(q,0) + KL(q || p) + Inp(0) — Inp(X) (4.31)

E step. Here, we perform the same thing as in maximising the likelihood, with the
same reasons.

M step. Hold ¢(Z) = p(Z | X;0°9) fixed, maximise £ (¢,0) + Inp(0) w.r.t. 0 to get
0"". We can rewrite £ (q,0) + Inp(0) as

L(q,0)+1np0) =Q (0, BOId) + Inp(@) + constant w.r.t. 6

from which we can see that we should maximise Q (0, 0°ld> +Inp(0). In both steps, the

value of L(g,0) + In p(0) increases.
The actual algorithm is as follows

Algorithm 2 EM algorithm for maximising the posterior

. Initialise @™°V.

1

2: repeat

3. oold - @rew
4

E step: Set ¢(Z) =p (Z | X, HOId).
M step: Hold ¢(Z) fixed and set 8"°" = arg maxy {Q (0, GOId) + ln(O)}.

: until convergence.

S o
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4.4. Gaussian mixture model

Gaussian mixture model, a.k.a. GMM, or mixture of Gaussians is a mixture model

where
a € (0,00)K (4.32)
7 | o ~ Dir(ax) (4.33)
i ’ m(),VO NN(mQ,Vo),k:L...,K (434)
3k | So, 10 ~ Inverse-Wishart(So, ),k =1,..., K (4.35)
Xn | 20,0 ~ N (p,,,%2,),n=1,...,N (4.36)
We adopt the following grouping of random variables:
gO = (m07V07SO7V0) (437)
Hk = (uk,zk),k:L...,K (438)
0= (91,...,0[{). (439)
The graphical model can be seen in Figure 4.4 below.
(04
Yo
!
1 K
N
Figure 4.1.: Graphical model for the Gaussian mixture model.
4.4.1. Gibbs sampling for GMMs
4.4.2. Collapsed Gibbs sampling for GMMs
4.4.3. EM algorithm for GMM
Algorithm 3 EM algorithm for GMM
1: Initialise 8" = ({mpV, 2V, X3V}, k= 1,..., K).
2: repeat
3. eold  @rew
4: Setrnk:p(zn:k|xn;0°1d) fork=1,...,K,n=1,...,N. > E step
5: Set > M step

new __ Zn T'nk
ﬂ-k = 7N
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new __ Zn TnkXn
b Zn T'nk
ynew Y on Tk (Xn — ) (Xn — pg,
Zn T'nk

)T

fork=1,...,K.
6: until convergence.

The analysis of the algorithm follows.

E step. We can express ¢(Z = K) = p(Z = K | X,0°) where K = (ky,...,ky), kn €
{1,....,K} forn=1,...,N as

p(Z =K |X,6° =Tp (Zn — k| %0 901(1)
= Hrnkn (901d>

Therefore, in the E step, we set

Tnky, (9°1d> =p (zn =kn | xn; HOId) (4.40)
forn = 1,..., N for all K and hold it fixed in the M step. This is effectively holding
Tnk (0°ld> (which we will abbreviate as 7, in this section) fixed for n = 1,..., N and
k=1,.. . K.

M step. We want to find "V = argmaxy Q (9, 0°ld), where
Q(0,60°%) = >3 vk (g + Inp(xy, | 2 = k3 6))
n k

To maximise this expression, we use Langrange multipliers because we have a constraint
> Tk = 1. The Lagrangian is

Lo(6,0) = Q(6,6°9) + (1 - Zwk>
k

Now, we find the derivatives and set them to zero.

For mp,
0Lg 0 A ‘ '
omp  Omy {A (1_%:7”) +Zn:%:%lmj}
— _A_‘_m

Tk
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Setting this to zero, we get
Zn T'nk
A

T =

but since >, T = 1, we have >, w =1, hence \=3>, > 1 7mhk =>.,1 = N. Hence

z:nrnk
==n 4.41
SN (441)
fork=1,..., K.

For puy,,

grad, Lo = grad,

Zrm (In7j +Inp(xy, | 2n =7;0)) + A (1—27@-)}
j

d ZT kln/\f Xn‘uk,zk)}

1>

— grad,, {;Zrmln/\/(xnuj,zj)}
i
i

1 _
5 e | (27) P2 exp (5 x n—mTzkl(xn—uk))}}

grad,, {Z Tk [—2 In [2g| - §(Xn — ) (% — Nk)] }
= - Zrnkzizl(xn — )

Setting this to zero, we get

1y = Ezn ”:“’k‘" (4.42)
n ' n
fork=1,..., K.
For 32,
grads, Lo = grads, Zrnk D) In | 3] — §(Xn = k) By (Xn — )
n
1 _ _ _
= ) Z T'nk [EkT - EkT(Xn — pgp) (X0 — Hk)TEk T}
n
1 _
= —52 ! Zrnk [I — (%0 — ) (Xn — Hk)Tzk 1}
n
Setting this to zero, we get

Zn Tnk
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4.5. Latent Dirichlet allocation

The model is described as follows:

a € (0,00)7, usually = al (4.44)

~ € (0,00)", usually = ~1 (4.45)

7y | a ~Dir(a),d=1,...,D (4.46)

B; |~ ~ Dir(y),t=1,...,T (4.47)

Znd | {ms} ~ Cat(mwg),n=1,...,Ng,d=1,...,D (4.48)
Wna | znag (B} ~ Cat (B, ,),n=1,...,Na,d=1,....D. (4.49)

where we use the following indexing scheme:
e d or ¢ for document,
e n or 7 for word in a document,
e ¢ or 7 for topic.
The graphical model can be seen in Figure 4.5 below.

o -————— - - - hyperparameter for mq.

G:D' ********* - - R”, distribution of topics for document d.

@ ,,,,,, ——d-—e{1,.., T}, topic for word w, 4.

T - -+--€{1,..,W}, n-th word in document d.
n=1,..,Ng
d=1,..,D
@D’ *********** € R, distribution of words for topic t.
t=1,..,T
Y- hyperparameter for 3,.

Figure 4.2.: Graphical model for Latent Dirichlet allocation.

The joint probability is

p({ma} {zna}t {wna} {Be} | @, ) (4.50)
= (Totrms 1) (TTTT e 10 ) (TTTEot0 5000800 ) (L0581 )
d n d n d t
(4.51)
= (H Dir(mg | a)) (HHCat(zmd | wq) Cat(w,q | ,and)> (H Dir(5, | fy))
d n d t
(4.52)
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4.5.1. Gibbs sampling for LDA

Although we might only be interested in the quantity {2, 4} | {wys}; @, 7, the vanilla
Gibbs sampler will give us samples from the extended state {2, 4}, {ma}, {8;} | {wns};, v
from which if we discard {my} and {B,}, we get the samples we are interested in.

Word topics z, 4
b (Zn,d =t | {775}7 {wn,5}7 {ﬁt}7 {Z'r],5} \ Zn,8s a77)

x H H Cat (25 | w5) Cat (wmg ] BZM) (proportional to the joint)
n 6

ox Cat (2,4 | 7q) Cat (wn,d | 8., d) (discard terms which don’t contain z, q)

o Cat (t | wq) Cat (wn,a | By)
X Tt Bt w, 4 (4.53)

Document specific parameters 7,

p(mq ‘ {7"6} \ 74, {Zn,6}7 {wn,cS}v {ﬁt}? a,)
x <H Dir(ms | a)) <HHCat (2,5 | 7\'5))
) n 9

x Dir(my | o) H Cat (24 | 7q)
"

o Dir (mq | @ + (a1, €ar)”) (4.54)
where

a0 =) Uzpa=1) (4.55)
n

= number of words of topic ¢ in document d

Topic specific parameters 3,

p (B | {ma}, {zna}, {wna} {B,}\ Bis )
o (HHCat (wns | ﬂzm)) (HDier |7>>
n 4 T
x Dir(B, |7) ] Cat(wy,s | By)

0,0
Zn,5=1

o Dir (B |7+ (Cuas - ) (4.56)
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where

Cw,t = Z H(wn,6 = w)

n,6
Zn,6=1

- Zﬂ(wnﬁ = w, 2y, = 1) (4.57)
n,0
= number words w that are assigned to topic ¢

4.5.2. Collapsed Gibbs sampling for LDA

In the Collapsed Gibbs sampler for LDA, we sample directly from {2, q} | {wys}; o, .
We need to marginalise out {8,}, {m4} from the original joint distribution.

Marginalising out {3,}, {74}

p({zna} {wna} | @)

= /{ﬂd} /{Bt} (1;[ Dir (7 | a)) (l;[l;[Cat(zmd | q) Cat(w,q | 'an,d)>

(H Dir(8, | 7)) d{B,}d{ma}

= / (H Dir(mg | a)) (HHCat(zn,d ! Wd))
{ma} 4 n d

/{B (H Dir(B; | 7v) ) <HHCat(wn,d | ﬂzn’d)> d{B;}
¢} n d

d{ma}

T

(see next two subsections)

) e (e e

(4.58)
The {3,} integral
/{B (H Dir(8; | v ) <HHCat(wn7d | ﬁzn’d>> d{B,} (integrals separable)
o} n d
= 1:[ /ﬂt Dir(B, | v) Hd Cat(wp,q | ﬁzn,d)dﬁt (integrand is prior multiplied by likelihood)
Zn.q=t
= H Il‘ﬂ((%«?_zwz):gfyuwr; %z ;: é;;? (hence the integral is the evidence (see (3.1)))
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HF W'y H F(’YJert)
: Ct+Wv) rm”

() 2 HH o

where
Cut = Z H(wn,5 = w)
7,0
2y, 5=t
= Z]I(wmg =w,zys =1)
7,0
= number words w that are assigned to topic ¢
and

Ct = ZH(Zmd = t)
n,d

(assume v = 1)

(4.59)

(4.60)

(same as in (4.57))

(4.61)

= number of words that are assigned the topic t.

The {m,} integral

/{ , (H Dir(my | ) <HHCat(zn7d | 7Td)> d{my}
Ty okt

= /{ }H ((Dir(ﬂ'd | @) (H Cat(zn,q | 7Td)>> d{my4} (integrals separable)
Tds g n

= H Dll" (mq | @) HCat (2n,d | mq)dmy

H (Ztoét)l_[t (Oét+fd,t)
['(Na+ 32 o) [T, T ()
[ (Ta)[], T (a+ &)
1;[ ['(Ng+To)T ()"
T

F [LT (a4 &)
) H tNdJrTOé;

where

gd,t = ZH(Zn,d = t)
n

= number of words of topic ¢t in document d

and

Ny = number of words in document d
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(integrand is prior multiplied by likelihood)
(hence the integral is the evidence (see (3.1)

(assume a = 1)

(4.62)

(4.63)

(same as in (4.55))

(from the model (Fig. 4.5)) (4.64)



Gibbs updates: word topics z, 4

We know that the posterior density p ({znq} | {wn,a}; @, ) is proportional to the joint
p({zn,d}, {wna} | @, 7). Hence we can write

p({zn,d} | {wn,d}§ 0(,"/) X

TWAN 1 [T T (v + Cut) | [(TT)\? 1 TL T (a + ar)
(rw)W) TtI T (C;+ Wr) ] l(r(aﬁ) 1;[ Ft(NcH-TOz)
(4.65)

Piggybacking on this result, we express p ({25} \ Zn,d | {wn,a}; &, 7). We pretend that
{20} \ 2n.a is {zn,a}:

p({zns} \ Zna | {wna}; o)

T - D~ -
N (F(W‘fy)) 1 [, T (7 + Cw,t) (F(T‘a)) 10 [T (a + §d,t) (4.66)
INCOL T (C; + W—’y) L(a)T” o T (Nd— + T—a) ’
where
W- =W (4.67)
T =T (4.68)
D =D (4.69)
Cor= >, I(wys=w) (4.70)
7,0
Zpn,6=t
(n,6)#(n,d)
_ Cw,t -1 if (wn,d7 Zn,d) = (w,t), (4 71)
Cuw,t otherwise. '
Cr= > Ilzs=t) (4.72)
6
(16)(n.d)
N =-1 ifze=t (4.73)
N otherwise. '
Se= > lzs=1) (4.74)
n
(n,6)#(n,d)
ot otherwise. '
Ns—1 ifd=d
Ny =47 : (4.76)
Ny otherwise.
Hence, if w := wy, 4,
P (zna =7 {256} \ 2nd {wns}; o, ) (4.77)
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p({znd} | {wysh; a,7)

p({zns} \ zna | {wys}; a,7)
(F(Ta))D I, I1, F(a+£d,t)]

(F(Wv))TH 1, T(v4Cuw.t)
LW t T(C+Wr) NOW I'(Ng+Ta)

r w,t | e ¢ i
Ht Hw (7+< ) Hd H ( +£d )

T(Crt W) I(Ny+Ta)

) bt | ()" bt
|

I(Cy +W—7) | (N +7- ag
)|

[Ht HMF(WC;,t): Hd T(o+e,
|

Ht 11 wF(“H-Cﬁ,z)_ Hd Ht INCERTR

T+ | | Dla+e,,) |

T'(Ci+Wr) T(Ng+Ta)
{Ht L(C;+Wr) I I(N, +Ta)
I'(v+¢rw) . I'(a+€d,7)

T(y+(rw—1) F(Oé‘f'fd,'r_l)
M(Cr+Wy)  T(Ng+Ta)
IN(Cr—1+W~x) TI'(Ng—1+Ta)
_ (’7 + C‘r,w - 1)(0& + ‘Sd,T - 1)
Wy +Cr—1)(Ng— 1+ Ta)
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4.6. Hidden Markov model
4.6.1. The model

4.6.2. Filtering

4.6.3. Smooting

4.6.4. Posterior sampling

4.7. State space models
4.7.1. The model

4.7.2. Filtering

4.7.3. Smoothing

4.7.4. Extended Kalman filter

4.8. Robotics

4.8.1. Localisation
4.8.2. Mapping
4.8.3. Simultaneous Localisation and Mapping (SLAM)

4.9. Kalman Filters

Figure 4.3.: Probabilistic Graphical Model for the Kalman Filter.

4.9.1. Linear Kalman Filter
The model is, for t =1,...,T":

x; = Aixi—1 + Boug + € e R”
Zy — CtXt + Dtut + 515 S R™
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e ~N(0,Q,) eR"
Oy ~ N(O, Rt) eR™
0, ={A;,B;,C;,D;,Q;, R}

The posteriors of interest are (we drop the conditional dependence on 6;’s):

p(x¢ | Z14-1, 1) = N (Xt | By, 2t|t—l>
Hyjp1 = Aepty g1 + Bruy
i1 = AtEtfl\tflA? +Q
p(xt | z1e, ure) = N (Xt | Fry|s Zt\t)
Hyje = M1 + Koy
2t|t = (I - KtCt)Eﬂt—l
ry =2z — (Cpyp—1 + Diwy)
K =3,,1C/ 8; !
S; = CZy_1Cf + Ry

Derivations
4.9.2. Extended Kalman Filter
The model is , fort =1,...,T:

Xp = g(X—1, W) + € e R"
z; = h(xy, w) + 0y e R™
€ ~N(0,Q,) cR"
o ~N(0,Ry) eR™

The posteriors of interest are (we drop the conditional dependence on 6;’s):

p(xt | Z14-1,ur) ® N (Xt | Hjg—15 Et\t—l)

Hije—1 = g(“tfl\tflvut)
Sie-1 ~ GeZ1-1Gf + Q;

p(xe | 2 wie) & N (x| g S

Hje & My + W (Zt —h(py_1, ut))
g~ By — WtStWtT

Note that we make two types of approximations: (1) we assume the posteriors are
Gaussians (which they are not) and (2) we calculate the moments using linearised ver-
sions of random variables of interest. We define previously undefined variables below.

33



Derivations
The derivation of the prediction equations is as follows:
Boje—1 = E[x¢ | z1:-1, w1 (4.108)
=E[g(xt—1,w) + € | Z14-1, U1 (4.109)
=E {g(“’t—nt—la W) + Ge(Xe—1 — py_qpp—1) + o+ € | 21, ul;t} (4.110)
We have linearised around p;_y,_; where Gy is the Jacobian of g(x,u) w.r.t. x evaluated
at phy -1

A 8g(x, u)

G = I (4.111)

X=Hi_q|p—1,U=Ut

ie. ag(x Y ¢ R"™" and the (i,7)" element is % Taking only the first two terms
Tj
of the Taylor expansion and continuing with the derivation:

M- = E [g(ll’tfl\tfla W) + Ge(Xe—1 — Py—1p—1) + € | Z1—1, ul:t} (4.112)
(4.113)
= g1 11, w) (4.114)

Similarly, the prediction equation for the covariance can be derived as follows:

-1 = var [X¢ | Z14-1, Ur] (4.115)
= var [g(xi—1,u) + € | Z1:—1, Ur] (4.116)
= var [g Poaje-1oW) + Ge(Xe—1 — py_qp1) + -+ € | Zl:tflvul:t] (4.117)
A var [g H_1)e— L) + Ge(xe—1 — g 1t— 1)+ €| Z1:-1, 01, t} (4.118)
(4.119)
= Gtzt—1|t—1GtT +Q; (4.120)
The derivation of the update equations is as follows:
pije = E [x¢ | Z1:¢, 0] (4.121)
: (4.122)
= -1+ Wi (Zt — h(py—, ut)) (4.123)
Xy = var [x; | 214, 1] (4.124)
=E [(um — )" (b — %) | 2121, um} (4.125)
(4.126)
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=1 — WS WY (4.127)
where

Wt = 2t|t71HtSt (4128)

We have linearised around p;,_; where H; is the Jacobian of h(x, u) w.r.t. x evaluated
at pryq:

oh(x,u)

H, 2 (4.130)
Ox X=Hi|g—1,U=Ut
ie. % € R™*™ and the (4, 7)™ element is 8%(;;’“)

4.9.3. Localisation

We introduce the map vector M which contains position and feature vectors of K land-
marks in our environment.

m;
M=| : (4.131)
my
where my, contains the location and features of the k™ landmark, my € R? and M €

RX4. In the localisation problem, we assume M is known and so the graphical model
looks as follows:

Figure 4.4.: Probabilistic Graphical Model for the Kalman Filter for Localisation.

The model can be described, for ¢t = 1,...,T, by the following equations:

Xt = g(xt—l, llt) + € (4132)
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Zy — h(Xt7 Uy, M) =+ 5t (4133)
e~ N(0,Q,) (4.134)
8, ~ N(0,Ry) (4.135)

This model almost exactly resembles the Extended Kalman filter. The update and
prediction equations only differ in that H; £ w instead of H; & % (evaluated

at X = py4_1). We need to characterise g and h to fully describe the EKF algorithm.
The transition model
The transition model is defined for the state

Iy
Xt = |Ys (4 136)
01

which contains the position and orientation of the vehicle (note the slightly overloaded
notation of x; and x;). The transition model is then described by

—;‘j—i sin(6;—1) + o% sin(0;—1 + wiAt)
g(x¢t—1,u) = x¢—1 4+ | ZEcos(bi—1) — 2 cos(Op—1 + wiAt) (4.137)
tht

where u; = (vt,wt)T contains translational and rotational velocities.

The observation model

The observation model is defined for the observation

Zt,1
Zt = | (4.138)
Zi,L
which contains L < K observations z; 1, ..., 2 corresponding to the L landmarks ob-

served (out of the total K landmarks) at time ¢. In the simplified case, z;, = (7, qbtj)T
contains the Fuclidean and angular distance from the landmark. We assume that we
know which one out of the K it is by introducing the correspondence variables c;, where
if ¢, = j € {1,..., K} then the i-th feature observed at t, z;,, corresponds to the
j-th landmark, m;. We assume that a landmark m; = (m;., mj,)? just contains the
position of the landmark in this simplified case. Hence we can write, given that ¢; ¢, = j,

0.2
=[]+ V) i
- lmy — (24, 50)" | N(0,02)
N Lu"ctan ((mj,y — yt)/(m]@ — xt)) _ et + N(O, 0_92{))‘| (4140)
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The observation model is then described by

e, , — (e, )l
arctan ((me, .y — ye)/(Me, 1.0 — 21)) — O

Hmct,f - (xtyyt)T”

h(xt7 ut7 M) = aI‘Ctan ((m%by _ yt)/(mct’bx _ .’Et)) _ 9t (4141)
||mCt’L - (':Utayt)TH
arctan ((me, g — 90)/(me, , o — 21)) = 00
and
R; = diag(c?, 035, 02 035) € R2Lx2L (4.142)

4.9.4. Mapping

In the mapping problem, we assume we don’t have the knowledge of the map M (de-
scribed in subsection 4.9.3), but know the vehicle states x1,...,x7 exactly. We want to
figure out M. The graphical model is as follows

e O €

Figure 4.5.: Probabilistic Graphical Model for the Kalman Filter for Mapping.

® @
® @
GO O (O

on the left, we shade x1,...,x7 and z1,...,z7 to signify that they are observed
variables. Note that since both the observation and the states are now observed, the
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directed edges between them are now redundant (but are left there for clarity). On the
right, we group the x’s and M together. We call these random variables, fort =1,...,T

. X
x{ = Lv}] (4.143)
Since these random variables are only “half-observed”, we don’t shade them.
The model can be described, for ¢t = 1,...,T, by the following equations:

x; =g (X1, w) + € (4.144)

z; = h*(x},w) + 6} (4.145)
We need to characterise g*(x*,u), €, h*(x*,u), and 8} to describe the EKF algorithm
fully.
The transition model

The transition model is described by

g (xi_ 1, u) = [1)\(}[] (4.146)
and
On><n OnXKd
= 4.147
Q [OKan Qt,M] ( )

where Q, js is the covariance for M at time ¢.

The observation model

The observation model is defined for the observation variable is the same as the one in
the Localisation case, described in the Subsubsection 4.9.3, in Equations (4.138) and
(4.140). The observation model is then

Ime, , — (@¢,y0)7 || |
arctan ((mcm,y - yt)/(mcm,z - xt)) — 0,

I, , = (22, 90) "

BTt 0e) = aretan (e, .y — 1)/ (me, 0 — 20)) — (4.148)
e, , — (@, 40)" |
|arctan ((mcm,y — )/ (Mey o — 1) ) — O
and
R, = diag(c},03,...,07,03) € R*2E (4.149)

Note that the observation model is very similar to the one in the Localisation case, the
only differences being grouping of x, M into x*.
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4.9.5. Simultaneous Localisation and Mapping (SLAM)

In the SLAM problem, we assume we don’t have the knowledge of neither the map
M, nor the vehicle states x1,...,xp. We want to figure out p(x;, M | z14,u;). The
graphical model is as follows

is equivalent to

© O (@

OO O (B0

is equivalent to ‘

Figure 4.6.: Probabilistic Graphical Model for the Kalman Filter for SLAM.

e

The graphical model is almost similar to the one in the case of mapping (Figure 4.5),
the only difference being that x1,...,xp are unobserved. We also group the x’s and M
together, fort =1,...,T":

x; = [1’\‘}[1 (4.150)

Similarly to the mapping case, the model can be described, for t = 1,...,T, by the
following equations:

x; =g (xj_1,ue) + € (4.151)
z: = h*(x;,us) + 0} (4.152)

We need to characterise g*(x*,u), €, h*(x*,u), and §; to describe the EKF algorithm
fully.
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The transition model
The transition model is defined for (part of) the state
Tt

Xt = Yt (4 153)
Ot

which contains the position and orientation of the vehicle (note the slightly overloaded
notation of x; and x4). The transition model is then described by

[~ sin(6;—1) + oL sin(f;—1 + wiAt)]
Zj—i cos(0y—1) — Z—tt cos(0i—1 + wiAt)
* " * tht
gh(x;_,u) = x5 + 0 (4.154)
L 0 i

where w; = (Ut,wt)T contains translational and rotational velocities. The zeros arise
because the map doesn’t change.

The observation model

The observation model is defined for the observation variable is the same as the one in
the Localisation case, described in the Subsubsection 4.9.3, in Equations (4.138) and
(4.140). The observation model is then

Hmct,l - (xta yt)TH
arctan ((mcm,y - yt)/(mct,l,m - $t)) — 0

I, , — (22, 90) 7|

B0 w) = arctan (me, .y — 1)/ (mey 0 — 22)) = b (4.155)
Hmct,L - (mtﬂ yt)TH
avctan (e, . — 90/ (mey .0 — ) — 60
and
R; = diag(c?, ai, ..,00,00) € R2Lx2L (4.156)

Note that the observation model is very similar to the one in the Localisation case, the
only differences being grouping of x, M into x*.
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4.10. Principal components analysis

4.10.1. Classical PCA

We have data points {Xn,Xn € RD} ,n=1,...,N. The goal is to project to a lower
dimensional space with dimension M, M < D, while maximising the variance to get data
points in the principal space, {zn, Zn € RM} ,n=1,...,N. Let the principal components

be {um, u,, € RP | |lu,|| = 1} ,m=1,..., M. The projected data can be expressed as

T

uj Xy,
Zp = :
ul,x,
:UTxn
forn=1,...,N where U = [uy,...,uy].

The total variance we are trying to maximise, i.e. the sum of variances along the
dimensions {u,,} is

M
V= Z var(dimension m)
=1

Mo
=2 N

=1

3

znm zm)Q

3
-

(4.157)
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(4.158)

3
I

(Where S i(xn —%)(%n — x)T> (4.159)
N

n=1

We want to maximise this with the constraint [|u,,| = 1,m = 1,..., M which is
equivalent to ul u,, = 1,m = 1,..., M. We use Lagrange multipliers X = (A1, ..., \y).
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Hence we need to maximise the following Lagrangian

M 1—ufu
L ug,...,uy) = Z ul Su,, + AT

m=1 1-— uﬂuM

We know that S is positive semi-definite because it is a covariance matrix for {x,}.
The term uZﬁLSum is convex w.r.t. u,, because the Hessian 28 is positive semi-definite.
Hence S"M_ u’ Su,, must be convex w.r.t. (ui,...,uy). Also, the second term in
the Lagrangian is convex w.r.t. the principal components. Hence, we can maximise the
Lagrangian by setting the gradients to zero:

gra = .
dyL=0 4.160
grad, £L=0m=1,....M (4.161)

From (4.160), we obtain ul u,, = 1,m =1,..., M. From (4.161), we obtain

grad, L =2Su, — 2\, (4.162)
— 0 (4.163)
= Su,, = A\pupy, (4.164)

Thus we can see that {u,,} should be selected to be the eigenvectors corresponding to
the eigenvalues {\,,} of S. If we premultiply (4.164) by u’., we get A, = u’, Su,, which
can be substituted back to total variance

from which we can see that to maximise, we set {\,,} to be the largest M eigenvalues
of S. The principal components {u,,} are the corresponding eigenvectors.

4.10.2. Probabilistic PCA

Following the mixture model, where Z = {zn,zn € RM}, n =1,...,N are the latent

variables and X = {xn, x, € RP }, n=1,..., N are the observed variables, probabilistic

PCA assumes RM is the lower-dimensional space we want to project our data in R” to.
We have the following assumptions:

p(z) = N(z;0,1)
p(x | 2) = N(x; Wz + p,0°1)

where 0,I, W, u, I all have the appropriate dimensions. Note that the model is param-
eterised by 8 = (W, p, 02). Following Subsection 2.4.1, we can express the remaining
marginal and conditional as

p(x) = N(x;p, C)
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p(z ] x) = N(zM "W’ (x — p), 0?M 1)
where
C=WWT 4+ 521
M = W'W + 521

MLE for probabilistic PCA

To find ML estimates for our model, we want to maximise the following likelihood
function:

N
p(D18) =[] p(xn | 6)

3
—_

[
=

N(Xn; M, C)
1

3
I

Maximising this w.r.t. the parameters W and o2, we get the following MLEs:

WL = Uy (LM - 021)1/ ‘R
1 D

2
= \;
oL D-M i:%:ﬂ Z

where R,R € RM*M RRT =1 is an arbitrary orthogonal matrix and

UM = [ul,...,uM]
LM = diag()\l, cee ,)\M)

where uy,...,up and Ay, ..., Ap are eigenvectors and eigenvalues of the data covariance
matrix S (defined below in (4.159)), sorted in descending order.

Other stuff to note

Alternative view. fdsaf a
Intuitive view. fsda
Redundancy in parameterisation. f ds

Computational complexity. fsdaf
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EM algorithm for probabilistic PCA
The EM algorithm to find MLE for probabilistic PCA is as follows

Algorithm 4 EM algorithm for probabilistic PCA
1: Initialise "% = (W™ (g%°V)2). Set pypp = X.

2: repeat
3 eold  @rew
4: Set > E step

E[Zn] _ (]_\/Iold)_1 (Wold)T (Xn o )2)

E [znzﬂ = (001(1)2 (M(’ld)il + Elz,) E[z,)"
where M = WI'W + 2L
5: Set > M step
-1
WHew — lZ(xn - X) E[zn}T] [ZE [znzﬂ]
newy2 _ 1 . new < 4.165
(0" = 2 on = %I = 2Elaal” (W) o = %) (4.165)

+ Tt (E |2,z | (W7 Whe)

6: until convergence.

Bayesian PCA

4.11. Factor analysis

4.12. Independent components analysis

44



5. Sampling algorithms

5.1. Introduction

Let p be a probability distribution with a pdf p(x),x € X (usually X = RP, D € N),

which we assume can be evaluated within a multiplicative factor (i.e. we can only

evaluate p*(x) = Zpp(x), where Z, = [, p*(x)dx). We want to achieve the following:

Problem 1 Generate samples {x(l), . ,X(R)}, R € N (we will use the shorthand notation
{x("} from now) from the probability distribution p.

Problem 2 Estimate the expectation of an arbitrary function f given x ~ p, Ex, [f(x)]
(we will use the shorthand notation E[f] from now).

5.2. Rejection sampling

Assume we can sample from a proposal distribution ¢ with a pdf ¢(x), which can be
evaluated within a multiplicative factor (i.e. we can only evaluate ¢*(x) = Z;q(x)). Also
assume we know the value of a constant ¢ such that

cq” (x) > p*(x) for all x (5.1)

The procedure that generates a sample x ~ p is described in Algorithm 5 below.

Algorithm 5 Rejection sampling

1: Generate x ~ q.
2: Generate u ~ Unif (0, cg*(x)).
3: If uw > p*(x) it is rejected, otherwise it is accepted.

5.2.1. Why it works?
Assume x € RP. Define sets X and X’ to be
X = {a ERM g € R gy € [0,cq*(a)]} (5.2)

X = {a € RdJrl 1014 € Rdv Qg1 € [O)p*(a)]} (53)

Note that X’ C X.
By definition, X is the support of (x,u). The probability of (x,u) can be expressed
as

Pr(x,u) = Pr(x) Pr(u) (5.4)
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i (5.5)
— ¢(x) CZ;](X) (5.6)
_ C;q (5.7)

which is constant w.r.t. (x,u), i.e.
(%, 1) ~ Unif(¥X) (5.8)

Let (x/,u’) be the value of (x,u) that gets accepted. By definition, X’ is the support
of (x',u):

if X’
oy = o) b € (5.9
nothing otherwise.
The probability of (x’,u’) can be expressed as
P if X’
PI'(X,,U/) — { I'(X, U) 1 (X,U) € (510)
0 otherwise.
which means
(x',u') ~ Unif(X") (5.11)
Working backwards
Pr(x’,u’)
Pr(x') = —1 -~ 12
() = p (5.12)
1
X ———~ 5.13
p () 19
o p*(x') (5.14)

Hence the accepted x, x" is ~ p.

5.3. Importance sampling

Assume we can sample from a proposal distribution ¢ with a pdf g(x), which can be
evaluated within a multiplicative factor (i.e. we can only evaluate ¢*(x) = Z,¢(x)). To
solve problem 2, we follow Algorithm 6 below.

Algorithm 6 Importance sampling

1: Generate samples from ¢, {x(")}.

. . *(x()
2: Calculate importance weights w, = ‘Z - gm;.
(r)
3y = W is the estimator of E[f].

46



5.3.1. Convergence of estimator as R increases

We want to prove that if ¢(x) is non-zero for all x where p(x) is non-zero, the estimator
¥ converges to E[f], as R increases. We consider the the expectations of the numerator

and denominator separately:

E,[numer] [Z wy f(x ]
-XE, 0 f(x0)]
- S, (2 f(x<’“>>]
=35, -%ﬂx(”)l
_ 2 Z / P (1)) dx(")
=i2&mwﬂ
= pRIE [f(x)]

E,[denom] = [Z wrl
Pl

Zp
S ¥
Zq

*

(5.15)

(5.16)
(5.17)
(5.18)
(5.19)

(5.20)

(5.21)
(5.22)
(5.23)
(5.24)

(5.25)

(5.26)

Hence y converges to E,[f] as R increases (but is not necessarily an unbiased estimator

because E,[y] is not necessarily = E,[f]).

5.3.2. Optimal proposal distribution

Assuming we can evaluate p(x) and ¢(x), we want to find a proposal distribution ¢ to

minimise the variance of the weighted samples

var, {p(x) (x)] = E, [pQ(x) f2(x)] - (Eq {p(x)f(x)ba

q(x) q*(x)
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¢*(x)

The second part is independent of ¢ so we can ignore it. By Jensen’s inequality, we have
E [g(u(x))] > g (E [u(x)]) for u(x) > 0 where g : x > 22. Setting u(x) = p(x)|.f (x)| /q(x),
we have the following lower bound:

PA(X) 4o p(x) N > iy
. lq%x)f <X>1 > (5, | B20e) ) = ® 0600 (5.29)

with the equality when u(x) = const. = goptimal(X) o |f(x)|p(x). Taking care of
normalisation, we get
[/ (x)Ip(x)

topinet ) = T 17 () a

=Eq [p ) fQ(X)l — (B, [f(x))) (5.28)

(5.30)

5.4. Sampling importance resampling

In Sampling importance resampling (SIR), we approximate the pdf of p as point masses
and resample from them to get samples approximately ~ p. The process is described in
Algorithm 7 below.

Algorithm 7 Sampling importance resampling

1: Generate samples {X(T)} from gq.

*(z(T)
2: Calculate importance weights {wr = %}.

3: Calculate the normalised importance weights {ﬁ)r = Zwrw - } Note that >, w, = 1.

4: We can resample from
PAx) =Y @b, (dx) (5.31)

to estimate sampling from p(x).

5.4.1. Why it works?

We consider the univariate case (to do: general case) as the number of proposal samples
(particles) R — oo. We can express the number of proposal samples that are in the
interval lims, o[z, z + dz], N(z), to be

N(z) = lim Rq(z)ox (5.32)

- dx—0
We can express the probability of the one final sample, z(") being in the interval
limg, o[z, z + 0x] to be
lim Pr(z < 2" < x4 0z) = N(x)d, (5.33)
dx—0
. p(x)
lim R ox——= 5.34
> 5250 a(x) xq(x) (5:34)
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x lim p(x)dz (5.35)
dz—0
Hence (to do: why exactly does that result in an integral)
b
Pr(a < 2" < b) x / p(z)dx (5.36)

2y (5.37)

5.5. Particle filtering

5.5.1. Sequential importance sampling (SIS)

Assume the probabilistic graphical model similar to the one in HMMs, where
e x,x; C X7 and y,,y, € VP are the hidden and observed random variables at
time t,t=1,...,T.
e The initial state is characterised by x; ~ u(- | ) for some known parameter 8 C ©.
e The transitions are characterised by x; | x;—1 ~ f(- | x¢—1;0).
e The emmissions are characterised by y, | x; ~ g(- | x4; 0).
We want to sample from the distribution p(x1.; | y1..;6). Assume we can sample from
the probability distribution with the pdf of the following form

a(x1:t | y1:40) = q(x¢ | X10-1,¥1450)q(X1:6-1 | Y143 6) (5.38)

= q(X¢ | X1:0-1, Y145 0)q(X1:0-1 [ ¥1:4-150) (5.39)

= q(x¢t | xt-1,y;60) (5.40)

If we express the pdf of p for t = 1,...,T in the form of (for convenience, we drop the
conditional dependence on 0):

P(y1 | X14)P(X1:0)
p(X1t | Y1) = e (5.41)
_ POYe | X1 Y1m )PV 11 | X1:6)P(X1:t) (5.42)

P(Yt | Y1:t—1)P(Y1:t—1>
_ P(ye | X1:6, Y10-1)P(X1:t | ¥1:4-1)

(5.43)
p(Ye | ¥ie—1)
_ p(Yt ’ Xl:taylzt—l)p(xt ’ Xl:t—lvylzt—l)p(xlit—l ‘ yl:t—l) (5 44)
Py | Y1:e-1)
_ plye [ xe)p(x¢ | X 1)p(X1:t-1 [ Y14-1) (5.45)
p(ye | Y1)
o< p(yy | xe)p(xe | xe—1)P(X1:6-1 | Y1:0-1) (5.46)
=9y | xe) f(xe | xe—1)p(X1:6-1 | Y1:0-1) (5.47)
we can write the weight of the sample xgrt) from the proposal ¢ to be
(r)
b Xy. ‘ylz
w™ (i [10) (5.48)

> q (Xgrt) | Y1:t)
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(0 1%6) (57 150 & (K 191

T 1) 4 (s | vee) o4

=) e (=7 %)
= ) (5.50)

A FAC R Y
= w;_ . (Xgr) | XET_)l,yt> (5.51)

Fort=1
Lo (x7 1y
1A)aq@@£§ (5.52)
p(x,3)
(v o
b))
q (X({) ‘ Y1>

:g(mﬂxywu(ﬁO) (5.55)

Note that second line is proportional to the first line with respect to p(y;) which is jus-
tifiable because the the constant of proportionality cancels out during the normalisation
step. The algorithm for SIS is shown in Algorithm 8 below.

Algorithm 8 Sequential importance sampling

1: Sample from proposal > Initialisation
xgr)wq(-\ygr);e),rzl,...,R (5.56)

2: Compute weights

o 9 1) (o)
q (XY) ’ Y1)

r=1,...,R (5.57)

3: Normalise weights

=1,...,R (5.58)
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4: We can resample from

pldx1 | y150 Zuq i (dxi) (5.59)
to estimate
p(x1|y1;0) (5.60)
5. fort=2,...,7 do > Main loop
6: Sample from proposal
ng)N ( |xt )1,yt,0>,r:1,...,R (5.61)

7 Compute weights

(r) (1) | (1)
gyl = 50) f(x " [x71;0
wgr)ocwt(i)l (t ! ) <t i >,r:1,...,R (5.62)

q (Xgr) | Xg?l?YtQ 9)

8: Normalise weights
(r)
wgr):%,rzl,...,]% (5.63)
Zr’ Wy
9: We can resample from
Pxre | ¥140) = 3175, (dx1e) (5.64)
to estimate
p(x1:t [ ¥1.:0) (5.65)

The reason why it works is the same as in the case of Sampling importance resampling
described in section 5.4.

5.5.2. The degeneracy problem

Because the support of the pdf we are approximating (p(x1.¢ | ¥1..)) is growing, the
constant number of weights we use (R) won’t be sufficient after a while. This is because
many weights will become very negligible, wasting our resources. An effective sam-
ple size is used to measure this degeneracy is defined to be and approximated by the
following;:

Seft . (5.66)
‘ 1+ var [ (r) }
A 1
Seft ~ o (5.67)
Zr (wt )
where wt(r)* = p(xt | y1. 1t)/q(xt | Xt 1,yt) is the “true weight” of particle r.

There are (among others) two solutions to this problem — introduce the resampling
step, and using a good proposal distribution.
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5.5.3. The resampling step

Whenever the effective sample size drops below some threshold, resample to get new R
samples from the approximation of the pdf. This step is also called rejuvenation. The
full algorithm for a generic particle filter is shown in Algorithm 9 below in which we

resample during every step.

Algorithm 9 Generic particle filter

1: Sample from proposal

2: Compute weights

3: Normalise weights

4: We can resample from
pdx1 | y,: 0) = Zw@(sx@ (dx1)

to estimate

p(x1]y1;60)
5. fort=2,...,7 do
6: Sample parents’ indices of t** generation
~(1 ~(R
A,(;)l ~ Cat (wg_)l,...,wg_%) ,r=1,...,R
6 Sample ™" generation using corresponding parents

A(T>
ng) ~q<-\xt_t11,yt;9> ,r=1....R

8: Compute weights

r r A
. ()g(yt|X§);0)f<X§)|Xt_t11;0>

wy T X Wy ,r=1,...
(1) | A
q|x’ |x 0y 6
9: Normalise weights
(r)
At(r) = wt ! 7/',' 17 7R
> wy”
T
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> Initialisation

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

> Main loop

(5.73)

(5.74)

R (5.75)

(5.76)



10: We can resample from
Pdx1s | y10:0) = b6, o (dxr) (5.77)

to estimate
p(x1:t | ¥1.450) (5.78)

5.5.4. The proposal distribution

It is common to use the following proposal distribution

(Xlt | 1. t) =4q (Xt | Xt 17Yt) (5.79)
=p(x" 1x") (5.80)
=7 (" 1 %) (5.81)

Hence the weight equation in (5.51) becomes

9 (Yt | Xgr)) f (Xgr) | Xg?l)
< )

= w9 (v |x") (5.83)

w" (5.82)

This approach can be inefficient because the likelihood, p (yt \ xgr)), can be very small
at many places meaning many of the particles will be very small.
The optimal proposal distribution has the form

(Xlt | ¥1. t) =4 (Xt " | Xt 17Yt) (5.84)
=p (x| %" pyt) (5.85)
_ D (Yt | Xt:Xt 1) (Xtvxt 1) (5.86)
(Xt 1th)

_ p(y: [ xe)p (Xt | Xt—)l) (5.87)

(o150
_9elx)f (e 1 x7)) (5.88)

(o2 15)

The weight equation in (5.51) becomes

wi” o™ p (vi | (™)) (5.89)

93



= Tl/p vex; | x(”)) dx’ (5.90)

= Tl /p Vi | Xtvxt 1)]0 (X; | Xg?l) dx’ (5.91)
:le/p (yelxp)p Xt|Xt )1) dx’ (5.92)
= w’y / g9y Ixt) f (xt | xir_)l) dx’ (5.93)

(r)

The proposal distribution is optimal because for any fixed x;_;, the new weight w;

takes the same value regardless of the value drawn for X,E ), Hence, conditional on the

old values, the variance of true weights is zero.

(r)

5.6. Sequential Monte Carlo

TODO: REDO
Assume that at time ¢, we can extend a particle’s path using a Markov kernel My:
pe(ze) = pro1(xe—1) My (241, 71) (5.94)
Also assume that .
Pe(wo:t) = pe(x¢) Z Li(wg, vx-1) (5.95)
k=1

where {L} is a sequence of auxiliary Markov transition kernels.
The generic algorithm for Sequential Monte Carlo (SMC) can be found in Algo-
rithm 10.

Algorithm 10 Generic Sequential Monte Carlo

1: Initialisation, t = 0:
2: forr=1,...,Rdo > Sample.
3: Sample ai'g) ~ qo(+).
4: forr=1,...,Rdo
o ()

5: Calculate normalised weights @~ o ( ( )) such that >/ A(T =1.
q0 jor

Resample from the pmf >, w(()T)cS _(+) to get R samples {mgn)}. > Resample.
Zo

Iterate, t=1,...,T:

fort=1,...,7T do

10: forr=1,...,R do > Sample.
11: Set 5;(({2 L=al)

12: Sample xi ")~ My ( ((]271, )

13: forr=1,...,Rdo

54



14: Calculate normalised weights @\") o t((ffszz(ﬁfiﬁij)m)-

15: Resample from the pmf )", wér)dj@-) (+) to get R samples {a;g’") } Reset the weights
t
to 1/R. > Resample.

5.7. Markov chain Monte Carlo methods

5.7.1. Definitions

Definition 5.7.1. Markov chain (MC) is defined via a state space X and a model that
defines, for every state x € X a next-state distribution over X. More precisely, the
transition model T specifies for each pair of state x,x’ the probability T(x — x') of
going from x to x', i.e. T(x — x') = Pr(x’' | x). This transition probability applies
whenever the chain is in state x.

If the MCMC generates a sequence of states xq, ..., x7, the state at time ¢, x; can be
viewed as a random variable X; for t =1,...,7.

Theorem 5.7.1 (Ergodic Theorem for MC (simplified)). If (Xo,...,Xp) is an irre-
ducible, time-homogeneous discrete space MC with stationary distribution 7, then

T
%Z F(Xe) === E[f(X)] where X ~ 7 (5.96)
t=1

for any bounded function f : X +— R.
If further, it is aperiodic, then

Pr(Xr =x| Xp = xp) P m(x) Vx,xp € X. (5.97)
—00

A MC following these conditions is ergodic

Definition 5.7.2. A MC (X;) is time-homogeneous if Pr(X;41 =0 | Xy =a) =T (a —
b)Vte{l,..., T —1}Va,b € X for some kernel function T .

Definition 5.7.3. A pmfm on X is a stationary (invariant) distribution (w.r.t. T ) if

(X =x) = Z (X =x)T(x — x') v/ (5.98)
xeX

Definition 5.7.4. A MC (X;) is irreducible if Ya,b€ X 3t >0 s.t. Pr(X; =b| Xy =
a) > 0.

Definition 5.7.5. An irreducible MC (X;) is aperiodic if Va € X,
ged{t : Pr(Xy=a|Xg=a) >0} =1. (5.99)

Definition 5.7.6. A MC is regular if there exists some number k such that, for every
x,x € X, the probability of getting from x to x' in exactly k steps is > 0.
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Theorem 5.7.2. If a finite state MC described by T is regular, then it has a unique
stationary distribution.

A MC being ergodic is equivalent to it being regular [1, p. 510].

Definition 5.7.7. A finite state MC described by T is reversible if there exists a unique
distribution m such that, for all x,x' € X

T(x)T(x = x') = 7(x)T(x" — x). (5.100)
This equation is called the detailed balance (DB).

Proposition 5.7.1. If a finite state MC described by T is regular and satisfies the
detailed balance equation relative to m, then m is the unique stationary distribution of

T.

Proof. Assuming the DB equation (5.100), we want to prove the stationarity equa-
tion (5.98) to ensure 7 is a stationary distribution of 7. We have

Z T(x)T(x — x') = Z m(x)T(x' — x) (5.101)

xeX xeX
= > w(x)Pr(x|x) (5.102)
xeX
x') Y Pr(x|x) (5.103)
xeX
= 7(x)) (5.104)

which proves the equation (5.98). 7 is the unique stationary distribution of 7" because
of Theorem 5.7.2. O

Proposition 5.7.2. Let T1,..., Tk be a set of kernels each of which satisfies detailed
balance w.r.t. w. Let pi,...,px be any distribution over {1,...,K}. The mizture MC
T, which at each step takes a step sampled from Ti with probability pi. also satisfies the
detailed balance equation relative to w.

Proof. The aggregate kernel can be written as

T(x —x')=Pr(x' | x) (5.105)
= ZPr(x’, k| x) (5.106)
= ZPr "| k,x) Pr(k | x) (5.107)
= Zn (x — x)pi (5.108)
k

Using this, we can prove the detailed balance as follows

7(x)T (x — x') ZE x — X' )py (5.109)
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= Z 7(x)Tr(x — X" )p (5.110)

k
= Zﬂ(x’)ﬁ(x — X)Dk (5.111)
k
= 7(x') Z Te(x" — x)pg (5.112)
k
=7(x)T(x' = x) (5.113)
O

Proposition 5.7.3. Let T1,..., Tk be a set of kernels each of which satisfies detailed
balance w.r.t. m. The aggregate MC, T, where each step consists of a sequence of K
steps, with step k being sampled from Ty, has 7w as its stationary distribution.

Proof. The aggregate kernel can be written as

T(x = x')=Pr(x | x) (5.114)
= > Pr(x,xg_1,...,x1 | %) (5.115)
= LzK:lPr(xK,...,xl | Xo) (5.116)
= Z Pr(x; | xo) - Pr(xg | xx_1) (5.117)
= i Ti(xo = x1) - Tk (XK—1 = XK) (5.118)

where we’ve used the substitution x = xg and x’ = xx. Using this, we can prove that
7 is the stationary distribution as follows

Yo ax)Tx—x) =) nm(xo) > Tilxo—x1) - Tk(XK-1— XK) (5.119)

- = :OZ ﬂ(x):);(lx() —x1) - Te(XK-1 = XK) (5.120)
= :il Ti(x1 — xo)m(x1) - T (XK -1 — XK¢) (5.121)
= XZ Ti(x1 — x0) - - Tre (XK — Xg—1)7(XK) (5.122)
= 7:(:;:) XZ Tr (XK — X 1) - T1(x1 = Xo) (5.123)
= 7(xK) ElPr(x&Kl | Xx) (5.124)
= w(xK).XO:K_1 (5.125)

O]
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5.7.2. Metropolis Hastings algorithm

The Metropolis Hastings (MH) algorithm is a recipe to create a MCMC with a particular
stationary distribution. Assume we can sample from a proposal distribution ¢(- | x) =
g(x — -). Let p = 7w be the required distribution (stationary distribution for this
MCMC). Assume we can only evaluate ¢ and 7 up to a multiplicative factor (i.e. we
can only evaluate ¢*(x — x') = Z,q(x — x') and 7*(x) = Z,7m(x)). The MH algorithm
is outlined in Algorithm 11.

Algorithm 11 Metropolis Hastings algorithm

1: Sample x(9) from an arbitrary probability distribution over X'
2: fort=1,...,T do

3: repeat
4: Sample x() ~ ¢(x*1) — ).
5 Accept x®) with the acceptance probability

*(x(t) x(t=1)
A 5 x®) = min (1’ W (( - 1)>§q£( —>) < X()))) (5.126)

6: until x® is accepted.

Why it works?

We need to prove that 7 is the unique stationary distribution of this MCMC.
We can express the aggregate transition model to be

qg(x = x)A(x = x') if x # x/
T(x—x)= q(x = x)+ Z (x—x)1-A(x—x)) ifx=x (5.127)
x! x/#x

To prove that 7 is a stationary distribution of this MCMC, we make sure the DB equation
holds.
For x # x/, we have

(5.128

)
= min (7(x)g(x — x'), 7(x")g(x — x)) (5.129

— r(x)g(x — x)min (1,

)
)
(5.130)
)

=7m(x)T(x' = x) (5.131
For x = x/, the DB equation 7(x)7 (x — x') = n(x’)T (x’ — x) obviously holds.
Hence 7 is a stationary distribution of the MCMC described via 7. Unfortunately,

regularity doesn’t hold in general. We need to make sure our created MCMC is regular
before we can claim that 7 is the unique stationary distribution of this MCMC.
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5.7.3. Gibbs sampling

Assume we want to sample from p(x) = p(z1,...,2p). We can only sample from the
conditionals p(z; | x_;) where x_; denotes x with the i*® component ommited. The
Gibbs sampling algorithm (12) is given below.

Algorithm 12 Gibbs sampling algorithm

1: Sample x(9) from an arbitrary probability distribution over X'
2: fort=1,...,7T do

5 Samplo 2 ~p (- 40,0V, .2l
4 Sample 2f ~p ( 2 ,3:%_1))
5: :

. Sample afd ~p (|20, 50,)

Why it works?

Each of the sampling steps can be viewed to be governed by a different kernel with the
whole process being governed by the aggregate kernel. We prove that the single kernels
follow the DB equation with respect to p:

p(x)Ti(x = x) = p(x)p(x—i, 7 | x) (5.132)
= p(x_;, T}, X) (5.133)
= p(x, ), Xx_;) (5.134)
— p(x)p(x | 2, %) (5.135)
= p(x")Ti(x" — x) (5.136)

This is the premise of Proposition 5.7.3, hence the aggregate kernel 7 has p as its
stationary distribution.

We can also view Gibbs sampling as an instance of the MH algorithm. If the proposal
of MH ¢;(x — x') is set to be p(x’ | x) = p(z} | x) the acceptance probability is one
(shown below) and so it is equivalent to one sampling step in Gibbs sampling.

N — g (1. POPX X
Alx = x') = <1, A ) (5.137)
= min p(x',x)
_ (1, s X)) (5.138)
—1 (5.139)

5.8. Particle Markov Chain Monte Carlo

5.8.1. Particle independent Metropolis Hastings (PIMH) sampler

We want to sample from p(x1.7 | y1.7,0).
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Algorithm 13 Particle independent Metropolis Hastings sampler

1:

Run SMC targetting
p(x17 | y1:7:6)

Sample
x1.7(0) ~ p(- | y1.730)
Let
p(yrr | 6)

denote the corresponding marginal likelihood estimate.

4: for s=1,...,5 do

%

10:

11:
12:

Run SMC targeting
p(x17 | y1:7:6)
Sample
xT.p ~ (- | Y11 0)
Let
Py 0)°

denote the coresponding marginal likelihood estimate
Sample from Ber(-) with the success probability

. 13(}’1:T ‘ 9)*
min (1’ P(y17:0)(s — 1>)

if success then

Set
x1.7(8) = X{.p
P(y1r | 0)(s) =p(y1.r | 0)
else
Set

x1.7(8) = x1.7(s — 1)

P(yrr | 0)(s) =p(yrr | 0)(s—1)

> Initial sweep s =0

> Main loop

5.8.2. Particle marginal Metropolis Hastings (PMMH) sampler

We want to sample from p(0,x1.7 | y1.7) < p(X1.7 | ¥1.70)P(0)-

Algorithm 14 Particle marginal Metropolis Hastings sampler

1:

Set 6(0) arbitrarily.
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2: Run SMC targetting > Initial sweep s =0

p(x17 | y1.7:6(0))
3: Sample

x1:7(0) ~ p(- | y1.7:0(0))
4: Let
P(yrr | 6(0))
denote the corresponding marginal likelihood estimate.

5. for s=1,...,5 do > Main loop
6: Sample

0" ~q(-[6(s—1))
7: Run SMC targeting

p(x1r | y17:67)

8: Sample

XL ~ P( | y1.750%)
9: Let

P(y1.7:67)
denote the coresponding marginal likelihood estimate
10: Sample from Ber(-) with the success probability
i (1, P |00 110y
D(y1r;0(s = 1)p(0(s — 1))q(6" | 6(s — 1))
11: if success then
12: Set
0(s) = 0"
x1:7(s) = X].p
pyrr 1 0)(s) =p(yrr | 07)

13: else
14: Set

0(s) =0(s—1)
x1.7(s) = x1.7(s — 1)
P(y1r | 0)(s) =p(yr.r | 0)(s —1)
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5.8.3. Particle Gibbs (PG) sampler
Conditional SMC update

We want to sample from p(x1.7 | y1.7;0).

Algorithm 15 Conditional SMC update

1: Choose a fixed ancestral lineage By.r arbitrarily. > Initialise fixed path
2: Let
X1 = (ngl), o ,X(TBT))

be a path associated with the ancestral lineage Bi.p.
3: For r # B, sample > Time t =1

x{” ~q(- | v1.0)
4: Compute weights
o )
wy X &)
Q<X1 ‘Yl)

5: Normalise weights

(r)

A(r) _ W
Z'r’ wgr )
6: We can resample from
pldx1 |y, 0 Zw1 (r) (dx1)
to estimate
px1]y1,0)
7. fort=2,...,7T do > Main loop

%

For r # By, sample
A( ) ~ Cat (wlg )1, .. ,wﬁ’f{)

r (A(T)
Xg ) ~q ( | Vi, X 1)>

9: For r # By, sample

10: Compute weights

" _ p (X1, v1.:0)

B ) =
p (xl(:f—tll)’YLt—ﬁe) q (Xg) | Ytﬂxt<_Alt_1)§9)
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11: Normalise weights

12: We can resample from
P | y14,0) = Doy, 0 (der)
" :

to estimate
p(xlzt ’ Yit 0)

Particle Gibbs sampler

We want to sample from p(6,x1.7 | yi.7)-

Algorithm 16 Particle Gibbs sampler

1: Set 6(0), x1.7(0), B1.7(0) arbitrarily. > Initialisation, s = 0
2: for Sweep s =1,...,5 do > Main loop
3: Sample parameter

0(‘9) ~ p( ‘ yl:TaxliT(s - 1))
4: Run conditional SMC (Algorithm 15) targetting

p(x1r | y1.750(5))

conditional on
e x1.7(s — 1), and
(] Bl;T(S - 1)
5: Sample
(- | y1.750(s))

3>

x1.7(8) ~
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6. Nonparametric Bayesian models

6.1. Gaussian processes

Gaussian Process is a collection of random variables, any finite number of which have a
joint Gaussian distribution.
Let f: X — R be a function and

m(x) = E[f(x)]
K(x,x") = E[(f(x) — m(x))(f(x) = m(x))]

be the mean function and covariance functions mapping from the input space X to R.
Then we write

f ~ GP(m,K)
if for any N points from the input space x1,...,xy € X
f~N(p K)
where
f=[f(x1),.., fxm)]"
= [m(x1),...,mxy)|"
K(x1,x1) -+ K(x1,xn)
K=|
K(xy,x1) - K(xn,xy)
6.1.1. Predictions
Consider data points X = [xi,...,xn]7,f = [f1,...,fn]T and input points X* =
[x%,..., x| for which we want to predict f* = [f(x),..., f(x}+)]T. Then we can
write
f L K(X,X) K(X,X*)
f* et KX X) K(X*,XY)
where
pt = [m(x3), ... m(xe)]”
K(x1,%1) K(x1,%xN)
K(X,X) =
K(xn,x1) K(xn,xN)
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K(xi,x7) - K(x1,XR)
K(X,X") = : - :
K(xn,x7) - K(Xn,XN«)

K(X*,X) = K(X,X"7
Hence, according to Subsection 2.4.2, the predictions can be made as follows
£ | X*, X, f ~ N (1P, K*P)
where

P =+ KX X)K(X,X) 7N - p)
K'P = K(X*, X*) - K(X*, X)K(X, X) " 'K(X, X")

6.2. Dirichlet processes

Notes made from Erik Sudderth’s PhD.

6.2.1. Definitions

Definition 6.2.1 (Probability measure). Probability measure is a real-valued function
P defined on a set of events in a probability space (0, F, P) that satisfies

e P must return results € [0,1], returning 0 for &, 1 for the entire space, Q, and

e countable additivity: ¥V countable collections {E;} of pairwise disjoint sets of €2,

P <U E) =Y P(E)
el el

Definition 6.2.2 (Stochastic process). Suppose that (2, F, P) is a probability space, and
that T (“time”) is a totally ordered set. Suppose further that for each t € T, there is a
random variable X; : Q@ — S defined on (0, F, P). A stochastic process X is a collection
{Xy:te€T}. S is called the state space of the process.

Theorem 6.2.1 (Dirichlet process). Let H be a probability distribution on a measurable
space ©, and « a positive scalar. Consider a finite partition (T1,...,Tk) of ©.

A random probability distribution G on © is drawn from a Dirichlet process if its
measure on every finite partition follows a Dirichlet distribution:

(G(TY), ..., G(Tx)) ~ Dir(aH(T1),...,aH(Tk)) (6.1)

For any o, H, there exists a unique stochastic process satisfying these conditions, which
we denote DP(a, H).

Claim 6.2.1. The base measure is the mean, i.e.

VT € ©,E[G(T)] = H(T) (6.2)
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Proof. Let T = Ty, for some finite partition (71,...,Tk,...,Tx) of ©. Then since (6.1)
we have

E[G(Ty)] = ZOJJOZ(L[T(% 7= Z?J(LIT(kT)J j = H(T},) (6.3)

O

6.2.2. Posterior measure

Proposition 6.2.1 (Posterior measure). Let G ~ DP(«, H) be a random measure dis-
tributed according to a Dirichlet process. Given N independent observations D = {x,, :
T, ~ GIN_, | the posterior measure also follows a Dirichlet process:

1
Proof. For any finite partition (71, ...,Tk) of the sample space O, we have the following:
(G(Tl)a s >G(TK)) ~ DiI’(O&H(TI), s 7aH(TK))

We can represent the observations D as D’, only caring about which partition T}, it
comes from, in the following manner:

D' = {X;@ : X'lrz = (H(xn € Tl)v s )H(xn € TK)) ~ Mult (]-7 (G(Tl)a ) G(TK)))}
The samples are indeed drawn from a given Multinomial distribution since Pr(x, €

Ti) = G(Ty), k = 1,..., K by definition.
From conjugacy in (3.2)

(G(T1),...,G(Tk)) | D ~ Dir ((aH(Tl), o aH(Tk)) + Zx;>
= Dir ((aH(Tl), o aH(Tk)) + > (an € T1), ... I(zy € TK))>
= Dir (ozH(Tl) +> Wan €Th),...,aH(Tx)+ Y I(zy € TK)>

n n

= Dir (aH(Tl) +> 00, (T1), ..., aH(Tg) + Y s, (TK)>

n n

Since this is true for any finite partition (71,...,Tk), it implies that

1
G |D ~DP <Z,Z (aH—I—zn:(S%))
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for some normalisation constant of the new base measure. Suppose that we now par-
tition the space into (Th = {z1},...,ITnv = {zn},T" = O\ {z1,...,2N}), the normalisa-
tion constant Z can be evaluated as

N ]z/n N
=aH(T') + aH(Tw)+ > Y 62,(Tin)
m=1 m=1n=1
N
=« (H(T’) + > H(Tm)> + N
m=1

We can write the final posterior as

1
G| D ~DP <a+N,a+N <aH+zn:5xn>>

O]

Doksum and Fabius showed that for every measurable T' C ©, and any IN observations
D = {zy, : z, ~ G}, the posterior distribution p(G | D) depends only on the number
of observations that fall within 7" (and not their particular locations). IL.e. observations
provide information only about those cells which directly contain them.

6.2.3. Stick-breaking construction

Given G ~ DP(«o, H) and D = {zy, : ,, ~ G}. From (6.2) and (6.4) we know that for
any T' C ©

E[G(T) | D,a, H] = - i ~ (aH +> ba, (T)) (6.5)

For finite o

. 1
Jim BIG(T) | Dy ] = it 5 6, (1)
k=1

— . . I n==I .
where {Z}}72, are the unique values of {z,};2, and 7, = limy_ w is the

limiting empirical frequency of Z.

Theorem 6.2.2 (Stick-breaking construction). Let w = {m;,}22, be an infinite sequence
of mizture weights derived from the following stick-breaking process, with parameter o >
0:

Br ~ Beta(1, ) (6.6)
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m = B [[(1—Be) (6.7)
/=1

k—1
= By (1 -y w) (6.8)

(=1
fork=1,2,.... Given a base measure H on ©, consider the following discrete random

measure:
G(z) = Zwké(m,xk) xp ~H (6.9)
k=1

The construction guarantees G ~ DP(«, H). Also, samples from a DP are discrete with
probability 1 and have a representation as in (6.9).

Proof. TODO 0

| : b '

‘(17[31)‘ (1752)(1751) |
‘ T2 I |
(1 - Bs)
(1=52) (1-52

(1 =B1) (1-5) |
I

Figure 6.1.: Stick-breaking construction

We use m ~ GEM(«) to indicate a set of mixture weights sampled from this process.
In short

7 ~ GEM(«) ™ = (m,m2,...)
zp ~ H k=12, ...

G(x) = Zﬂ'ké(a:,:ck)
k=1
— G ~DP(a, H)

6.2.4. Pélya urn construction

The purpose is to generate samples from the posterior predictive, p(Z | D, «, H) where
D={zy:2,~G G~ DP(a,H)}.

68



Theorem 6.2.3. Let G ~ DP(«a, H). Let h(z) be the density of the base measure H.
Consider a set of N observations x, ~ G taking K < N distinct values {fk}szl. The
predictive distribution of the next observation is

p(& | z1,..., 2N, 0, H) = oz—f—lN <ah(a~:) + ZNM@,@C)) (6.10)
k

where Ny = >, 0(xy, ) is the count of observations that equal Ty,.
Proof. TODO O

We can get a sample from this distribution via the generalised Pélya urn model:

Algorithm 17 Pélya urn construction

1: Assume we have a bag with NV identical balls of K different colours (our observations)
with the probability of drawing each of them being ﬁ We also have a special
black ball which can be drawn with probability 5.

2: Draw a ball.

3: if it’s not black then

4 Record colour.

5 (Put back and add one more ball with the same colour.)

6: else

7 Draw a ball from the bag of yet unseen colours, following H.

8 Record new colour.

9 (Put back both the black ball and the ball with a new colour.)

10: The recorded colour follows the posterior predictive in (6.10).

This follows (6.10) exactly.

6.2.5. Chinese restaurant process

Since G ~ DP(a, H) is almost surely a discrete probability measure, if we draw N
observations z,, ~ G, we will only have K < N unique observations {ik}le. We can
view these as clusters. Let {z,})_; be cluster indicators, i.e. z, = the cluster number
of z,, or equivalently z, = Z, . An equivalent version of (6.10) can be written down,
caring only about the cluster numbers:

K
p(E | 21 ens o H) = 1N <a5(2,K+ 1)+ N (z, k)) (6.11)

o+ 1

We can get a sample from this distribution via the Chinese restaurant process, similar
to the Pélya urn model in Algorithm 17:

Algorithm 18 Chinese restaurant process
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1: Assume there are K occupied tables (clusters) at the restaurant numbered from 1

to K. The table k has Nj customers already sitting there (observations of cluster

k), with the total of N customers. A new customer sits at an occupied table k with

probability a]—\&\f and chooses a new table with probability MLN

New customer comes.

3: The table number they choose follows the posterior predictive in (6.11) (with K + 1
corresponding to choosing an unoccupied table).

O~ O G

»

g v -
G~> O~
@ 2 ) eee

CARS

P
® @
¢
©

Figure 6.2.: (Figure from Erik Suddherth’s PhD) Chinese restaurant process interpre-
tation of the partitions induced by the Dirichlet process DP(«a, H). Tables
(circles) are analogous to clusters, and customers (diamonds) to a series of
observations. Top row: A starting configuration, in which seven customers
occupy three tables. Each table is labeled with the probability that the next
customer sits there. Middle row: New customers sit at occupied table k with
probability proportional to the number of previously seated diners Ng. In
this example, the eighth customer joins the most popular, and hence likely,
table. Bottom row: Customers may also sit at one of the infinitely many
unoccupied tables. The ninth diner does this.

&
@)
GO &
©
S

The number of occupied tables K almost surely approaches alog(N) as N — co.

6.2.6. Dirichlet process mixtures

The purpose is to cluster observations. We can’t model continuous observations directly
using a Dirichlet processes because the samples from them are almost surely discrete
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probability measures. Also, the posterior measure assigned to x; would never beinflu-
enced by observations x; # x;, regardless of their proximity.
The Dirichlet process mixtures model is as follows:

G ~ DP(a, H)
0, ~G n=1,...,N
xnwF(én)

where G is being sampled from DP(«a, H) via the stick-breaking construction:

7w ~ GEM(«) = (m,m2,...)
O ~ H(\) kE=1,2,...

G(0) = i m8(0, 01)
k=1

this solves the problem of inability of the DP to model the distribution of observations
directly. Now two observations x;, z; are considered to be from the same cluster of 0, if

both are ~ F(6,,).
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7. Probabilistic programming (Anglican)

7.1. How it works

7.1.1. Notation
The syntax is as follows

[assume symbol <expr>]
[observe (<random proc> <arg> ... <arg>) <const>]
[predict <expr>]

where assume’s are either deterministic or random variables declarations, observe’s
condition the distribution of the assume’d variables and predict’s give samples from
the posteriors of the corresponding <expr>’s.

Probability of an execution trace is

N
y,x) = H P(Yn | O, Xn)P(Xn | Xn—1) (7.1)
n=1
|xn\xn71|
ﬁ(xn | xn—l) - H p(xn,k ‘ otmkvxn,l:(kfl)?Xn—l) (72)
k=1
p(Yn | O¢,,%,) = likelihood of observed output y, (7.3)
tilde = distributions we can only sample from (7.4)
yn = n' observe’d output (7.5)
t, = type of n'"' observe’d main random proc (7.6)
0;, = arguments of ¢, (7.7)

x, = set of all random procedure application results computed
before p(yn | Oy, ,%,) is evaluated. Le. before the n'™ observe.  (7.8)

Whevever a predict is called, we want to sample from p(x | y) < p(y,x). A general
overview of this can be seen in Figure 7.1.

7.1.2. Random databse

This is an Metropolis-Hastings (see Subsection 5.7.2) approach to inference. The pro-
posal step of the MH algorithm is illustrated in Figure 7.2. Following the Algorithm 11,
the proposal step consists of these steps:

e Pick a single variable x,, j, from the |x| random draws uniformly randomly.
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X0:®

T1,1
Z1,2
x1 =XoU{T11, -, 21}

Z1..

)

[observe (t1 0:) y1]
T2,1
€22
. x2 =x1 U{xo1, -+, 22}
}
[observe (ta 0:,) Yol Zp,, = result of random procedure application n, k
where
[observe (t,—1 6:, ;) Yn—1] tn.k = type

0,,., = args

Xp = Xp—1 U {xn,l, s wrn,-}

Lobserve (t, 0:,) ynl

[observe (tn—1 Oy ) Yyn—1]
IN,1
TN,2
XN =Xny-1 U {mN,la o aajN,'}
TN,

[observe (ty 6iy) yn]

Figure 7.1.: A general overview of Anglican interpretation.

¢ Get a new random choice z;, ; by sampling from a kernel z; ; ~ k(- | Ty k).

e Continue interpretation of program to get a new set of variables, x’, that cor-
respond to a new valid execution trace. (whenever a random procedure in the
interpretation is the same as in x, we reuse the existing value, only rescoring the
conditional probability when necessary).

e x' is our MH proposal.

Following this procedure and notation in Figure 7.2, the proposal distribution can be

expressed as

K@ | 2nk) p(x\ x | x 1) (7.9)

q(x' | x) =
x| p(gz:’n’/,C | x' Nx)
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11 ) 1,1 )
x1,2 x1,2
€y,. €y,.
xNx' {xnxtu{z;, .}
Tn,1 Tn,1
)]
Tk nht > Tk J
x’I’L7- ‘/L.;L,,
: /
AR L XX
TN Ty
TN,2 NP
TN, L TN

Figure 7.2.: Illustration of the RDB proposal step.

The 1/|x| corresponds to randomly uniformly choosing a single variable. The r(x;, ; |
Zp 1) corresponds to the proposal kernel. And finally,

p(x"\x [ x'Nx)
p(ay, ), | X' Nx)

= p (I \ 5P\ @l | o xNX)

=p (I \ 3P \ 2l | XX ULl )

which corresponds to the probability of “the rest of execution given the past random
choices of this proposed execution trace”.
The acceptance probability can be written as

, . p(y' ., x)q(y,x |y, x)
Al | x) = min (1’ (v, 3000y % | %) )

 in p(y | X )p(x')q(x | x')
= min (1, p(y\x)p(x)q(xwx)) (7.10)
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In the propose from prior case, a new random choice x%k is obtained by continuing
the interpretation from x,, ;1 which means the expression of the kernel becomes /{(3:;17 i |
Tn k) = p(x, 5 | X' Nx). Note that the reverse kernel becomes r(zn | 27, 1) = p(¥nk |
x N x’). Hence the expressions for the proposal distribution (in both ways) become

p(x'\ x| x' Nx)

(x| x) =

Substituting this to the acceptance probability in (7.10), we obtain

/ _ uin p(y | x)p(x)|x[p(x \ x' | x N x')
A 1) = min (1, e x| ) ) (7.11)

Summary: we just keep proposing and accepting and whenever a predict is needed,
we just report the current (or the corresponding function of a subset of) x.

7.1.3. Sequential Monte Carlo

In this case, we follow the Algorithm 9. We show in Figure 7.3 an illustration for one
SMC iteration, adopting the notation in this chapter.

NG
e The proposal is done by just continuing interpretation, i.e. ¢ (xg ) | %, 1" Vs 0) =

(0)
(Z) An—l
p(Xn x5 -
(0

A
e The weights calculation then simplifies to p | yn | x,,"7' |. TODO: Verify.

e Whenever a predict is needed, we can resample from
p(d :0) =05 v (d
P(dx1: | Y13 0) Wy 70,0 (dX1n)
Z m
to get a sample from the posterior.

7.1.4. Particle Gibbs

Here, we follow the Particle Gibbs algorithm described in Algorithm 16. The illustrations
are below in Figure 7.4, and Figure 7.5. Whenever a predict is needed, a sample of the
posterior of the execution trace can be obtained by sampling from

PAxn | Y10, 0) = > @f’%@ (dx,,)
V4

(This is with the retained particle).
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O D) <0

(©)
L1
(©
1,2

(0

~ (1) .. ~ (¢ .. ~(L)
U“n—l U“n—l

Aiﬁl ~ Cat (111(”121,...‘,11)51{)1) L=1,...,

(£)

x¥) ~q ( | xfﬁ]ﬂy,,,;()) HA=1,...,L

w® - = p(yn | xg)),ﬂ =1,...,L

<1 <0 <L)
x(lé,i Ty
x(ﬁ T1,2
i)
Get a retained particle
T XN~ 2 ﬁ’%)‘sx? ™

‘ .
l’f(\r?l TN

‘ .
l’f(\r?z TN

Figure 7.4.: Initialisation of the Particle Gibbs sampler.
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Sweep s with a retained particle x}; from the previous sweep.

Iteration n = 1 of condtional SMC: Initialise (L — 1) interpreters.

1 [ L
xé ) x((] ) D xé )
Iteration n = n of conditional SMC.

XELll 1 Xff l 1 Xn-1 X‘ELL—) 1
wle—)l 71’51/21 Wpoy oo wszjl

Resample (L — 1) p

with weights being success

rticles categorically,
probabilities; then fork().

(1 =
Xilll Xglll

2 -

Propose by continuing the prog

ram, i.e. “propose from prior”.

z

¥

N

%

Insert retained particle; then c

hlculate and normalise weights.

=P %) x5, =
w5 @y a, @y
[1
xﬁll) xg’) X, X;L)
iy ! oy W)
Iteration n = N of conditional SMC.
xg\}) . X%) . X% X%)

Choose a new retained parti¢le by sampling categorically,

with weights being guccess probabilities.

Figure 7.5.: Sweep s of the Particle Gibbs sampler.

7.2. Testing

7.2.1. Unit and measure tests

Calculate KL divergences for discrete sample spaces and KS test statistics for continuous
sample spaces.
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7.2.2. Conditional measure tests
ERPs

The purpose is to test whether the *-1npdf functions work. For some distributions f
and g, if we assume 6 ~ f, then observe D = {y, : ¥n ~ g(...,0)}\_;, and finally
predict @ | D, the inference engine will evaluate the *-1npdf functions of g in order
to characterise p(x | y) « p(y,x) = [, 2(Un | Ot,,%Xn)P(Xn | Xp—1). We can then test
whether the predict’s follow the true distribution of 8 | D. Using this fact and taking
advantage of conjugate pairs described in Chapter 3 and on Wikipedia, we can test the
ERPs in the system as follows.

Bernoulli

0 ~ Beta(a, 3) [assume theta (beta a b)]

x | 0 ~ Ber(0) [observe (flip theta) x1] ---
D= {z,} [observe (flip theta) xN]

0| D ~ Beta(a+ N1,8+ Ny) [predict thetal

Binomial

0 ~ Beta(a, 3) [assume theta (beta a b)]

x| 0 ~ Bin(T, ) [observe (binomial theta T) x1] ---
D ={x,} [observe (binomial theta T) xN]

0|D~Beta(a+ >, xn,5+TN =3, z,) [predict thetal

Poisson

A ~ Gamma(a, f) [assume 1 (gamma a b)]

x| 0 ~ Poi()) [observe (poisson 1) x1] ---
D= {z,} [observe (poisson 1) xN]

A| D~ Gamma(a+ >, Tn, 5+ N) [predict 1]

Categorical

0 ~ Dir(a), 0, € RX [assume ...]
x| 8 ~ Dir(6) [observe ...]
D ={x,} [observe ...]

0 | D ~ Dir(a + (n1,...,nx)T) [predict ...]
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Univariate Normal with known variance

Fix o2

e~ N (po, 03)
|~ N, o)
D = {zn}

p|D~N

[assume var #var#]

[assume mu (normal muQ varO)]
[observe (normal mu var) x1]
[observe (normal mu var) xN]

[predict mu]
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8. Neural networks

8.1. Feedforward neural networks

Not really Bayesian, but whatever.

8.1.1. Notation

le

®» _®

s({*l) : x((ﬁ—l) A s
x 1 — f 1 J f J
s IS
layers 0 1
Figure 8.1.: Feedforward neural network.
There are L layers, ny at layer £. 01(»]@ is the weight where
e layer /=1,...,L
e input i =0,...,ny_1 (includes the intercept)
e output j =1,...,ny.
The values of the neurons are
(0 0 (1)
T, =g (Z 0, ) (8.1)
i=0
T
=g (05-@ X(€1)) (8.2)
l
=g (sg )) (8.3)

where
ozl =0,0=1,.... L1
e g: R — R is a differentiable, nonlinear activation function
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° 050 = («9(()?, e ,07(371734)T € R™-1+1 are the weights from layer (¢ — 1) to neuron j
in the layer /.
e x = (21,...,%n,) 7 is the input.
o x(0) .= (:1:(()6), e xff})T € R™*! are the neurons in layer £ =0, ... L — 1. Note that
T
x(0) = (x(()o),xT

o x(L) = (mgL), . ,x%LL))T € R™ is the predicted output.

sy) is the signal for the j-th neuron in the ¢-th layer. This gets fed into the
activation function to get the (j, ¢)-th neuron.

We can group the weights further, @) = (OSK), . 0(8)) € RUu—1+t)xne g4 that

s Yy
x0 — g (@w)TX(é—l)) (8.4)

Note the slight inaccuracy of notation in (8.4): we are overloading ¢ (for multivariable
inputs and outputs) and also the left hand side should be (ng), e ,ng;))T (it should not
include the intercept term). We can finally group @ := (9(1), e C-')(L)).

We define the mapping from input to output to be h. The error on the example (x,y)
is e(®) which is usually an analytic function of y and x") (something like norm of
the difference squared). Note that we subscript it with n if the error refers to the n-th
example. The total error is E(@) =Y, €,(0).

8.1.2. Backpropagation algorithm

We need to find gradg e(®), which is finding ?9(8) for all 4, j, ¢ (evaluated at the current

ij

values of neurons; we sometimes omit this for clarity). Since

9e(©)  0e(©) 95

= 8.5)
) (0) 940 (
and
ne—1
s =3 gl (8.6)
i=0
(0)
65{) _(e-1) (8.7)
‘ i :
we only need
(o) 0e(©)
;" = 0 (8.8)
J

to evaluate (8.5).
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For the final layer. We can find

J 95
5j
(L)
_ 0e©) 9, (8.10)
8x§-L) asgL)
0e(®) , 1 (1)
= g (s (8.11)
axEL) ( J )
analytically for j =1,...,ng
For the layers before. We can find
(1) _ 9¢(©)
51' = 63@_1) ‘5”1('[_1) (8.12)
n (0)
_ 5~ 0e(©) 95, (8.13)
j=1 asy) 855271)
L 0e(@) s oalY (8.14)
=1 8856) 81‘1@71) 852671)
ng
l {4 (-1
_ S50 60 (s) .15)
j=1
recursively for i = 1,...,ny_1.
The algorithm becomes
Algorithm 19 Backpropagation algorithm (SGD)
1: Initialise ® at random.
2: repeat
3 Pick example n € {1,..., N} at random.
4: Forward pass: compute all xy)’s using (8.1).
5 Backward pass: compute all 61@’8 using (8.11) and (8.15).
6 Update all Hg)’s (1=0,...,np—1and j=1,...,np):
0en(0)
0 !0 T (8.16)
’ ! 06,
_ 0 _ V50 5.17)

=

until it is time to stop.
8: Return the final weights ©.
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8.1.3. Full specifications

In order to fully specify the network and the backpropagation algorithm, we need to
specify activation functions g, their derivatives ¢’, the error of one example e and its

Ze(((z))). Then we can arbitrarily mix and match activation functions and error
A
J

functions to give us the required output, etc.

derivatives

Sigmoid activation

For [0, 1] output:

1
= 1
9l 1+ exp(—x) (8.18)
g'(x) = g(z)(1 - g()). (8.19)
Identity activation
For R output:
g(z) ==z (8.20)
g (x)=1. (8.21
Softmax activation
For vector output that sums to one:
exp(z;)
x); = 8.22
900 = = explay) &2
9g(x);
IR — (30185 — 9(0);)- (5.23)
J
Note that d;; is the Kronecker delta function and =1 if ¢ = j and = 0 otherwise.
Exponential activation
For RT output:
g(x) = exp(z) 8.24)
g (z) = exp(x) 25
Tanh activation
For [0, 1] output:
g(x) = tanh(z) (8.26)
exp(z) + exp(—2)
g (z) =1 — tanh?(z). (8.28)
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Rectifier activation

For R* output:

g(z) = max(0, x) (8.29)
0 ifxz<0
"(z) = . 8.30
9 (@) {1 if >0 (8:30)
Use whatever for ¢’(0).
Squared norm error
1 2
«(®) = [x® -y (8.31)
1 T
-~ (x@) _ (L) _
=5 (x y) (X y) (8.32)
grad, ) e(®) = (X(L) — y) (8.33)

8.1.4. Feedforward neural networks for conditional density estimation

o

N

Figure 8.2.: Graphical model for conditional density estimation.

We are interested in estimating y | x using a neural network using training data
{Zn,yn}. We can set up the following generative model

Y = n(zy) (8.34)

where 7 is our neural network and F' is some generative model with some density function
f. By maximising the likelihood

L) =T f(yn | xn,¥) (8.36)

we can find the MLE estimate of . This is equivalent to setting the error function of
the neural network 7 to be the negative log-likelihood of one data point:

en(©) = —log f(yn | Tn,¥) (8.37)
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where @ are the weights of the neural network. If we can design a generative model F'

66”((8), then we are done (SGD will
83:].

minimise ), e, which is total negative log-likelihood). We need to mix and match the
activation functions for the last layer to match the support of .

in such a way that we can calculate the derivatives

Example

Let the generative model be

flylz,¢) =Ny |z,9) (8.38)
= N(y | m,o?) (8.39)

where
Y =(m,o0). (8.40)

Let the input to the a 2 layer (1 input layer, 1 hidden layer, 1 output layer) neural

network be x = (r1,72) € R? and the output be

° afgz) € R which is approximating m, and

(2)

e 157 € RT which is approximating o.
Our negative log-likelihood for one data point a.k.a. loss function is

2
e(®) = —log NV (y | xgz), (acg)) > (8.41)
(2 N2
= —log (2)1 exp — () yg (8.42)
VI (o)
@, @ )’
= log(v2m) + log(zy ') + ATV (8.43)
2 (:1:2 )
and the derivatives are
(2
Oe _ (551 y) (8.44)
oz (2)\2 '
()
e 1 @) 20 @\73
— = — — (27 —y) (x (8.45)
L) )
(2) 2
SR P it 7 (8.46)
e ( (2))2
2 Ty

We choose the identity and exponential activation functions for m and o respectively.
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8.2. Convolutional neural networks

8.3. Deep generative models

8.3.1. Deep directed networks
8.3.2. Deep Boltzmann machines
8.3.3. Deep belief networks

8.3.4. Deep autoencoders

86



9. Statistical hypothesis testing

9.1. Kullback-Leibler divergence

Ak.a. KL divergence, or relative enropy. KL divergence between the distributions p(x)
and ¢(x) for x € A, denoted KL(p || ¢) or KL(p, q), is a measure of similarity between
p and ¢q and is given by

KL(p || 9) = - [ p0mate)dx (= [ pex)np(x) dx)

Note that KL(p [| ¢) # KL(q || p).
Claim 9.1.1. KL(p || ¢) > 0 with equality if and only if p(x) = q(x).
Proof. asdf O

9.2. Kolmogorov-Smirnov test

9.2.1. Kolmogorov-Smirnov statistic

Null hypothesis, often denoted by Hj is a general statement or a default position saying
there is no relationship between two measured phenomena.
The Kolmogorov (KS) test quantifies a distance between
e The empirical distribution function (or the empirical cdf) and the cdf of the refer-
ence function (Hy = sample is drawn from the reference distribution), or
e The empirical cdfs of two samples (Hy = samples are drawn from the same distri-
bution).
The empirical cdf Fy for N iid observations {z,} is

Fy(z) & %ZH(% <) 9.2)

basically Fy(z) = % x number of samples less than or equal to z.

The KS statistic for a given cdf F'(z) is

Dy (z) = sup [Fiy(z) — F(2)] (9-3)

By Glivenko-Cantelli theorem, if {x,,} ~ F, then Dy — 0 almost surely when N — oo.
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A. Particle filter animation

89
Needs to be opened in Adobe Reader.
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