
Hamilton: Natively bringing
software engineering best
practices to python data

transformations
Stefan Krawczyk CEO; Ex-Stitch Fix, Ex-Nextdoor, Ex-LinkedIn
Elijah ben Izzy CTO; Ex-Stitch Fix, Ex-Two Sigma
DAGWorks (YCW23)

Q: Doing data transforms in python?
A: Hamilton might be a fit for you!

pip install sf-hamilton

Get started in <15 minutes!
 https://hamilton-docs.gitbook.io/

TL;DR

https://hamilton-docs.gitbook.io/

A motivating story of DS pain
The solution: Hamilton
Hamilton @ Stitch Fix
General Usage
Native SWE: Problems & how Hamilton helps
Summary
OS Roadmap

The Agenda

Backstory: an old model at Stitch Fix

4

What
Hamilton

helped solve!

Biggest problems here

Forecasting the business (demand, signups, churn)

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

Backstory: TS -> Dataframe creation

5

Columns are
functions of

other columns

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985

Backstory: TS -> Dataframe creation

6

g(f(A,B), …)

h(g(f(A,B), …), …)

etc🔥

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787

Backstory: Creating training table

7

df = loader.load_actuals(dates) # e.g. spend, signups

Backstory: Creating training table

8

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])

Backstory: Creating training table

9

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)

Backstory: Creating training table

10

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])

Backstory: Creating training table

11

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Backstory: Creating training table

12

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Now scale this code to 1000+ columns & a growing team
😬

Problem: unit & integration testing; data quality
👎

13

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Now scale this code to 1000+ columns & a growing team
😬

Problem: code readability & documentation 🧐

14

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

?

Now scale this code to 1000+ columns & a growing team
😬

Problem: difficulty in tracing lineage 🤯

15

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Now scale this code to 1000+ columns & a growing team
😬

Problem: code reuse and duplication

16

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

✂📋

Now scale this code to 1000+ columns & a growing team
😬

Problem: onboarding 📈

17

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Now scale this code to 1000+ columns & a growing team
😬

Problem: debugging 📈

18

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Now scale this code to 1000+ columns & a growing team
😬

19Data Con 2021

Backstory: an old model at Stitch Fix
Q: What happens when you have all of those problems, and…
❏ You want to expand your models to new regions?
❏ You have to add complex scenarios on management’s whim?
❏ You have a data bug and very little time to solve it?

A: It wasn’t fun.
+ This is not a unique experience to Stitch Fix, time-series forecasting,

or even pandas

Questions for you!

1. Are any of these pains familiar to you? If so, which ones?
2. Do you have some other pains related to modeling?

✋ Raise hand | Unmute !

A motivating story of DS pain
The solution: Hamilton
Hamilton @ Stitch Fix
General Usage
Native SWE: Problems & how Hamilton helps
Summary
OS Roadmap

The Agenda

Hamilton: the “A-ha” Moment

Idea: What if every output (column) corresponded to exactly one python fn?

Addendum: What if you could determine the dependencies from the way
that function was written?

In Hamilton, the output (e.g. column)
is determined by the name of the function.

The dependencies are determined by the input parameters.

Old Way vs Hamilton Way:

Instead of*

You declare

23

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

(driver code not shown, also Hamilton is python type agnostic)

Instead of

You declare
Inputs == Function Arguments

Old Way vs Hamilton Way:

24

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Outputs == Function Name

Full Hello World

25

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions

Driver says what/when to execute

Hamilton TL;DR:

1. For each transform (=), you write a function(s)
2. Functions declare a DAG
3. Hamilton handles DAG execution

26

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Replaces c = a + b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Replaces d = transform(c)"""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...},
 feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

But Wait, There’s More…!

Q: Doesn’t Hamilton make your code more verbose?
A: Yes, but not always a bad thing. When it is, we have decorators!
❏ @tag # attach metadata
❏ @parameterize # curry + repeat a function
❏ @extract_columns # one dataframe -> multiple series
❏ @extract_outputs # one dict -> multiple outputs
❏ @check_output # data validation; very lightweight
❏ @config.when # conditional transforms
❏ @... # new ones often

And then there’s visualization: e.g.

dr.visualize_execution(...):

A motivating story of DS pain
The solution: Hamilton
Hamilton @ Stitch Fix
General Usage
Native SWE: Problems & how Hamilton helps
Summary
OS Roadmap

The Agenda

Hamilton @ Stitch Fix

Running in production for 3+ years

Initial use-case grew to manage 4000+ feature definitions

Data science teams ❤ it

❏ Enabled 4x faster monthly model + feature update
❏ Easy to onboard new team members - lineage & docs FTW!
❏ Code reviews are simpler
❏ Finally have unit tests
❏ Auto-generated sphinx documentation

30

A motivating story of DS pain
The solution: Hamilton
Hamilton @ Stitch Fix
General Usage
Native SWE: Problems & how Hamilton helps
Summary
OS Roadmap

The Agenda

General usage of Hamilton

What is Hamilton good for?

● Anyone having to deal with a lot of transforms
○ Time-series feature engineering (origin)
○ Tired of managing scripts that do transformations…

● Code & software best practices enthusiasts
● Still scratching the surface here!

○ E.g. Can logically model a lot of problems, and decide later how to materialize it.

What is Hamilton not good for?

● “Dynamic DAGs” that change what should be computed based on
the output of the prior step.

32

Overview: General usage of Hamilton

1. Create functions in module(s).
2. Create drivers to drive execution of those functions.
3. Execute driver code.

Notes:

● Can model any python object creation (not just pandas), e.g. ML flows.
● Batch: use Hamilton within Airflow (et al), Jupyter notebook etc.
● Online: embed within python streaming / python web services

33

Data loading &
Feature code:

34

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

Via
Driver:

Feature
Dataframe:

Modeling e.g. featurization

features.py

run.py

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling e.g. featurization

35

Data
Loaders

Feature
Functions

Drivers

Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling e.g. featurization

36

Data
Loaders

Drivers

Feature
Functions

A motivating story of DS pain
The solution: Hamilton
Hamilton @ Stitch Fix
General Usage
Native SWE: Problems & how Hamilton helps
Summary
OS Roadmap

The Agenda

Native SWE: Problems with Python transform Code

}

}

> Human/Team:

● Highly coupled code
● In ability to reuse/understand work
● Broken/unhealthy production pipelines

> Machines:

● Data is too big to fit in memory
● Cannot easily parallelize computation

38

Hamilton helps here!

Hamilton has
integrations here!

Hamilton Functions:

Native SWE: Scaling Humans/Teams

39

client_features.py
@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
 height_std_dev: pd.Series) -> pd.Series:
 """Zero mean unit variance value of height"""
 return height_zero_mean / height_std_dev

Hamilton Features:

● Unit testing ✅ always possible
● Documentation ✅ tags, visualization, function doc
● Modularity/reuse ✅ module curation & decoupled

 drivers; extensibility & decorators
● Central definition store (in code) ✅ naming, curation, versioning
● Data quality ✅ runtime checks

Example: @config - encapsulation of logic

Before
if config['region'] == 'UK':
 df['holidays'] = …
else:
 df['holidays'] = …

After
@config.when(region="US")
def holidays__us(dep1: pd.Series, dep2: str) -> pd.Series:

@config.when(region="UK")
def holidays__uk(dep1: pd.Series, other_dep: str) -> pd.Series:

Example: Documentation

Before
df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

- Discovery of what’s there? - Where do I start?
- Who owns things? - Onboarding/Offboarding
- Where is the code that created this output?

Example: Documentation

After

client_features.py
@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
 height_std_dev: pd.Series) -> pd.Series:
 """Zero mean unit variance value of height"""
 return height_zero_mean / height_std_dev

- Module name
- @tag & @check_output
- Function & parameter names
- Function doc strings → sphinx docs
- 1-1 output to function mapping

Example: data quality

Before

1. Execute code to create data
2. Run data through various tests
3. If error, find code to debug …

Updates:

1. Update code, forget to update
data tests.

2. Run data through various tests
3. If error, update test.

After (shift left)

1. Put expectation on function
2. Execute code – error / warn.
3. If error, know exactly where in your code to

start debugging from

Updates:

1. Update code and update expectation in
same PR!

@check_output(schema=...)
def height_feature(...) -> pd.Series:
 # some logic

Code base implications:

1. Functions are always in modules
2. Driver script, i.e execution script, is decoupled from functions.

Native SWE: Scaling Humans/Teams

44

Module spend_features.py

Module markerting_features.py

Module customer_features.py

Driver script 1

> Code reuse from day one!
> Low maintenance to support many driver scripts

Driver script 2

Driver script 3

Example: driver contexts - decoupling concerns

Before
df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:
 df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Easy to couple:

1. Where data comes from.
2. Logic to process it.
3. Different concerns because of

code inertia - “just append”.

Hard to reuse logic.

After
logic_modules*.py
def avg_3wk_spend(spend: pd.Series) -> pd.Series:

@config.when(region="US")
def holidays(dep1: pd.Series, dep2: str) -> pd.Series:

us_driver.py

uk_driver.py

Hard to couple:

1. Where data comes from.
2. Different needs in the same code.

Easy to add new contexts and reuse
existing logic.

Native SWE: Scaling Compute/Data with Hamilton

Hamilton has the following integrations out of the box:

● Ray
○ Single process -> Multiprocessing -> Cluster

● Dask
○ Single process -> Multiprocessing -> Cluster

● Pandas on Spark
○ Uses enables using Pandas Spark API with your Pandas code easily

● Switching to run on Ray/Dask/Pandas on Spark requires:

> Only changing driver.py code*
> Pandas on Spark also needs changing how data is loaded.

Native SWE? Decoupling of dataflow from execution.
46

Hamilton + Ray/Dask/Spark: Driver only change

47

run.py
from hamilton import driver
import data_loaders
import date_features
import spend_features
config = {...} # config, e.g. data_location
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted)
save(feature_df, 'prod.features')

Hamilton + Ray: Driver only change

48

run.py
from hamilton import driver
import data_loaders
import date_features
import spend_features
config = {...} # config, e.g. data_location
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted)
save(feature_df, 'prod.features')

run_on_ray.py
…
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders, date_features, spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

Hamilton + Dask: Driver only change

49

run.py
from hamilton import driver
import data_loaders
import date_features
import spend_features
config = {...} # config, e.g. data_location
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted)
save(feature_df, 'prod.features')

run_on_dask.py
…
from hamilton import base, driver
from hamilton.experimental import h_dask
…
client = Client(Cluster(...)) # dask cluster/client
config = {...}
dga = h_dask.DaskGraphAdapter(client,
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders, date_features, spend_features,
 adapter=dga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
client.shutdown()

Hamilton + Spark: Driver change + loader

50

run.py
from hamilton import driver
import data_loaders
import date_features
import spend_features
config = {...} # config, e.g. data_location
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted)
save(feature_df, 'prod.features')

run_on_pandas_on_spark.py
…
import pyspark.pandas as ps
from hamilton import base, driver
from hamilton.experimental import h_spark
…
spark = SparkSession.builder.getOrCreate()
ps.set_option(...)
config = {...}
skga = h_dask.SparkKoalasGraphAdapter(spark, spine='COLUMN_NAME',
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 spark_data_loaders, date_features,spend_features,
 adapter=skga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
spark.stop()

Hamilton + Ray/Dask: How does it work?

51

FUNCTIONS
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

DRIVER
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

DAG

Hamilton + Ray/Dask: How does it work?

52

FUNCTIONS
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

DRIVER
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

Delegate to Ray/Dask
…
ray.remote(
 node.callable).remote(**kwargs)
—---—---—---—---—---
dask.delayed(node.callable)(**kwargs)

DAG

Hamilton + Spark: How does it work?

53

FUNCTIONS
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

DRIVER
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

With Spark
…

Change these to load
Spark “Pandas”
equivalent object
instead.

Spark will take care
of the rest.

DAG

Hamilton + Ray/Dask/Pandas on Spark: Caveats

Things to think about:

1. Serialization:
a. Hamilton defaults to serialization methodology of these frameworks.

2. Memory:
a. Defaults should work. But fine tuning memory on a “function” basis is not exposed.

3. Python dependencies:
a. You need to manage them.

4. Looking to graduate these APIs from experimental status

>> Looking for contributions here to extend support in Hamilton! <<

Otherwise `modin` is also an option – but requires changing imports.

54

Native SWE - How Hamilton Helps: Summary

Hamilton forces you to write transforms as python functions.
These python functions provide everything you need:
❏ Unit testing: simple – plain python functions!
❏ Documentation: use the docstring & create visualizations
❏ Modularity: Small pieces -> by definition
❏ Catalog: via Code -> “definition store”
❏ Debugging: Methodical
❏ Trustworthy data: Validation included out of the box with @check_output
Decorators → powerful, higher-order operations (didn’t cover here)

Driver → decouple transform definition from execution

A motivating story of DS pain
The solution: Hamilton
Hamilton @ Stitch Fix
General Usage
Native SWE: Problems & how Hamilton helps
Summary
OS Roadmap

The Agenda

Summary:
Hamilton natively brings SWE best practices
● Hamilton is a declarative paradigm to describe data/feature

transformations
○ Embeddable anywhere that runs python.

● It grew out of a need to tame a feature (i.e. transform) code base
○ it’ll make yours better too!

● The Hamilton paradigm scales humans/teams through software
engineering best practices that come naturally.

● Hamilton paired with a system (e.g. modin, ray, etc) enables one to:

scale humans/teams and scale data/compute.

57

A motivating story of DS pain
The solution: Hamilton
Hamilton @ Stitch Fix
General Usage
Native SWE: Problems & how Hamilton helps
Summary
OS Roadmap

The Agenda

OS Progress

Early stages, but thriving community

❏ Being used in production in multiple companies (see below)
❏ ⭐ 800+ stars on github

Looking for

❏ Contributors
❏ Bug hunters
❏ User feedback

IBM – UK Govt. Digital Services – British Cycling Team – Transfix – Pacific
Northwest National Laboratories – Stitch Fix – ...

59

Our Vision

The connecting layer that makes it easy to connect with:

Connect with orchestration frameworks

Integrate with data quality vendors/OS options

Integrate loading from a variety of upstream sources

SQL support (+duckdb)
60

Roadmap

More Dataframe support

❏ Polars
❏ Better integration with PySpark UDFs

New decorators

❏ Reuse sub-dag (pushed), e.g. compute grains.
❏ More natural SQL support (WIP)

Execution related

❏ Profiling
❏ Caching
❏ <Your idea here!> 61

Give Hamilton a Try!
We’d love your Feedback

> pip install sf-hamilton

⭐ on github (https://github.com/stitchfix/hamilton)

☑ create & vote on issues on github

📣 join us on on Slack
(https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg)

62

https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you.
Questions?

https://twitter.com/hamilton_os

https://github.com/stitchfix/hamilton

https://hamilton-docs.gitbook.io/

https://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczyk/

https://www.dagworks.io (sign up!)

https://twitter.com/hamilton_os
https://github.com/stitchfix/hamilton
https://hamilton-docs.gitbook.io/
https://twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk/
https://www.dagworks.io

