Hamilton: *Natively* bringing software engineering best practices to python data transformations

Stefan Krawczyk Elijah ben Izzy DAGWorks (YCW23) CEO; Ex-Stitch Fix, Ex-Nextdoor, Ex-LinkedIn CTO; Ex-Stitch Fix, Ex-Two Sigma

TL;DR

Q: Doing data transforms in python? **A: Hamilton** might be a fit for you!

pip install **sf-hamilton**

Get started in <15 minutes! https://hamilton-docs.gitbook.io/

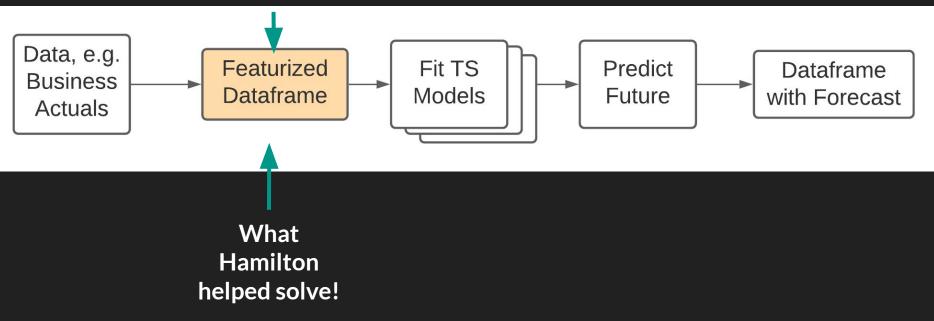
The Agenda

A motivating story of DS pain The solution: Hamilton Hamilton @ Stitch Fix **General Usage** Native SWE: Problems & how Hamilton helps Summary **OS Roadmap**

Backstory: an old model at Stitch Fix

Forecasting the business (demand, signups, churn)

Biggest problems here



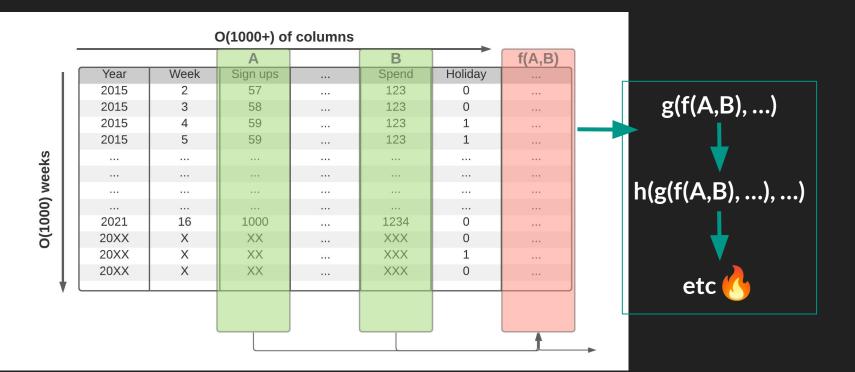
Backstory: TS -> Dataframe creation

Year	Week	Sign ups		Spend	Holiday	
2015			•••			
	2	57		123	0	
2015	3	58		123	0	
2015	4	59		123	1	
2015	5	59		123	1	
2021	16	1000		1234	0	
20XX	Х	XX		XXX	0	
20XX	Х	XX		XXX	1	
20XX	Х	XX		XXX	0	

O(1000) weeks

Columns are functions of other columns

Backstory: TS -> Dataframe creation



df = loader.load_actuals(dates) # e.g. spend, signups

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:

df['holidays'] = is holiday(df['year'], df['week'])

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend shift 3weeks'] = df['spend'].shift(3)

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

...

```
df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
    df[!bolidays!l = is wk boliday(df[!woar!l__df[! wook])
```

df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

<u>Problem</u>: unit & integration testing; data quality

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Problem: code readability & documentation 🧐

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':

df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week']) df['avg_3wk_spend'] = df['spend'].rolling(3).mean() df['acquisition_cost'] = df['spend'] / df['signups'] df['spend_shift_3weeks'] = df['spend'].shift(3) df['special_feature1'] = compute_bespoke_feature(df) df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B']) save_df(df, "some_location")

Now scale this code to 1000+ columns & a growing team

...

<u>Problem</u>: difficulty in tracing lineage 🤯

```
df = loader.load actuals(dates) # e.g. spend, signups
  if config['region'] == 'UK':
     df['holidays'] = is uk holiday(df['year'], df[' week'])
  else:
     df['holidays'] = is holiday(df['year'], df['week'])
  df['avg 3wk spend'] = df['spend'].rolling(3).mean()
->df['acquisition cost'] = df['spend'] / df['signups']
  df['spend shift 3weeks'] = df['spend'].shift(3)
  df['special feature1'] = compute bespoke feature(df)
df['spend b'] = multiply columns(df['acquisition cost'], df['B'])
  save df(df, "some location")
```

Problem: code reuse and duplication

df = loader.load actuals(dates) # e.g. spend, signups if config['region'] == 'UK': df['holidays'] = is uk holiday(df['year'], df[' week']) else: df['holidays'] = is holiday(df['year'], df['week']) df['avg 3wk spend'] = df['spend'].rolling(3).mean() df['acquisition_cost'] = df['spend'] / df['signups'] 🗲 df['spend shift 3weeks'] = df['spend'].shift(3) df['special feature1'] = compute bespoke feature(df) df['spend b'] = multiply columns(df['acquisition cost'], df['B']) save df(df, "some location")

<u>Problem</u>: onboarding 📈

df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
 df['holidays'] = is_uk_holiday(df['year'], df[' week'])
else:

df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")

Problem: debugging

df = loader.load actuals(dates) # e.g. spend, signups if config['region'] == 'UK': df['holidays'] = is uk holiday(df['year'], df[' week']) else: df['holidays'] = is holiday(df['year'], df['week']) df['avg 3wk spend'] = df['spend'].rolling(3).mean() df['acquisition cost'] = df['spend'] / df['signups'] df['spend shift 3weeks'] = df['spend'].shift(3) df['special feature1'] = compute bespoke feature(df) df['spend b'] = multiply columns(df['acquisition cost'], df['B'])

save df(df, "some location")

Backstory: an old model at Stitch Fix

Q: What happens when you have all of those problems, and...

- You want to expand your models to new regions?
- You have to add complex scenarios on management's whim?
- You have a data bug and very little time to solve it?

A: It wasn't fun.

+ This is not a unique experience to Stitch Fix, time-series forecasting, or even pandas

Questions for you!

- 1. Are any of these pains familiar to you? If so, which ones?
- 2. Do you have some other pains related to modeling?

🖖 Raise hand | Unmute !

The Agenda

A motivating story of DS pain The solution: Hamilton Hamilton @ Stitch Fix **General Usage** Native SWE: Problems & how Hamilton helps Summary **OS Roadmap**

Hamilton: the "A-ha" Moment

Idea: What if every output (column) corresponded to exactly one python fn?

Addendum: What if you could determine the dependencies from the way that function was written?

In Hamilton, the output (e.g. column) is determined by the **name of the function**. The dependencies are determined by **the input parameters**.

Old Way vs Hamilton Way:

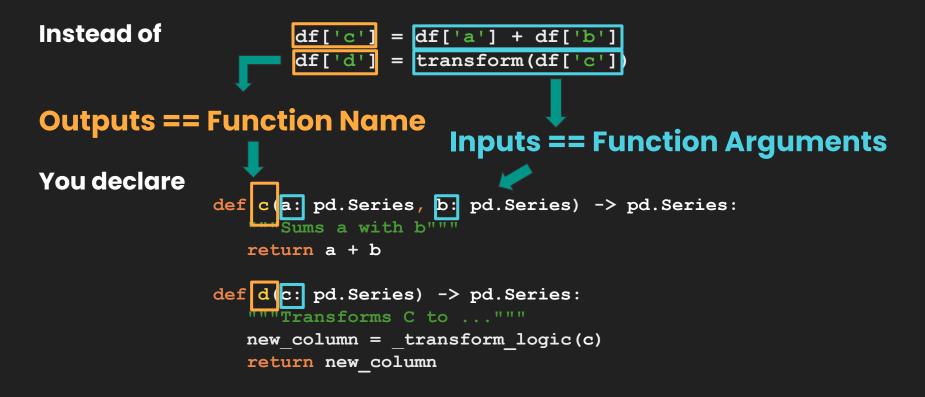
Instead of*

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

You declare def c(a: pd.Series, b: pd.Series) -> pd.Series: """Sums a with b""" return a + b def d(c: pd.Series) -> pd.Series: """Transforms C to ...""" new_column = _transform_logic(c) return new_column

(driver code not shown, also Hamilton is python type agnostic)

Old Way vs Hamilton Way:



Full Hello World

Functions

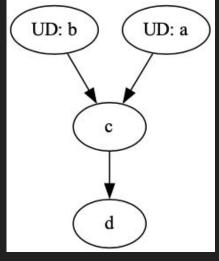
feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""

```
return a + b
```

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Driver says what/when to execute

run.py
from hamilton import driver
import feature logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df result)

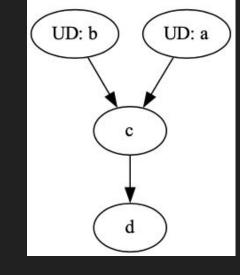


Hamilton TL;DR:

- 1. For each transform (=), you write a function(s)
- 2. Functions declare a DAG
- 3. Hamilton handles DAG execution

```
# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Replaces c = a + b"""
    return a + b
```

```
def d(c: pd.Series) -> pd.Series:
    """Replaces d = transform(c)"""
    new_column = _transform_logic(c)
    return new_column
```



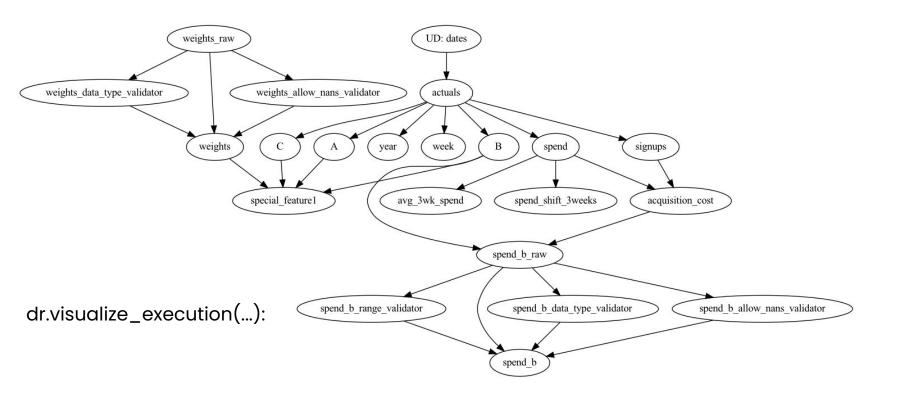
But Wait, There's More...!

Q: Doesn't Hamilton make your code more verbose?

A: Yes, but not always a bad thing. When it is, we have decorators!

- @tag # attach metadata
- □ **@parameterize** # curry + repeat a function
- **@extract_columns** # one dataframe -> multiple series
- @extract_outputs # one dict -> multiple outputs
- Ccheck_output # data validation; very lightweight
- **Config.when** # conditional transforms
- @... # new ones often

And then there's visualization: e.g.



The Agenda

A motivating story of DS pain The solution: Hamilton Hamilton @ Stitch Fix **General Usage** Native SWE: Problems & how Hamilton helps Summary **OS Roadmap**

Hamilton @ Stitch Fix

Running in production for **3+** years

Initial use-case grew to manage **4000+** feature definitions

Data science teams 🤎 it

- Enabled 4x faster monthly model + feature update
- Easy to onboard new team members lineage & docs FTW!
- Code reviews are simpler
- Given Finally have unit tests
- Auto-generated sphinx documentation

The Agenda

A motivating story of DS pain The solution: Hamilton Hamilton @ Stitch Fix **General Usage** Native SWE: Problems & how Hamilton helps Summary **OS Roadmap**

General usage of Hamilton

What is Hamilton good for?

- Anyone having to deal with a lot of transforms
 - Time-series feature engineering (origin)
 - Tired of managing scripts that do transformations...
- Code & software best practices enthusiasts
- Still scratching the surface here!
 - E.g. Can logically model a lot of problems, and decide later how to materialize it.

What is Hamilton <u>not</u> good for?

• "Dynamic DAGs" that change what should be computed based on the output of the prior step.

Overview: General usage of Hamilton

- 1. Create functions in module(s).
- 2. Create drivers to drive execution of those functions.
- 3. Execute driver code.

Notes:

- Can model **any** python object creation (not just pandas), e.g. ML flows.
- **Batch**: use Hamilton within Airflow (et al), Jupyter notebook etc.
- **Online**: embed within python streaming / python web services

Modeling e.g. featurization

"""Some docs""

return some library (year, week)

return spend.rolling(3).mean()

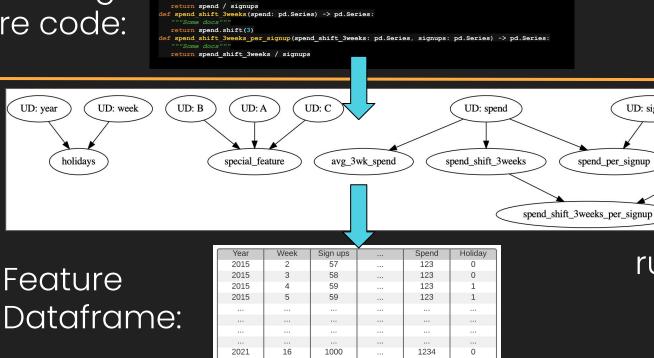
def holidays(year: pd.Series, week: pd.Series) -> pd.Series;

def spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:

def avg 3wk spend(spend: pd.Series) -> pd.Series:

Data loading & Feature code:

UD: year



features.py

UD: signups

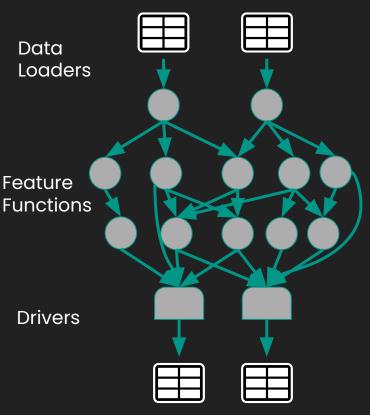
run.py

34

Modeling e.g. featurization

Code that needs to be written:

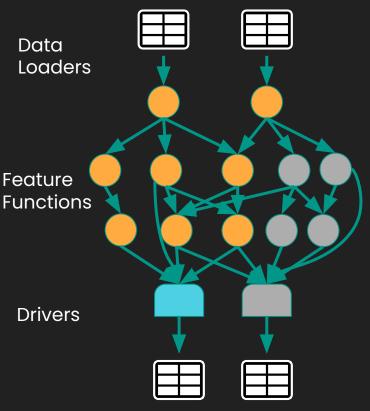
- 1. Functions to load data
 - a. normalize/create common index to join on
- 2. Feature functions
 - a. Optional: model functions.
- 3. Drivers materialize data
 - a. DAG is walked for only what's needed.



Modeling e.g. featurization

Code that needs to be written:

- 1. Functions to load data
 - a. normalize/create common index to join on
- 2. Feature functions
 - a. Optional: model functions.
- 3. Drivers materialize data
 - a. DAG is walked for only what's needed.



The Agenda

A motivating story of DS pain The solution: Hamilton Hamilton @ Stitch Fix **General Usage** Native SWE: Problems & how Hamilton helps Summary **OS Roadmap**

Native SWE: Problems with Python transform Code

> Human/Team:

- Highly coupled code
- In ability to reuse/understand work
- Broken/unhealthy production pipelines

> Machines:

- Data is too big to fit in memory
- Cannot easily parallelize computation

} Hamilton has

integrations here!

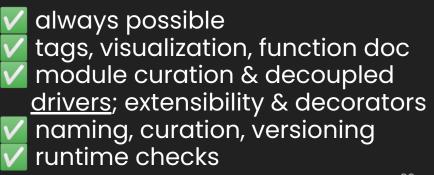
Hamilton helps here!

Native SWE: Scaling Humans/Teams

Hamilton Functions:

Hamilton Features:

- Unit testing
- Documentation
- Modularity/reuse
- Central definition store (in code)
- Data quality



Example: @config - encapsulation of logic

<u>Before</u>

```
if config['region'] == 'UK':
    df['holidays'] = ...
else:
```

```
df['holidays'] = ...
```

<u>After</u>

```
@config.when(region="US")
```

def holidays __us(dep1: pd.Series, dep2: str) -> pd.Series:

```
@config.when(region="UK")
```

def holidays__uk(dep1: pd.Series, other_dep: str) -> pd.Series:

Example: Documentation

<u>Before</u>

```
df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
    df['holidays'] = is_uk_holiday(df['year'], df['week'])
else:
    df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")
```

- Discovery of what's there?
- Who owns things?

- Where do I start?
- Onboarding/Offboarding
- Where is the code that created this output?

Example: Documentation

After

client features.py # @tag(owner='Data-Science', pii='False') @check output(data type=np.float64, range=(-5.0, 5.0), allow nans=False) def height zero mean unit variance (height zero mean: pd.Series,

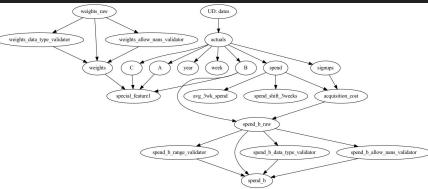
height std dev: pd.Series) -> pd.Series:

"""Zero mean unit variance value of height"""

return height zero mean / height std dev

- **Module name**
- @tag & @check_output
- Function & parameter names
- Function doc strings \rightarrow sphinx docs
- 1-1 output to function mapping

Sample Project 0.0.1 documentati	on » trees » trees package » trees.binary_tree
Table of Contents	trees.binary_trees package
trees.binary_trees package Submodules trees.binary_trees.avl_tree	Submodules
<pre>module trees.binary_trees.binary_se arch_tree module</pre>	trees.binary_trees.avl_tree module
 trees.binary_trees.binary_tre e module 	AVL Tree.
 trees.binary_trees.red_black tree module 	class trees.binary_trees.avl_tree.AVLNode(key: Any, data: Any, left: Optional
trees.binary_trees.threaded_	– None, right: Optional[trees.binary_trees.av[_tree.AVLNode] = None, parent:
 binary_tree module trees.binary_trees.traversal module 	Optional[trees.binary_trees.avl_tree.AvlNode] = None, height: int = 0) Bases: trees.binary_trees.binary_tree.Node
 Routines 	AVL Tree node definition.
 Module contents 	height: int = 0
Previous topic	left: Optional[trees.binary_trees.av[_tree.AVLNode] = None
trees.bin package	parent: Optional[trees.binary_trees.av]_tree.AV[Node] = None



Example: data quality

<u>Before</u>

- 1. Execute code to create data
- 2. Run data through various tests
- 3. If error, find code to debug ...

Updates:

- 1. Update code, forget to update data tests.
- 2. Run data through various tests
- 3. If error, update test.

<u>After (shift left)</u>

- 1. Put expectation on function
- 2. Execute code error / warn.
- 3. If error, know exactly where in your code to start debugging from

Updates:

1. Update code and update expectation in same PR!

```
@check output(schema=...)
def height_feature(...) -> pd.Series:
    # some logic
```

Native SWE: Scaling Humans/Teams

Code base implications:

- 1. Functions are always in modules
- 2. Driver script, i.e execution script, is decoupled from functions.

> Code reuse from day one!

> Low maintenance to support many driver scripts

Example: driver contexts - decoupling concerns

<u>Before</u>

```
df = loader.load_actuals(dates) # e.g. spend, signups
if config['region'] == 'UK':
    df['holidays'] = is_uk_holiday(df['year'], df['week'])
else:
    df['holidays'] = is_holiday(df['year'], df['week'])
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()
df['acquisition_cost'] = df['spend'] / df['signups']
df['spend_shift_3weeks'] = df['spend'].shift(3)
df['special_feature1'] = compute_bespoke_feature(df)
df['spend_b'] = multiply_columns(df['acquisition_cost'], df['B'])
save_df(df, "some_location")
```

Easy to couple:

- 1. Where data comes from.
- 2. Logic to process it.
- 3. Different concerns because of code inertia "just append".

Hard to reuse logic.

<u>After</u>

logic_modules*.py

```
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
```

```
@config.when(region="US")
def holidays(dep1: pd.Series, dep2: str) -> pd.Series:
```

```
# us_driver.py
```

```
# uk_driver.py
```

Hard to couple:

- 1. Where data comes from.
- 2. Different needs in the same code.

Easy to add new contexts and reuse existing logic.

Native SWE: Scaling Compute/Data with Hamilton

Hamilton has the following integrations out of the box:

- Ray
 - Single process -> Multiprocessing -> Cluster
- Dask
 - Single process -> Multiprocessing -> Cluster
- Pandas on Spark
 - Uses enables using Pandas Spark API with your Pandas code easily
- Switching to run on Ray/Dask/Pandas on Spark requires:

<u>Only</u> changing driver.py code*

> Pandas on Spark also needs changing how data is loaded.

Native SWE? Decoupling of dataflow from execution.

Hamilton + Ray/Dask/Spark: Driver only change

```
# run.py
from hamilton import driver
import data loaders
import date features
import spend features
config = {...} # config, e.g. data location
dr = driver.Driver(config,
                  data loaders,
                  date features,
                  spend features)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted)
save(feature df, 'prod.features')
```

Hamilton + Ray: Driver only change

run on ray.py

```
from hamilton import base, driver
from hamilton.experimental import h ray
ray.init()
config = \{\ldots\}
rga = h ray.RayGraphAdapter(
    result builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
                  data loaders, date features, spend features,
                  adapter=rga)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
                       inputs=date features)
save(feature df, 'prod.features')
ray.shutdown()
```

Hamilton + Dask: Driver only change

```
# run_on_dask.py
```

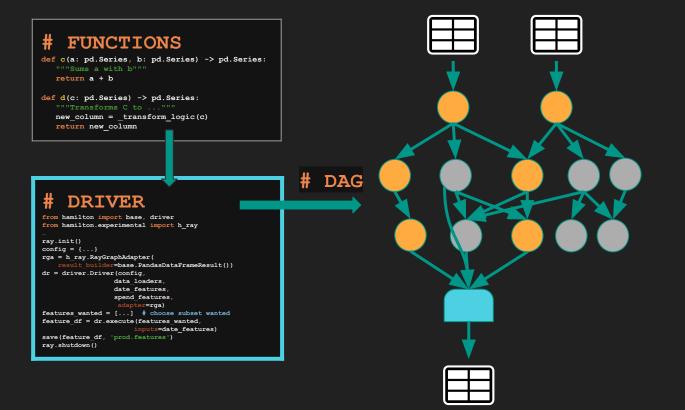
```
from hamilton import base, driver
from hamilton.experimental import h dask
client = Client(Cluster(...)) # dask cluster/client
config = \{\ldots\}
dga = h dask.DaskGraphAdapter(client,
    result builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
                  data loaders, date features, spend features,
                  adapter=dga)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
                       inputs=date features)
save(feature df, 'prod.features')
client.shutdown()
```

Hamilton + Spark: Driver change + loader

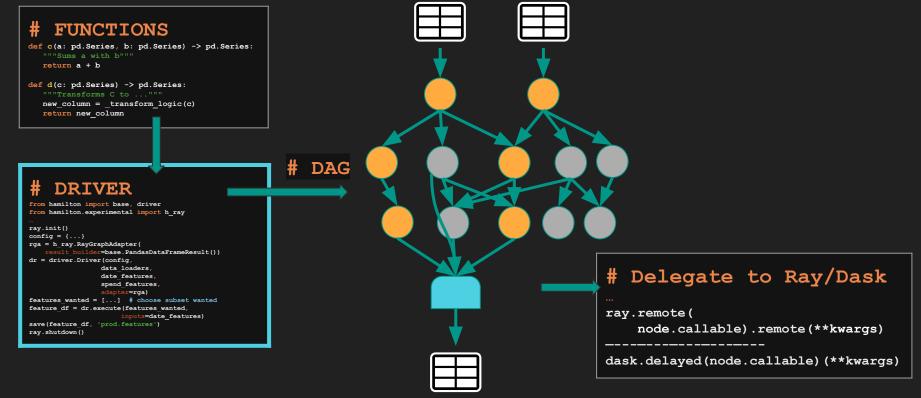
run_on_pandas_on_spark.py

```
import pyspark.pandas as ps
from hamilton import base, driver
from hamilton.experimental import h spark
spark = SparkSession.builder.getOrCreate()
ps.set option(...)
config = \{\ldots\}
skga = h dask.SparkKoalasGraphAdapter(spark, spine='COLUMN NAME',
    result builder=base.PandasDataFrameResult())
dr = driver.Driver(config)
                  spark data loaders, date features, spend features,
                  adapter=skga)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
                       inputs=date features)
save(feature df, 'prod.features')
spark.stop()
```

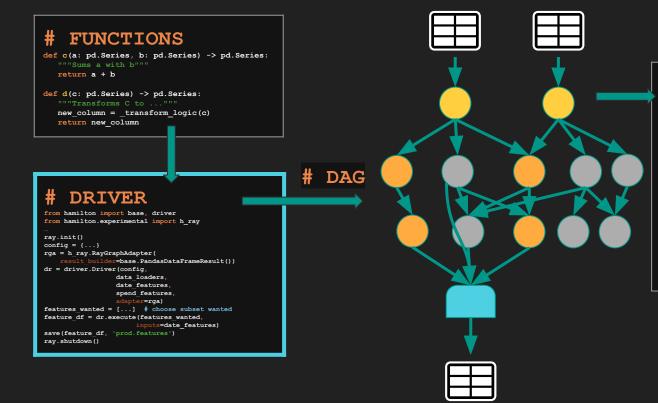
Hamilton + Ray/Dask: How does it work?



Hamilton + Ray/Dask: How does it work?



Hamilton + Spark: How does it work?



With Spark

Change these to load Spark "Pandas" equivalent object instead.

Spark will take care of the rest.

Hamilton + Ray/Dask/Pandas on Spark: Caveats

Things to think about:

- 1. Serialization:
 - a. Hamilton defaults to serialization methodology of these frameworks.
- 2. Memory:
 - a. Defaults should work. But fine tuning memory on a "function" basis is not exposed.
- 3. Python dependencies:
 - a. You need to manage them.
- 4. Looking to graduate these APIs from *experimental status*
- >> Looking for contributions here to extend support in Hamilton! <<

Otherwise `**modin**` is also an option – but requires changing imports.

Native SWE - How Hamilton Helps: Summary

Hamilton forces you to write transforms as python functions.

These python functions provide everything you need:

- **Unit testing**: simple plain python functions!
- **Documentation**: use the docstring & create visualizations
- □ Modularity: Small pieces -> by definition
- □ Catalog: via Code -> "definition store"
- Debugging: Methodical
- **Trustworthy data**: Validation included out of the box with @check_output

Decorators \rightarrow powerful, higher-order operations (didn't cover here)

Driver \rightarrow decouple transform definition from execution

The Agenda

A motivating story of DS pain The solution: Hamilton Hamilton @ Stitch Fix **General Usage** Native SWE: Problems & how Hamilton helps Summary **OS Roadmap**

Summary: Hamilton natively brings SWE best practices

- Hamilton is a declarative paradigm to describe data/feature transformations
 - Embeddable anywhere that runs python.
- It grew out of a need to tame a feature (i.e. transform) code base
 - it'll make yours better too!
- The Hamilton paradigm scales humans/teams through software engineering best practices that come naturally.
- Hamilton paired with a system (e.g. modin, ray, etc) enables one to:

scale humans/teams **and** scale data/compute.

The Agenda

A motivating story of DS pain The solution: Hamilton Hamilton @ Stitch Fix **General Usage** Native SWE: Problems & how Hamilton helps Summary **OS Roadmap**

OS Progress

Early stages, but thriving community

- Being used in production in multiple companies (see below) \rightarrow 800+ stars on gitbub
- A test stars on github

Looking for

- Contributors
- Bug hunters
- User feedback
- IBM UK Govt. Digital Services British Cycling Team Transfix Pacific Northwest National Laboratories – Stitch Fix – ...

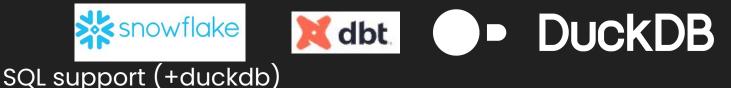
Our Vision

The connecting layer that makes it easy to connect with:

Connect with orchestration frameworks

Integrate with data quality vendors/OS options whylogs

Integrate loading from a variety of upstream sources



Airflow OMETAFLOW

Roadmap

More Dataframe support

- Polars
- Better integration with PySpark UDFs

New decorators

- Reuse sub-dag (pushed), e.g. compute grains.
- □ More natural SQL support (WIP)

Execution related

- Profiling
- Caching
- Your idea here!>

Give Hamilton a Try! We'd love your Feedback

> pip install sf-hamilton

on <u>github</u> (https://github.com/stitchfix/hamilton)

🗹 create & vote on issues on github

join us on on <u>Slack</u>

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you.

Questions?

https://twitter.com/hamilton_os

https://github.com/stitchfix/hamilton

https://hamilton-docs.gitbook.io/

https://twitter.com/stefkrawczyk https://www.linkedin.com/in/skrawczyk/ https://www.dagworks.io (sign up!)