
British Cycling
Data Platform in
Python

Copyright © Infinity Works (part of Accenture) 2022. All rights reserved.

Infinity Works at-a-glance
Edinburgh/Glasgow

80 people

Manchester
180 people

Birmingham/London
205 people

Leeds
240 people

Rory
Patience
Client
Services Lead

Craig Lumley
Technical
Services Lead

Rich Handley
Technical
Services Lead

Dave Postle
Client
Services Lead

Natalie
Lovett
Client
Services Lead

Simon Roberts
Technical
Services Lead

Antony Cox
Technical
Services Lead

Elaine
Shanks
Client
Services Lead

We are unique in: We deliver value fast
If a customer wants to launch new products or services for
clients who want to overtake or stay ahead of their competition.
Think Infinity Works.

We operate in Days & Weeks to build PoC’s and MVPs (Minimum
Viable Products) so customers can interact with the consumers
at the earliest opportunity.

The customers we work with have a Challenger
mindset and have the following characteristics:
● Needs to launch a new, bold and exciting product or service
● Has a strong leadership & vision they want to achieve
● Desire to challenge the market leaders
● Digital-first business
● Financially backed

Commercial Team
Andy Emmett
Head of Alliances

Charles Morgan
Business Development
Executive

mailto:richard.handley@infinityworks.com
mailto:dave.postle@infinityworks.com
mailto:natalie.lovett@infinityworks.com
mailto:simon.a.roberts@infinityworks.com
mailto:antony.g.cox@infinityworks.com
mailto:Elaine.Shanks@infinityworks.com
mailto:andy.emmett@infinityworks.com
mailto:chalres.morgan@infinityworks.com

Murray Tait
Infinity Works part of Accenture

Profile Overview

• Murray is a Senior Technical Architect, Technical Lead
and Delivery Lead with Infinity Works based
in Manchester, Uk.

• Murray has 30 years experience in software
projects implementation

• He specializes in working with agile development
teams using Scrum and Kanban frameworks

• He has been involved in Agile transformation since
2005, by example and though coaching

Skills

Manchester, UK

Functional Expertise

• Serverless architecture

• Delivery management

• Data architecture

• Cloud migration

• Data architecture

Recent Experience - Extract

Velocity Labs, Accenture

• Technical Product Owner responsible for productizing the project from proof of
value to a production-ready multi-client product.

NHSD Spine
• Technical lead of project create multiple Proof of Concept implementations to

move NHSD Spine to a range of Cloud platforms include serverless AWS,
AWS RDS and Azure Cosmos

• Technical lead for upgrading Spine from Python2 to Python3

FibreNation
Great Britain Cycling Team
• Architect and delivery lead of project re-platforming on-prem to cloud with the

capability to provide real-time data during training and competition.
• Data processing and analysis tools allow performance analysts to compare

multiple sessions or multiple efforts over different periods of time and in
various conditions.

InterPay UK
• Senior Technical Architect with oversight of technical delivery of three teams

offshore/onshore
• Specification, design and approval of external and internal APIs and of

database schema

Industry Expertise

• Vehicle Insurance: retail and
wholesale pricing.

• Telemetry insurance: data
collection, aggregation, analysis and
integration.

• Fintech: payment gateway provider
including functional innovation. Test
management and client
facing project
management. Responsibilities in
PCI-DSS compliance

• Vehicle pricing and provenance:
Wholesale and leasing industry.
Consumer facing services

Peter Robinson
Senior Data Engineer
Great Britain Cycling
Team

Background and Experience

● MEng from University of Cambridge,
including a Masters project working
alongside GBCT to develop a collocation
based cycling simulation for optimisation
problems.

● 2 years working at Softwire Ltd as a full stack
developer, including both web and mobile
platforms.

● 9 months working as Senior Data Engineer
for GBCT, handling the entire data lifecycle
from collection through to presentation.

Stefan Krawczyk
CEO DAGWorks
12+ years in ML
 & Data platforms

Win 10 Olympic and 15
Paralympic medals

Data Sources
Video from a number of
cameras around the track
which capture metrics on
rider position and
posture.

Induction Loop fitted
underneath the track to
monitor the rider position.

Hub fitted to each bike to record a
number of ‘onboard’ metrics including
power, speed, air pressure.

Weather Station
next to the track to
record atmospheric
metrics within the
velodrome

Wind Tunnel data captured
through both real world wind
tunnel trials and a digital wind
tunnel hosted in AWS.

External Data Capture to capture data
outside of the velodrome for road cyclists.
Inc. heartrate, power & speed.

Keystone
● Hamilton based

● Run as a cloud function

● Processes raw data into key metrics

● Flexible to different input sources

● Handles missing and poor quality data

● Self-documenting and modular

Data Lineage

@tag(unit="m/s")

def air_speed(

 dynamic_pressure: pd.Series,

 air_density_timeseries: pd.Series,

) -> pd.Series:

 """Function to determine the oncoming air speed for timeseries data, where

 positive is a headwind.

 Units: m/s

 """

 return (2 * dynamic_pressure / air_density_timeseries).pow(0.5)

Introduction of
Hamilton

Stefan Krawczyk

micro-framework for defining dataflows
SWE best practices: ☑ testing ☑ documentation

 ☑ modularity/reuse ☑ lineage

“DBT for python functions”

 pip install sf-hamilton [came from Stitch Fix]

www.tryhamilton.dev ← uses pyodide!

What is Hamilton?

http://www.tryhamilton.dev

Hamilton: “a ha” moment
Table:

spend spend_zero_mean spend_zero_mean_unit_variance

2023-01-01 10 -46 -1.173035

2023-01-02 10 -46 -1.173035

2023-01-03 20 -36 -0.918028

2023-01-04 40 -16 -0.408012

2023-01-05 40 -16 -0.408012

Idea: What if every output (column)
corresponded to exactly one python fn?

Addendum: What if you could
determine the dependencies from the
way that function was written?

def spend_zero_mean_unit_variance(
 spend_zero_mean: pd.Series, spend_std_dev: float
) -> pd.Series:
 """More docs would go here…"""
 return spend_zero_mean / spend_std_dev

Instead of

You declare
Inputs == Function Arguments

Old Way vs Hamilton Way:

20

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Outputs == Function Name

Full Hello World

21

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions

Driver says what/when to execute

A function:

Some Hamilton features that come naturally

22

client_features.py
@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
 height_std_dev: pd.Series) -> pd.Series:
 """Zero mean unit variance value of height"""
 return height_zero_mean / height_std_dev

Features that come naturally with Hamilton:

● Unit & integration testing ✅ always possible & straightforward
● Documentation ✅ tags, visualization, function doc
● Modularity/reuse ✅ module curation & decoupled drivers;

 extensibile & expressive with decorators
● Central definition store (in code) ✅ naming, curation, versioning
● Data quality ✅ runtime checks
● It’s just python code ✅ lightweight and flexible; not just for pandas

“Lineage via code”

dr.visualize_execution(...)

Combine with @tag(...) and can then ask questions like:
dr = driver.Driver(config, data_loading, features, sets, model_pipeline)
nodes = dr.what_is_upstream_of("fit_random_forest")
teams = {node.tags.get("owner") for node in nodes}
print(teams)
> {'data-science', 'data-engineering'}

Write declarative functions, get a DAG!
Runs anywhere python runs

SWE best practices come out of the box - “DBT for python functions”

 pip install sf-hamilton

www.tryhamilton.dev

⭐ https://github.com/dagworks-inc/hamilton

Hamilton Summary

http://www.tryhamilton.dev

A quick word - we’re building on top of Hamilton:

 “Unifying platform layer for data & ML”

If you’re interested in lineage, observability, and catalogs:

> Sign up for early access www.dagworks.io

Q&A

