
February 2024

Hamilton Global User Group
February 2024 Meetup

What is Hamilton?
Hamilton helps data scientists and engineers define testable, modular,
self-documenting dataflows, that encode lineage and metadata.
Runs and scales everywhere python does.

Icebreaker: Name and what you’re using Hamilton for/looking for.

Agenda
1. Community

Spotlight
2. Deep Dive
3. Roadmap
4. Open 🎤

Community Spotlight:
🔎 "How we migrated our feature
calculation to Hamilton" by Arthur Andres.

Deep Dive:
Mental Models for Structuring Projects

My Mental Model for Structuring Projects

With Hamilton you:

1. Write functions
2. Functions are organized into modules.

My Mental Model for Structuring Projects

With Hamilton you:

1. Write functions
2. Functions are organized into modules.

My Mental Model for Structuring Projects

Could be one module…

My Mental Model for Structuring Projects

Or three… or more…

import data_loader, feature_transforms, model_pipeline

DAG for training/inferring on titanic data
titanic_dag = (
 driver.Builder()
 .with_config(config),
 .with_modules(
 data_loader, feature_transforms, model_pipeline
).build()
)
execute & get output
result = titanic_dag.execute(["model_predict"])

My Mental Model for Structuring Projects

import data_loader, feature_transforms, model_pipeline

DAG for training/inferring on titanic data
titanic_dag = (
 driver.Builder()
 .with_config(config),
 .with_modules(
 data_loader, feature_transforms, model_pipeline
).build()
)

My Mental Model for Structuring Projects

Scaling this:

1. Group into thematic modules.
2. Name + type becomes interface.
3. Modularity comes from swapping

modules and/or @config.when

My Mental Model for Structuring Projects

Caveat:

1. Naming constraint.
a. Why? Make it easy to go from

output to code.

Depending on context:

● Different modules for different contexts
● Mutation == new name
● Rename at data ingestion
● Decorators:

○ @subdag, @pipe, …

My Mental Model for Structuring Projects

Summary:

● Modules == Lego bricks
● Lego bricks are standalone

○ But can be composed into
something bigger

● Caveat:
○ Naming

Managing 4000 feature transforms at Stitch Fix

1. Single repository.
2. Naming convention for functions.

a. E.g. D_ is dummy variable.
3. Hierarchically group into subpackages.

#parent/__init__.py

Use it to
aggregate

Managing 4000 feature transforms at Stitch Fix

1. Single repository.
2. Naming convention for functions.

a. E.g. D_ is dummy variable.
3. Hierarchically group into subpackages.
4. At driver construction time, pick right subset of packages

a. Can use importlib to script:

1. Single repository.
2. Naming convention for functions.

a. E.g. D_ is dummy variable.
3. Hierarchically group into subpackages.
4. At driver construction time, pick right subset of packages

a. Can use importlib to script
5. Can change overtime easily:

a. Renaming is just find & replace (largely)
b. Move functions around into other modules

Managing 4000 feature transforms at Stitch Fix

Deep Dive:
Explaining @subdag in two minutes

<- Can use Hamilton within Hamilton

<- But lose “visibility”

@subdag in two minutes

def feature_engineering(source_path: str) -> pd.DataFrame:
 '''You could recursively use Hamilton within itself.'''
 dr = driver.Driver({}, feature_modules)
 df = dr.execute(["feature_df"], inputs={"path": source_path})
 return df

@subdag(
 feature_modules,
 inputs={"path": source("source_path")},
 config={}
)
def feature_engineering(feature_df: pd.DataFrame) -> pd.DataFrame:
 '''We’ve hidden the driver and requested feature_df from it.'''
 return feature_df

<- Make it visible in a single DAG

<- Subdag is “name spaced”.

<- Can use Hamilton within Hamilton

<- But lose “visibility”

@subdag
 in two
minutes

<- Make it visible in a single DAG

<- Subdag is “name spaced”.

🛣 Roadmap Thoughts

Roadmap: Some Recent Releases

● @tag now supports list of strings
● Custom styling for graphviz
● JSON export

Roadmap: Some Recent Releases

● @tag now supports list of strings
● Custom styling for graphviz
● JSON export
● Lightweight experiment tracker →

Roadmap: Some Recent Releases

● @tag now supports list of strings
● Custom styling for graphviz
● JSON export
● Lightweight experiment tracker →
● https://hub.dagworks.io/ additions
● Documentation refactoring
● Lifecycle API & additions, e.g. TQDM, Datadog

https://hub.dagworks.io/
https://hamilton.dagworks.io/en/latest/

Roadmap: Some Recent Releases

● @tag now supports list of strings
● Custom styling for graphviz
● JSON export
● Lightweight experiment tracker →
● https://hub.dagworks.io/ additions
● Documentation refactoring
● Lifecycle API & additions, e.g. TQDM, Datadog

● Caching: .with_adapters(h_diskcache.CacheHook())
● Blogs - e.g. dev to prod ML pipelines.

https://hub.dagworks.io/
https://hamilton.dagworks.io/en/latest/

Roadmap: DAGWorks callout

1. We’re working with design partners to more tightly build out integrations
that shapes open source.
a. Ping us/put your hand up and we can do a 1-1 session if interested.

2. FYI: www.dagworks.io has a free tier we’d love feedback on:
a. One line addition to Hamilton code.
b. Get catalog, telemetry, observability, version capture…

http://www.dagworks.io

Roadmap: What’s on the horizon

● Documentation - code comparisons, integration guides…
● hub.dagworks.io - more examples

Needs prioritization - some ideas:

● Your input/ideas here!
○ Do you have pains? Monitoring? What are you building/integrating with? Etc.
○ Testimonials page - we’d love some blog posts/quotes for social proof.

● Ray/Dask: node grouping
● Snowpark integration
● Data quality integrations/pluggability
● Unit test generator
● Generating Airflow DAGs, AWS lambda integrations, etc.

https://hub.dagworks.io/

🗓 Next month - March 19th:
Roel Bertens
“How to use Hamilton to share (feature) logic across multiple
development teams.”

🎤 Open Mic.

FIN. Thanks for coming!

