
Hamilton:
a python micro-framework for
data / feature engineering
at Stitch Fix

#sfhamilton #MLOps #machinelearning

May 2022

What to keep in mind for the next ~40 minutes?

1. Hamilton is a new paradigm to create dataframes*.

2. Using Hamilton is a productivity boost for teams.

3. It’s open source - join us on:
Github: https://github.com/stitchfix/hamilton
Discord: https://discord.gg/wCqxqBqn73

#sfhamilton #MLOps #machinelearning 2* in fact, any python object really.

https://github.com/stitchfix/hamilton
https://discord.gg/wCqxqBqn73

Talk Outline:
> Backstory: who, what, & why
Hamilton
Hamilton @ Stitch Fix
What can you do with Hamilton?
Future Roadmap

Backstory: who

#sfhamilton #MLOps #machinelearning 4

Forecasting, Estimation, & Demand (FED)Team

● Data Scientists that are responsible for forecasts that help the

business make operational decisions.

○ e.g. staffing levels

● One of the oldest teams at Stitch Fix.

Backstory: what

#sfhamilton #MLOps #machinelearning 5

Forecasting, Estimation, & Demand (FED)Team

FED workflow:

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/0?callback=close&name=slides&callback_type=back&v=28289&s=717.8826771653543

FED workflow: + ==

Backstory: what

#sfhamilton #MLOps #machinelearning 6

Forecasting, Estimation, & Demand Team

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/0?callback=close&name=slides&callback_type=back&v=28289&s=717.8826771653543

Backstory: what

#sfhamilton #MLOps #machinelearning

Creating a dataframe for time-series modeling.

7

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858359028974

Backstory: what

#sfhamilton #MLOps #machinelearning 8

Creating a dataframe for time-series modeling.

What
Hamilton

helped solve!

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

Backstory: why

#sfhamilton #MLOps #machinelearning 9

What is this dataframe & why is it causing 🔥
?

(not big data)

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77722927904506

Backstory: why

#sfhamilton #MLOps #machinelearning 10

What is this dataframe & why is it causing 🔥 ?

Columns are
functions of

other columns

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787
https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985

Backstory: why

#sfhamilton #MLOps #machinelearning 11

What is this dataframe & why is it causing 🔥 ?

g(f(A,B), …)

h(g(f(A,B), …), …)

etc🔥

Columns are
functions of

other columns:

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787

Backstory: why

#sfhamilton #MLOps #machinelearning 12

Featurization: some example code

df = load_dates() # load date ranges
df = load_actuals(df) # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week']) # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean() # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups'] # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3) # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups']

def my_special_feature(df: pd.DataFrame) -> pd.Series:
 return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
...

Backstory: why

#sfhamilton #MLOps #machinelearning 13

Featurization: some example code

df = load_dates() # load date ranges
df = load_actuals(df) # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week']) # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean() # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups'] # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3) # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups']

def my_special_feature(df: pd.DataFrame) -> pd.Series:
 return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
...

Now scale this code to 1000+ columns & a growing team 😬

Backstory: why

○ Testing / Unit testing 👎
○ Documentation 👎
○ Code Reviews 👎
○ Onboarding 📈 👎
○ Debugging 📈 👎

#sfhamilton #MLOps #machinelearning 14

df = load_dates() # load date ranges
df = load_actuals(df) # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week']) # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean() # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups'] # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3) # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups']

def my_special_feature(df: pd.DataFrame) -> pd.Series:
 return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
...

Scaling this type of code results in the following:
- lots of heterogeneity in function definitions & behaviors
- inline dataframe manipulations
- code ordering is super important
- monolithic scripts 😬

Backstory - Summary

#sfhamilton #MLOps #machinelearning 15

Code for featurization == 🤯.

Talk Outline:
Backstory: who, what, & why
> Hamilton
The Outcome
What can you do with Hamilton?
Future Roadmap

Hamilton: Code → Directed Acyclic Graph → Object

Code:

DAG:

Object
(e.g. DataFrame):
#sfhamilton #MLOps #machinelearning 17

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

User

Hamilton

User

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Hamilton: a new paradigm

1. Write declarative

functions!

2. Function name

⇒ output

3. Function inputs

⇒ inputs

#sfhamilton #MLOps #machinelearning 18

Hamilton: a new paradigm

4. Use type hints for

typing checking.

5. Documentation is

easy and natural.

#sfhamilton #MLOps #machinelearning 19

Hamilton: code to directed acyclic graph - how?

1. Inspect module to
extract function
names &
parameters.

2. Nodes & edges +

graph theory 101.

#sfhamilton #MLOps #machinelearning 20

Hamilton: directed acyclic graph to Object - how?

1. Specify outputs &

provide inputs.

2. Determine execution

path.

3. Execute functions once.

4. Combine at the end.

#sfhamilton #MLOps #machinelearning 21

Hamilton: Key Point to remember (1)

#sfhamilton #MLOps #machinelearning 22

Hamilton requires:

1. Function names

2. Function parameter names

to match to stitch together
a directed acyclic graph.

 “they declare their inputs & output”

Hamilton

Hamilton: Key Point to remember (2)

Hamilton users:

do not have to maintain

how to connect

computation with the

outputs required.

#sfhamilton #MLOps #machinelearning 23

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

No monolithic script
to maintain!

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

A declarative dataflow paradigm.

Hamilton: in one sentence

#sfhamilton #MLOps #machinelearning 24

https://en.wikipedia.org/wiki/Dataflow

Hamilton: why is it called Hamilton?

#sfhamilton #MLOps #machinelearning

Naming things is hard...

1. Associations with “FED”:

a. Alexander Hamilton is the father of the Fed.

b. FED models business mechanics.

2. We’re doing some basic graph theory.

apropos Hamilton
25

Example Hamilton Code
So you can get a feel for this paradigm...

#sfhamilton #MLOps #machinelearning 26

Basic code - defining “Hamilton” functions

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

#sfhamilton #MLOps #machinelearning 27

my_functions.py

Basic code - defining “Hamilton” functions

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

#sfhamilton #MLOps #machinelearning 28

Output Column
Input Column

my_functions.py

Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = { # pass in config, initial data (or load data via funcs)
 'C': 3, # a config variable
 'signups': ..., # can pass in initial data – or pass in at execute time.

...
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(config_and_initial_data, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.

#sfhamilton #MLOps #machinelearning 29

Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = { # pass in config, initial data (or load data via funcs)
 'C': 3, # a config variable
 'signups': ..., # can pass in initial data – or pass in at execute time.

...
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(config_and_initial_data, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.

#sfhamilton #MLOps #machinelearning 30

Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = { # pass in config, initial data (or load data via funcs)
 'C': 3, # a config variable
 'signups': ..., # can pass in initial data – or pass in at execute time.

...
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(config_and_initial_data, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.

#sfhamilton #MLOps #machinelearning 31

Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = { # pass in config, initial data (or load data via funcs)
 'C': 3, # a config variable
 'signups': ..., # can pass in initial data – or pass in at execute time.

...
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(config_and_initial_data, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.

#sfhamilton #MLOps #machinelearning 32

Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = { # pass in config, initial data (or load data via funcs)
 'C': 3, # a config variable
 'signups': ..., # can pass in initial data – or pass in at execute time.

...
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(config_and_initial_data, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.

#sfhamilton #MLOps #machinelearning 33

Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = { # pass in config, initial data (or load data via funcs)
 'C': 3, # a config variable
 'signups': ..., # can pass in initial data – or pass in at execute() time.

...
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(config_and_initial_data, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.

#sfhamilton #MLOps #machinelearning 34

Driver code - how do you get a result?
from hamilton import driver
config_and_initial_data = { # pass in config, initial data (or load data via funcs)
 'C': 3, # a config variable
 'signups': ..., # can pass in initial data – or pass in at execute time.

...
 'year': ...
}
module_name = 'my_functions' # e.g. my_functions.py; can instead `import my_functions`
module = importlib.import_module(module_name) # The python file to crawl

dr = driver.Driver(config_and_initial_data, module) # can pass in multiple modules

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed; default obj. is DF.

dr.execute_visualization(output_columns, './dag.dot', {...render config…})

#sfhamilton #MLOps #machinelearning 35

Can visualize what we’re executing too!

Implications for your code base

1. Functions are always in modules.
2. Execution script is decoupled from functions.

#sfhamilton #MLOps #machinelearning 36

Module B

Module C

Module A

Features driver script

Implications for your code base

1. Functions are always in modules.
2. Execution script is decoupled from functions.

#sfhamilton #MLOps #machinelearning 37

Module B

Module C

Module A
Features driver script

Features driver script^

Features driver script^^

> Modules enable reuse from day 1.
> Easy to support different “driver”
 scripts

Note: Hamilton is not an orchestration system

1. Hamilton does not replace an orchestration system
e.g. airflow, kubeflow pipelines, etc.

2. Hamilton instead helps you run/model/execute a single step
in your workflow.

e.g. you would run Hamilton in a step(s) of your ETL.

⇒ Hamilton is a “micro-framework”
#sfhamilton #MLOps #machinelearning 38

Open Source: try it for yourself!

> pip install sf-hamilton

#sfhamilton #MLOps #machinelearning 39

Get started in <15 minutes!

Documentation - https://hamilton-docs.gitbook.io/

Example
https://github.com/stitchfix/hamilton/tree/main/examples/hello_world

https://hamilton-docs.gitbook.io/
https://github.com/stitchfix/hamilton/tree/main/examples/hello_world

Hamilton: Summary

1. A declarative dataflow paradigm.

2. Users write declarative functions that create a

DAG through function & parameter names.

3. Hamilton handles execution of the DAG;

bye bye monolithic scripts.
#sfhamilton #MLOps #machinelearning 40

https://en.wikipedia.org/wiki/Dataflow

Talk Outline:
Backstory: who, what, & why
Hamilton
> Hamilton @ Stitch Fix
What can you do with Hamilton?
Future Roadmap

Hamilton @ SF - after 2+ years in production

#sfhamilton #MLOps #machinelearning 42

Stitch Fix FED + Hamilton:

Original project goals:
● Improve ability to test
● Improve documentation
● Improve development workflow

#sfhamilton #MLOps #machinelearning 43

✅
✅
✅

Why was it a home run?

44

Testing & Documentation

Output “column” → One function:
1. Single place to find logic.
2. Single function that needs to be tested.
3. Function signature makes providing inputs very easy!

a. Function names & input parameters mean something!
4. Functions naturally come with a place for documentation!

⇒ Everything is naturally unit testable!
⇒ Everything is naturally documentation friendly!

#sfhamilton #MLOps #machinelearning 45

Workflow improvements

#sfhamilton #MLOps #machinelearning 46

What Hamilton also easily enabled:
● Ability to visualize computation
● Faster debug cycles
● Better Onboarding / Collaboration

○ Bonus:
■ Central Feature Definition Store

What if you have 4000+ columns to compute?

Visualization

#sfhamilton #MLOps #machinelearning 47

What if you have 4000+ columns to compute?

Hamilton makes this easy to visualize!
(zoomed out here to obscure names)

Visualization

#sfhamilton #MLOps #machinelearning 48

What if you have 4000+ columns to compute?

Hamilton makes this easy to visualize!
(zoomed out here to obscure names)

Visualization

#sfhamilton #MLOps #machinelearning 49

can create `DOT` files for export to
other visualization packages →

Debugging these functions is easy!

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

#sfhamilton #MLOps #machinelearning 50

my_functions.py

Can also import functions into other contexts to help debug.
e.g. in your REPL:
from my_functions import spend_shift_3weeks
output = spend_shift_3weeks(...)

Collaborating on these functions is easy!

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

#sfhamilton #MLOps #machinelearning 51

my_functions.py

Easy to assess impact & changes when:
● names mean something
● adding a new input
● changing the name of a function
● adding a brand new function
● deleting a function

⇒ Code reviews are much faster!
⇒ Easy to pick up where others left off!

Stitch Fix FED’s Central Feature Definition Store

A nice byproduct of using Hamilton!

How they use it:
1. Function names follow team convention.

a. e.g. D_ prefix indicates date feature

#sfhamilton #MLOps #machinelearning 52

Stitch Fix FED’s Central Feature Definition Store

A nice byproduct of using Hamilton!

How they use it:
1. Function names follow team convention.
2. It’s organized into thematic modules, e.g. date_features.py.

a. Allows for working on different part of the DAG easily

#sfhamilton #MLOps #machinelearning 53

https://lucid.app/documents/edit/cc7f8ae3-3980-4703-8669-242ea8bcd674/3?callback=close&name=slides&callback_type=back&v=1082&s=720

Stitch Fix FED’s Central Feature Definition Store

A nice byproduct of using Hamilton!

How they use it:
1. Function names follow team convention.
2. It’s organized into thematic modules, e.g. date_features.py.
3. It’s in a central repository & versioned by git:

a. Can easily find/use/reuse features!
b. Can recreate features from different points in time easily.

#sfhamilton #MLOps #machinelearning 54

FED Testimonials
Just incase you don’t believe me

#sfhamilton #MLOps #machinelearning 55

Testimonial (1)

Danielle Q.

“the encapsulation of the logic in a single named function makes
adding nodes/edges simple to understand, communicate, and transfer
knowledge”

E.g.:
● Pull Requests are easy to review.
● Onboarding is easy.

#sfhamilton #MLOps #machinelearning 56

Testimonial (2)

Shelly J.

“I like how easy-breezy it is to add new nodes/edges to the DAG to
support evolving business needs.”

E.g.
● new marketing push & we need to add a new feature:

○ this takes minutes, not hours!
#sfhamilton #MLOps #machinelearning 57

Hamilton @ Stitch Fix
FED Impact Summary

#sfhamilton #MLOps #machinelearning 58

FED Impact Summary

With Hamilton, the FED Team gained:
● Naturally testable code. Always. ✅
● Naturally documentable code. ✅
● Dataflow visualization for free. ✅
● Faster debug cycles. ✅
● A better onboarding & collaboration experience ✅

○ Central Feature Definition Store as a by product! ✅

Total ⚾ Home Run!
#sfhamilton #MLOps #machinelearning 59

FED Impact Summary

With Hamilton, the FED Team gained:
● Naturally testable code. Always. ✅
● Naturally documentable code. ✅
● Dataflow visualization for free. ✅
● Faster debug cycles. ✅
● A better onboarding & collaboration experience ✅

○ Central Feature Definition Store as a by product! ✅

Total ⚾ Home Run!
#sfhamilton #MLOps #machinelearning 60

[claim]
By using Hamilton, the FED team can
continue to scale their code base,
without impacting team productivity
[/claim]
Question: is that true of your feature code base?

Talk Outline:
Backstory: who, what, & why
Hamilton
Hamilton @ Stitch Fix
> What can you do with Hamilton?
Future Roadmap

What can you do with Hamilton?

1. Using it within any ETL system
2. Scale to big data
3. Model any dataflow

#sfhamilton #MLOps #machinelearning 62

1. Using Hamilton within any ETL system

ETL Framework compatibility:

● all ETL systems that run python 3.6+.

E.g. Airflow ✅
Metaflow ✅
Dagster ✅
Prefect ✅
Kubeflow ✅
etc. ✅

#sfhamilton #MLOps #machinelearning 63

1. Using Hamilton within any ETL system

ETL Recipe:
1. Write Hamilton functions & “driver” code.

2. Publish your Hamilton functions in a package,

or import via other means (e.g. checkout a repository).

3. Include sf-hamilton as a python dependency

4. Have your ETL system execute your “driver” code.

5. Profit.

#sfhamilton #MLOps #machinelearning 64

2. Scale to big data

Hamilton comes with the following integrations:

● Dask
● Ray
● Pandas on Spark (3.2+)

Coming soon:
● Modin

#sfhamilton #MLOps #machinelearning 65

Cool thing:
● Only driver code needs to be

changed.
● Makes it easy to switch

“backends”.

Take this code – and scale it without changing it

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()

def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

#sfhamilton #MLOps #machinelearning 66

my_functions.py

Just how easy it is:
Example using Dask – only modify the “driver” script
from dask.distributed import Client
from hamilton import driver
from hamilton.experimental import h_dask
dag_config = {...}

bl_module = importlib.import_module('my_functions') # business logic functions
loader_module = importlib.import_module('data_loader') # functions to load data

client = Client(...)
adapter = h_dask.DaskGraphAdapter(client)

dr = driver.Driver(dag_config, bl_module, loader_module, adapter=adapter)

output_columns = ['year','week',...,'spend_shift_3weeks_per_signup','special_feature']

df = dr.execute(output_columns) # only walk DAG for what is needed

#sfhamilton #MLOps #machinelearning 67

3. Model any dataflow

Hamilton allows you to model any dataflow!

● Pandas? ✅
● Scikit-learn models? ✅
● Numpy matrices? ✅
● Ibis Project ? ✅
● Custom python object? ✅

#sfhamilton #MLOps #machinelearning 68

What Hamilton provides:
● lineage insights for free
● ability to attach “tags” to functions
● ask meta questions

3. Model any dataflow

Hamilton allows you to model any dataflow!

● Pandas? ✅
● Scikit-learn models? ✅
● Numpy matrices? ✅
● Ibis Project ? ✅
● Custom python object? ✅

#sfhamilton #MLOps #machinelearning 69

What Hamilton provides:
● lineage insights for free
● ability to attach “tags” to functions
● ask meta questions

Would love contributions here!

A common Hamilton pattern
Here’s a common pattern

#sfhamilton #MLOps #machinelearning 70

3. Model any dataflow - common pattern

Python Modules: Driver Scripts:
 (responsible for data you want to save/use)

Save data/artifact.

#sfhamilton #MLOps #machinelearning 71

Transforms 1

Transforms 2

Data Loading
Features/data driver
code

Plotting/debugging
driver script

3. Model any dataflow - common pattern

Python Modules: Driver Scripts:
 (responsible for data you want to save/use)

Save data/artifact.

 <-advanced
 uses ->

#sfhamilton #MLOps #machinelearning 72

Transforms 1

Transforms 2

Data Loading
Features/data driver
code

Plotting/debugging
driver script

Group By
Transforms

Chained drivers code

Talk Outline:
Backstory: who, what, & why
Hamilton
Hamilton @ Stitch Fix
What can you do with Hamilton?
> Future Roadmap

Future Roadmap

Data Quality:
- Runtime inspection of data is a possibility.

Task: incorporate expectations, ala Pandera, on functions.
e.g.

or:

#sfhamilton #MLOps #machinelearning 74

@check_output({'type': float, 'range': (0.0, 10000.0)})
def SOME_IMPORTANT_OUTPUT(input1: pd.Series, input2: pd.Series) -> pd.Series:
 """Does some complex logic"""

schema = …
@check_output.pandera(schema=schema)
def SOME_IMPORTANT_OUTPUT(input1: pd.Series, input2: pd.Series) -> pd.Series:
 """Does some complex logic"""

https://pandera.readthedocs.io/en/stable/

Future Roadmap

Numba:
- Numba makes your code run much faster.

Task: wrap Hamilton functions with numba.jit and compile
the graph for speedy execution!

E.g. Scale your numpy & simple python code to:
● GPUs
● C/Fortran like speeds!

#sfhamilton #MLOps #machinelearning 75

https://numba.pydata.org/

Future Roadmap

Responding to feedback / feature requests:
- If you have ideas/issues, would love to hear them.

Best way:
● come chat with us on discord
● file issues on github
● we like to understand your use case too!

#sfhamilton #MLOps #machinelearning 76

https://discord.gg/wCqxqBqn73

Future Roadmap

Graduating dask/ray/spark support:
- To do so, we need feedback on the APIs!

Would love to hear:
● if they do or don’t work for you?
● what documentation needs to be improved/added?
● etc.

#sfhamilton #MLOps #machinelearning 77

Future Roadmap

We have few more things :
https://github.com/stitchfix/hamilton/issues

Please vote (❤, 👍, etc) for what we should prioritize!

#sfhamilton #MLOps #machinelearning 78

https://github.com/stitchfix/hamilton/issues

To Conclude
Some TL:DRs

#sfhamilton #MLOps #machinelearning 79

To Conclude

1. Hamilton is a new paradigm to describe data flows.

2. It grew out of a need to tame a feature code base; it’ll make
yours better too!

3. The Hamilton paradigm can provide teams with multiple
productivity improvements & scales with code bases.

#sfhamilton #MLOps #machinelearning 80

Thanks for listening – would love your feedback!

#sfhamilton #MLOps #machinelearning 81

> pip install sf-hamilton

⭐ on github
☑ create & vote on issues on github
📣 join us on discord
(https://discord.gg/wCqxqBqn73)

https://discord.gg/wCqxqBqn73

Thank you! Questions?

Try out Stitch Fix → goo.gl/Q3tCQ3@stefkrawczyk
linkedin.com/in/skrawczyk

https://goo.gl/Q3tCQ3
https://twitter.com/stefkrawczyk
http://www.linkedin.com/skrawczyk

