Hamilton

A Python Micro-Framework for Data / Feature Engineering

Stefan Krawczyk
Former Stitch Fix Model Lifecycle Platform Manager/Lead

Hamilton is Open Source Code

> pip install sf-hamilton

Get started in <15 minutes!

Documentation

https://hamilton-docs.gitbook.io/

Lots of examples:

https://github.com/stitchfix/hamilton/tree/main/examples

What is Hamilton?

What is Hamilton?

A declarative <u>dataflow</u> paradigm.

Hamilton:

Code → Directed Acyclic Graph → Object

Code:

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
"""Some docs""
return some library(year, week)

def avg_3wk, spend(spend: pd.Series) -> pd.Series:
"""Some docs""

return spend.rolling(3).mean()

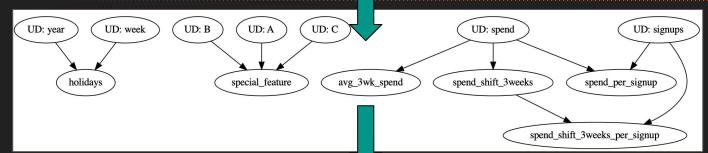
def spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
"""Some docs""
return spend / signups

def spend shift_3weeks(spend: pd.Series) -> pd.Series:
"""Some docs""
return spend.shift(3)

def spend shift_3weeks(pend: pd.Series) -> pd.Series, signups: pd.Series) -> pd.Series:
"""Some docs""
return spend.shift(3)

User

DAG:



Hamilton

Object (e.g. DataFrame):

Year	Week	Cianuna	Cnand	Llolidov
	vveek	Sign ups	 Spend	Holiday
2015	2	57	 123	0
2015	3	58	 123	0
2015	4	59	 123	1
2015	5	59	 123	1
2021	16	1000	 1234	0

User

Old way vs Hamilton way:

Instead of:

```
df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])
```

You declare:

```
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Sums a with b"""
    return a + b

def d(c: pd.Series) -> pd.Series:
    """Transforms C to ..."""
    new_column = _transform_logic(c)
    return new_column
```

+ some driver code (not shown)

Old way vs Hamilton way:

```
Instead of:
                             = df['a'] + df['b']
                     df['d'] = transform(df['c']
Outputs == Function Name
                                  Inputs == Function Arguments
You declare:
              def c a: pd.Series, b: pd.Series) -> pd.Series:
                    Sums a with b"""
                 return a + b
              def d(c: pd.Series) -> pd.Series:
                 """Transforms C to ..."""
                 new column = transform logic(c)
                 return new column
```

Full Hello World

Functions:

```
# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Sums a with b"""
    return a + b

def d(c: pd.Series) -> pd.Series:
    """Transforms C to ..."""
    new_column = _transform_logic(c)
    return new_column
```

"Driver" - this actually says what and when to execute:

```
# run.py
from hamilton import driver
import feature logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)
```

Hamilton TL;DR:

- For each `=` statement, you write a function(s).
- 2. Functions declare a DAG.
- Hamilton handles DAG execution.

```
# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Replaces c = a + b"""
    return a + b
# run py
```

```
def d(c: pd.Series) -> pd.Series:
    """Replaces d = transform(c)"""
    new_column = _transform_logic(c)
    return new_column
```

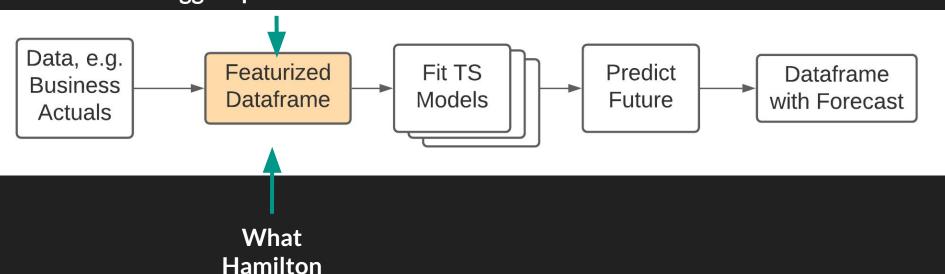
```
a b
```

Why was Hamilton created?

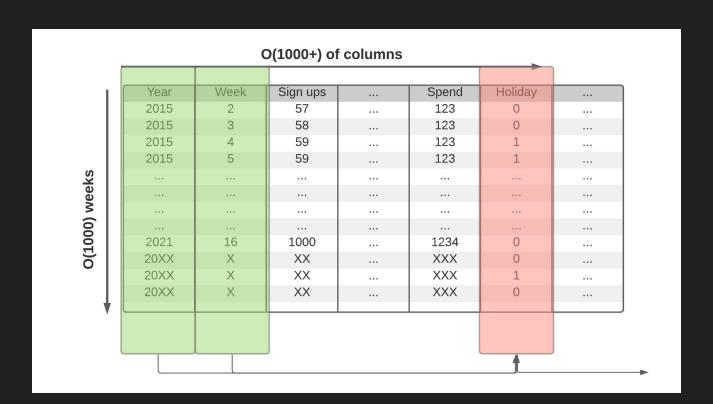
Backstory: Time-series Forecasting

Biggest problems here

helped solve!

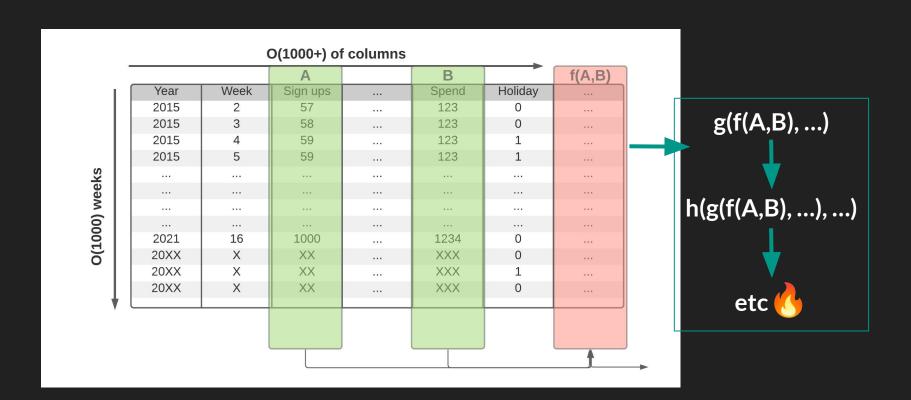


Backstory: TS -> Dataframe creation



Columns are functions of other columns

Backstory: TS -> Dataframe creation



Backstory: TS -> DF -> 🍝 Code

```
df = load dates() # load date ranges
df = load actuals(df) # load actuals, e.g. spend, signups
df['holidays'] = is holiday(df['year'], df['week']) # holidays
df['avg 3wk spend'] = df['spend'].rolling(3).mean()
                                                                      spend
def my_spec Now scale this code to 1000+ columns & a grow
                                                                __son signed up
                                                       smift spend because ...
                                           snift 3weeks'] / df['signups']
   return (( , A') - df['B'] + df['C']) Human scaling 😜:
                                             Testing / Unit testing
df['special feature'] = my special feature
# ...
                                              Documentation
```

Underrated problem!

o Onboarding 📈

Code Reviews

Debugging

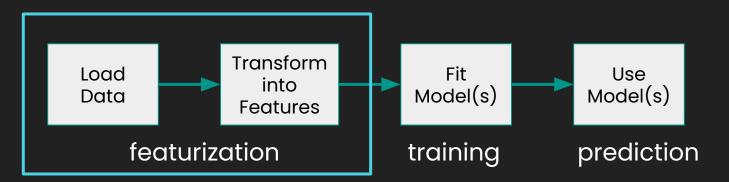
Hamilton @ Stitch Fix

Hamilton @ Stitch Fix

- Running in production for 2.5+ years
- Manages 4000+ feature definitions
- All feature definitions are:
 - Unit testable
 - Documentation friendly
 - Centrally curated, stored, and versioned in git.
- Data Science team sit:
 - Enabled a monthly task to be completed 4x faster
 - Easy to onboard new team members
 - Code reviews are simpler

Overview: Feature Engineering with Hamilton

Hamilton + Feature Engineering: Overview



- Can model this all in Hamilton (if you wanted to)
- We'll just focus on featurization
 - o FYI: Hamilton works for any object type.
 - Here we'll assume pandas for simplicity.
 - E.g. use Hamilton within Airflow, Dagster, Prefect, Flyte, Metaflow, Kubeflow, etc.

Modeling featurization

Data loading & Feature code:

```
def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
    """Some docs"""
    return some library(year, week)

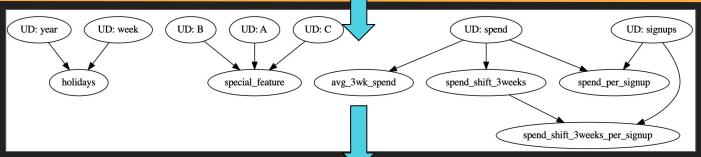
def avg 3wk spend(spend: pd.Series) -> pd.Series:
    """Some docs"""
    return spend.rolling(3).mean()

def spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
    """Some docs"""
    return spend / signups

def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
    """Some docs"""
    return spend.shift(3)

def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
    """Some docs"""
    return spend.shift_3weeks / signups
```

Via Driver:



Feature
Dataframe:

		,	 •	
Year	Week	Sign ups	 Spend	Holiday
2015	2	57	 123	0
2015	3	58	 123	0
2015	4	59	 123	1
2015	5	59	 123	1
2021	16	1000	 1234	0

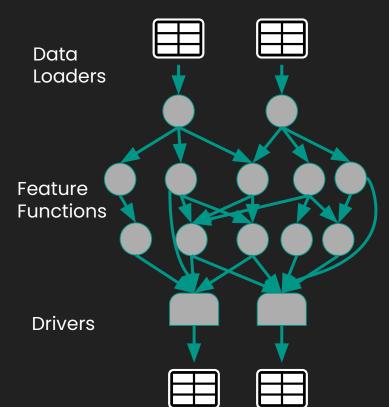
run.py

features.py

Modeling featurization

Code that needs to be written:

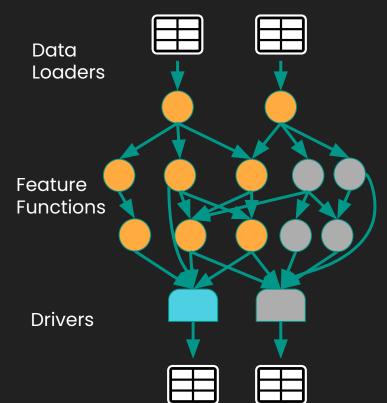
- Functions to load data
 - a. normalize/create common index to join on
- 2. Feature functions
 - a. Optional: model functions.
- 3. Drivers materialize data
 - a. DAG is walked for only what's needed.



Modeling featurization

Code that needs to be written:

- Functions to load data
 - a. normalize/create common index to join on
- 2. Feature functions
 - a. Optional: model functions.
- 3. Drivers materialize data
 - a. DAG is walked for only what's needed.



Problems with Feature Engineering

Problems with Feature Engineering

- > Human/Team:
 - Highly coupled code
 - In ability to reuse/understand work
 - Broken/unhealthy production pipelines

Hamilton helps here!

- > Machines:
 - Data is too big to fit in memory
 - Cannot easily parallelize computation

Hamilton has integrations here!

Scaling Humans/Teams

How Hamilton helps with Human/Team Scaling

Highly coupled code

Decouples "functions" from use (driver code).

How Hamilton helps with Human/Team Scaling

Highly coupled code	Decouples "functions" from use (driver code).	
In ability to reuse/understand work	Functions are curated into modules.	
	Everything is unit testable.	
	Documentation is natural.	
	Forced to align on naming.	

How Hamilton helps with Human/Team Scaling

Highly coupled code	Decouples "functions" from use (driver code).
In ability to reuse/understand work	Functions are curated into modules.
	Everything is unit testable.
	Documentation is natural.
	Forced to align on naming.
Broken/unhealthy production pipelines	Debugging is straightforward.

Easy to version features via git/packaging.

Runtime data quality checks.

Scaling Humans/Teams

Hamilton Functions:

Hamilton Features:

- Unit testing
- Documentation
- Modularity/reuse
- Central feature definition store
- Data quality

- always possible
- 🔽 tags, visualization, function doc
- module curation & drivers
- 🔽 naming, curation, versioning
- runtime checks

Scaling Humans/Teams

Code base implications:

- Functions are always in modules
- 2. Driver script, i.e execution script, is decoupled from functions.

- > Code reuse from day one!
- > Low maintenance to support many driver scripts

Scaling Compute/Data

Scaling Compute/Data with Hamilton

Hamilton has the following integrations out of the box:

- Ray
 - Single process -> Multiprocessing -> Cluster
- Dask
 - Single process -> Multiprocessing -> Cluster
- Pandas on Spark
 - Uses enables using Pandas Spark API with your Pandas code easily
- Switching to run on Ray/Dask/Pandas on Spark requires:
 - > Only changing driver.py code*
 - > Pandas on Spark also needs changing how data is loaded.

Hamilton + Ray/Dask/Spark: Driver only change

```
# run.py
from hamilton import driver
import data loaders
import date features
import spend features
config = {...} # config, e.g. data location
dr = driver.Driver(config,
                  data loaders,
                  date features,
                  spend features)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted)
save(feature df, 'prod.features')
```

Hamilton + Ray: Driver only change

```
# run on ray.py
from hamilton import base, driver
from hamilton.experimental import h ray
ray.init()
config = \{...\}
rga = h ray.RayGraphAdapter(
    result builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
                  data loaders, date features, spend features,
                  adapter=rga)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
                       inputs=date features)
save(feature df, 'prod.features')
ray.shutdown()
```

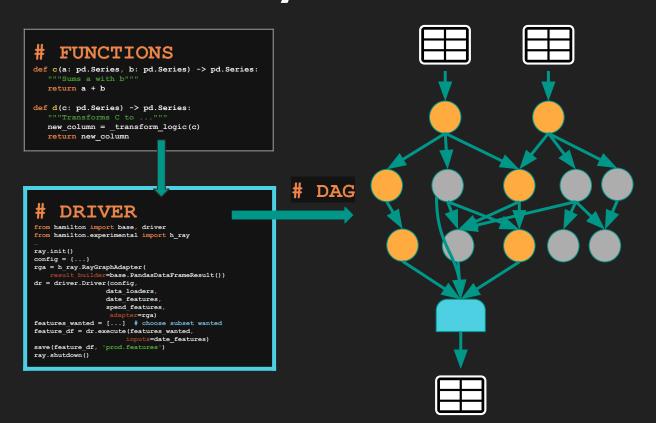
Hamilton + Dask: Driver only change

```
# run on dask.py
from hamilton import base, driver
from hamilton.experimental import h dask
client = Client(Cluster(...)) # dask cluster/client
config = {...}
dga = h dask.DaskGraphAdapter(client,
    result builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
                  data loaders, date features, spend features,
                  adapter=dga)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
                       inputs=date features)
save(feature df, 'prod.features')
client.shutdown()
```

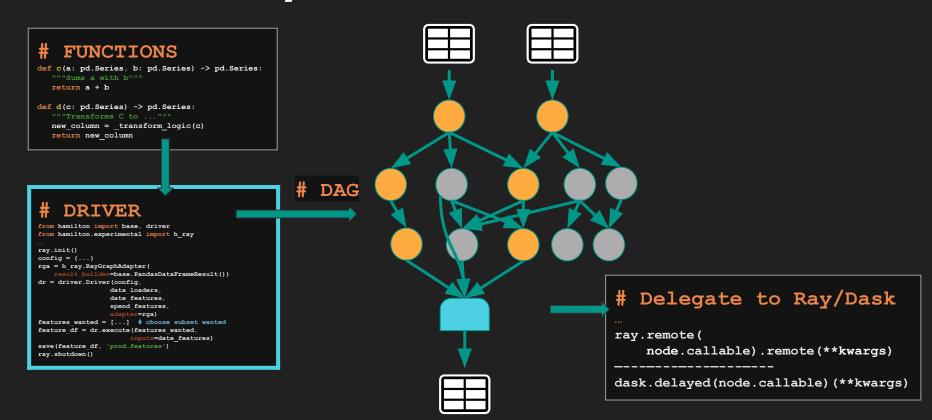
Hamilton + Spark: Driver change + loader

```
# run on pandas on spark.py
import pyspark.pandas as ps
from hamilton import base, driver
from hamilton.experimental import h spark
spark = SparkSession.builder.getOrCreate()
ps.set option(...)
config = {...}
skga = h dask.SparkKoalasGraphAdapter(spark, spine='COLUMN NAME',
    result builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
                  spark data loaders, date features, spend features,
                  adapter=skga)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
                       inputs=date features)
save (feature df, 'prod.features')
spark.stop()
```

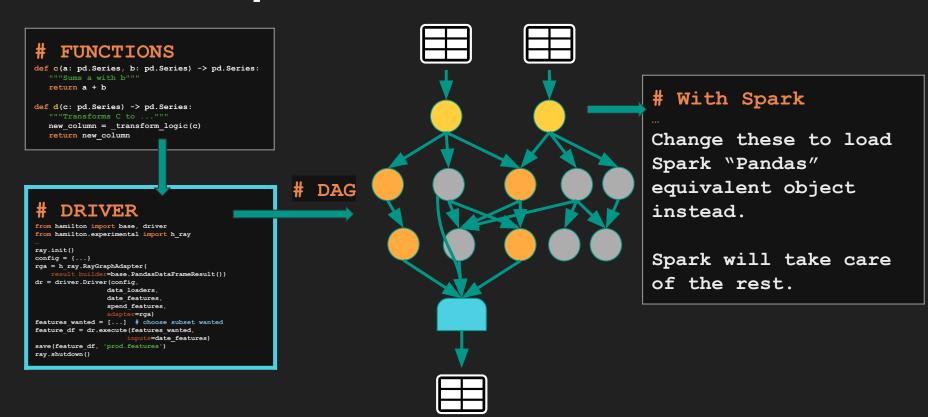
Hamilton + Ray/Dask: How does it work?



Hamilton + Ray/Dask: How does it work?



Hamilton + Spark: How does it work?



Hamilton + Ray/Dask/Pandas on Spark: Caveats

Things to think about:

- 1. Serialization:
 - a. Hamilton defaults to serialization methodology of these frameworks.
- 2. Memory:
 - a. Defaults should work. But fine tuning memory on a "function" basis is not exposed.
- 3. Python dependencies:
 - a. You need to manage them.
- 4. Looking to graduate these APIs from experimental status
- >> Looking for contributions here to extend support in Hamilton! <<

Summary

Summary: Hamilton for feature/data engineering

- Hamilton is a declarative paradigm to describe data/feature transformations
 - o Embeddable anywhere that runs python.
- It grew out of a need to tame a feature code base
 - o it'll make yours better too!
- The Hamilton paradigm scales humans/teams through software engineering best practices.
- Hamilton + Ray/Dask/Pandas on Spark enables one to:
 - scale humans/teams and scale data/compute.

Give Hamilton a Try! We'd love your Feedback

- > pip install sf-hamilton
- n github (https://github.com/stitchfix/hamilton)
- create & vote on issues on github
- />
 join us on on Slack

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you.

Questions?

https://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczyk/

https://github.com/stitchfix/hamilton