
Hamilton
A Python Micro-Framework

for Data / Feature Engineering

Stefan Krawczyk
Former Stitch Fix Model Lifecycle Platform Manager/Lead

Hamilton is Open Source Code

> pip install sf-hamilton

Get started in <15 minutes!

Documentation

https://hamilton-docs.gitbook.io/

Lots of examples:

https://github.com/stitchfix/hamilton/tree/main/examples

2

https://hamilton-docs.gitbook.io/
https://github.com/stitchfix/hamilton/tree/main/examples

What is Hamilton?

What is Hamilton?

A declarative dataflow paradigm.

4

https://en.wikipedia.org/wiki/Dataflow

Hamilton:
Code → Directed Acyclic Graph → Object

Code:

5

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

User

DAG:

Object
(e.g. DataFrame):

Hamilton

User

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Old way vs Hamilton way:

Instead of:

You declare:

+ some driver code (not shown)
6

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Instead of:

You declare:
Inputs == Function Arguments

Old way vs Hamilton way:

7

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Outputs == Function Name

Full Hello World

8

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions:

“Driver” - this actually says what and when to execute:

Hamilton TL;DR:

1. For each `=` statement, you write a function(s).
2. Functions declare a DAG.
3. Hamilton handles DAG execution.

9

c

d

a b

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Replaces c = a + b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Replaces d = transform(c)"""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...},
 feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Why was Hamilton created?

Backstory: Time-series Forecasting

11

What
Hamilton

helped solve!

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

Backstory: TS -> Dataframe creation

12

Columns are
functions of

other columns

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985

Backstory: TS -> Dataframe creation

13

g(f(A,B), …)

h(g(f(A,B), …), …)

etc🔥

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787

Backstory: TS -> DF -> 🍝 Code

14

df = load_dates() # load date ranges
df = load_actuals(df) # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week']) # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean() # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups'] # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3) # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups']

def my_special_feature(df: pd.DataFrame) -> pd.Series:
 return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
...

Now scale this code to 1000+ columns & a growing team 😬

Human scaling 😔:
○ Testing / Unit testing 👎
○ Documentation 👎
○ Code Reviews 👎
○ Onboarding 📈 👎
○ Debugging 📈 👎Underrated problem!

Hamilton @ Stitch Fix

Hamilton @ Stitch Fix

● Running in production for 2.5+ years
● Manages 4000+ feature definitions
● All feature definitions are:

○ Unit testable
○ Documentation friendly
○ Centrally curated, stored, and versioned in git.

● Data Science team ❤s it:
○ Enabled a monthly task to be completed 4x faster
○ Easy to onboard new team members
○ Code reviews are simpler

16

Overview:
Feature Engineering

with Hamilton

Hamilton + Feature Engineering: Overview

 featurization training prediction

● Can model this all in Hamilton (if you wanted to)

● We’ll just focus on featurization
○ FYI: Hamilton works for any object type.

■ Here we’ll assume pandas for simplicity.
○ E.g. use Hamilton within Airflow, Dagster, Prefect, Flyte, Metaflow, Kubeflow, etc.

18

Load
Data

Transform
into

Features

Fit
Model(s)

Use
Model(s)

Data loading &
Feature code:

19

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

Via
Driver:

Feature
Dataframe:

Modeling featurization

features.py

run.py

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling featurization

20

Data
Loaders

Feature
Functions

Drivers

Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling featurization

21

Data
Loaders

Drivers

Feature
Functions

Problems with Feature Engineering

Problems with Feature Engineering

}

}

> Human/Team:

● Highly coupled code
● In ability to reuse/understand work
● Broken/unhealthy production pipelines

> Machines:

● Data is too big to fit in memory
● Cannot easily parallelize computation

23

Hamilton helps here!

Hamilton has
integrations here!

Scaling Humans/Teams

How Hamilton helps with Human/Team Scaling

25

Highly coupled code Decouples “functions” from use (driver code).

How Hamilton helps with Human/Team Scaling

26

Highly coupled code Decouples “functions” from use (driver code).

In ability to reuse/understand work Functions are curated into modules.

Everything is unit testable.

Documentation is natural.

Forced to align on naming.

How Hamilton helps with Human/Team Scaling

27

Highly coupled code Decouples “functions” from use (driver code).

In ability to reuse/understand work Functions are curated into modules.

Everything is unit testable.

Documentation is natural.

Forced to align on naming.

Broken/unhealthy production pipelines Debugging is straightforward.

Easy to version features via git/packaging.

Runtime data quality checks.

Hamilton Functions:

Scaling Humans/Teams

28

client_features.py
@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
 height_std_dev: pd.Series) -> pd.Series:
 """Zero mean unit variance value of height"""
 return height_zero_mean / height_std_dev

Hamilton Features:

● Unit testing ✅ always possible
● Documentation ✅ tags, visualization, function doc
● Modularity/reuse ✅ module curation & drivers
● Central feature definition store ✅ naming, curation, versioning
● Data quality ✅ runtime checks

Code base implications:

1. Functions are always in modules
2. Driver script, i.e execution script, is decoupled from functions.

Scaling Humans/Teams

29

Module spend_features.py

Module markerting_features.py

Module customer_features.py

Driver script 1

> Code reuse from day one!
> Low maintenance to support many driver scripts

Driver script 2

Driver script 3

Scaling Compute/Data

Scaling Compute/Data with Hamilton

Hamilton has the following integrations out of the box:

● Ray
○ Single process -> Multiprocessing -> Cluster

● Dask
○ Single process -> Multiprocessing -> Cluster

● Pandas on Spark
○ Uses enables using Pandas Spark API with your Pandas code easily

● Switching to run on Ray/Dask/Pandas on Spark requires:

> Only changing driver.py code*
> Pandas on Spark also needs changing how data is loaded.

31

Hamilton + Ray/Dask/Spark: Driver only change

32

run.py
from hamilton import driver
import data_loaders
import date_features
import spend_features
config = {...} # config, e.g. data_location
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted)
save(feature_df, 'prod.features')

Hamilton + Ray: Driver only change

33

run.py
from hamilton import driver
import data_loaders
import date_features
import spend_features
config = {...} # config, e.g. data_location
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted)
save(feature_df, 'prod.features')

run_on_ray.py
…
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders, date_features, spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

Hamilton + Dask: Driver only change

34

run.py
from hamilton import driver
import data_loaders
import date_features
import spend_features
config = {...} # config, e.g. data_location
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted)
save(feature_df, 'prod.features')

run_on_dask.py
…
from hamilton import base, driver
from hamilton.experimental import h_dask
…
client = Client(Cluster(...)) # dask cluster/client
config = {...}
dga = h_dask.DaskGraphAdapter(client,
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders, date_features, spend_features,
 adapter=dga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
client.shutdown()

Hamilton + Spark: Driver change + loader

35

run.py
from hamilton import driver
import data_loaders
import date_features
import spend_features
config = {...} # config, e.g. data_location
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted)
save(feature_df, 'prod.features')

run_on_pandas_on_spark.py
…
import pyspark.pandas as ps
from hamilton import base, driver
from hamilton.experimental import h_spark
…
spark = SparkSession.builder.getOrCreate()
ps.set_option(...)
config = {...}
skga = h_dask.SparkKoalasGraphAdapter(spark, spine='COLUMN_NAME',
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 spark_data_loaders, date_features,spend_features,
 adapter=skga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
spark.stop()

Hamilton + Ray/Dask: How does it work?

36

FUNCTIONS
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

DRIVER
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

DAG

Hamilton + Ray/Dask: How does it work?

37

FUNCTIONS
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

DRIVER
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

Delegate to Ray/Dask
…
ray.remote(
 node.callable).remote(**kwargs)
—---—---—---—---—---
dask.delayed(node.callable)(**kwargs)

DAG

Hamilton + Spark: How does it work?

38

FUNCTIONS
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

DRIVER
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

With Spark
…

Change these to load
Spark “Pandas”
equivalent object
instead.

Spark will take care
of the rest.

DAG

Hamilton + Ray/Dask/Pandas on Spark: Caveats

Things to think about:

1. Serialization:
a. Hamilton defaults to serialization methodology of these frameworks.

2. Memory:
a. Defaults should work. But fine tuning memory on a “function” basis is not exposed.

3. Python dependencies:
a. You need to manage them.

4. Looking to graduate these APIs from experimental status

>> Looking for contributions here to extend support in Hamilton! <<

39

Summary

Summary: Hamilton for feature/data engineering

● Hamilton is a declarative paradigm to describe data/feature
transformations
○ Embeddable anywhere that runs python.

● It grew out of a need to tame a feature code base
○ it’ll make yours better too!

● The Hamilton paradigm scales humans/teams through software
engineering best practices.

● Hamilton + Ray/Dask/Pandas on Spark enables one to:

scale humans/teams and scale data/compute.

41

Give Hamilton a Try!
We’d love your Feedback

> pip install sf-hamilton

⭐ on github (https://github.com/stitchfix/hamilton)

☑ create & vote on issues on github

📣 join us on on Slack
(https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg)

42

https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you.
Questions?

https://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczyk/

https://github.com/stitchfix/hamilton

