Hamilton

A Python Micro-Framework
for Data / Feature Engineering

Stefan Krawczyk
Former Stitch Fix Model Lifecycle Platform Manager/Lead

Hamilton is Open Source Code

> pip install sf-hamilton
Get started in <15 minutes!
Documentation

https://hamilton-docs.gitbook.io/

Lots of examples:

https://github.com/stitchfix/hamilton/tree/main/examples

https://hamilton-docs.gitbook.io/
https://github.com/stitchfix/hamilton/tree/main/examples

What is Hamilton?

What is Haomilton?

A declarative dataflow paradigm.

https://en.wikipedia.org/wiki/Dataflow

Hamilton:
Code — Directed Acyclic Graph — Object

holidays (year: pd.Series, week: pd.Series) -> pd.Series:

some_library(year, week)
avg 3wk spend(spend: pd.Series) -> pd.Series:

. spend. rolling (3) .mean ()
spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
L]

spend / signups
spend shift 3weeks(spend: pd.Series) -> pd.Series:

spend. shift (3)
spend shift 3weeks_per_ signup(spend_shift 3weeks: pd.Series, signups: pd.Series) -> pd.Series:

spend_shift 3weeks / signups

UD: signups

[]
Hamilton

spend_shift_3weeks_per_signup

Object

57
58

(e.g. DataFrame): (ENEEE User

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Old way vs Hamilton way:

Instead of: df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
You declare:

return a + b

def d(c: pd.Series) -> pd.Series:

new column = transform logic(c)
return new_column

+ some driver code (not shown)

Old way vs Hamilton way:

Instead of: df['c'] =[@f['a'] + df['Db']
|df['d']| = |transform(df['c']

Outputs == Function Name)
Inputs == Function Arguments

You declare;
def“EJ

E pd.Series, El pd.Series) -> pd.Series:
Sums a with b"""
return a + b

def 3@ pd.Series) -> pd.Series:
Transforms C to ..."""

new column = transform logic(c)

return new_column

Full Hello World

) # feature logic.py

Functions: def c(a: pd.Series, b: pd.Series) -> pd.Series:
wivw Sums a With b" wi

return a + b

def d(c: pd.Series) -> pd.Series:
"""Transforms C to ..."""
new column = transform logic(c)
return new_column

“Driver” - this actually says what and when to execute:

run.py
from hamilton import driver
import feature logic

dr = driver.Driver({'a’': 'b': ...}, feature logic)

df result = dr.execute(['c', 'd']
print(drf_result)

Hamilton TL:DR:

1. For each =" statement, you write a function(s).

2. Functions declare a DAG.

3. Hamilton handles DAG execution.

feature logic.py

def c(a: pd.Series, b: pd.Series) -> pd.Series:

return a + b
def d(c: pd.Series) -> pd.Series:

new column = transform logic(c)
return new column

run.py
from hamilton import driver

import feature logic

dr = driver.Driver({'a': ..., 'b': ...},
feature logic)
df result = dr.execute(['c', 'd'])

print (df result)

Why was Hamilton created?

Backstory: Time-series Forecasting

Biggest problems here

[éitséllngsgs Featurized Fit TS Predict _| Dataframe
Aptuzls Dataframe Models Future with Forecast

What
Hamilton
helped solve!

11

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

Backstory: TS -> Dataframe creation

0(1000+) of columns

Week Sign ups Holiday
2 57 0
8 58 0
4 59 1
5 59 il

Columns are
functions of
other columns

1000
XX
XX

)
X
)
o
2
—_—
)
=]
=]
o
N
@)

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985

Backstory: TS -> Dataframe creation

0(1000+) of columns
A B
Week Sign ups Spend Holiday
2 57 123 0 .
58 123 0 i)
59 123 1
59 123 1

...)’ ...)
1000 1234
XX XXX

XX XXX
XX XXX

)
X
[
o
s
_—
)
=]
S
o
N
o

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787

Backstory: TS -> DF -> & Code

df = load dates() # load date ranges
df = load actuals(df) # load actuals, e.g. spend, signups
df['holidays'] = is holiday(df['year'], df['week']) # holidays

df['avg 3wk spend'] = df['spend'].rolling(3) .mean() # ™~ O spend
df['spend per signup'] = df['spend'] / df['si~ . -«son signed up
df['spend shift 3weeks'] = df.sper” "’ . wulft spend because
df['spend shift 3weeks =~ --_snift 3weeks'] / df['signups']

def my spec ~ -. pd.DataFrame

return (¢ . o~ | - df['B'] + df['C'])

df['special feature'] = my special feat

#

Underrated problem!

Hamilton @ Stitch Fix

Hamilton @ Stitch Fix

e Running in production for 2.5+ years
e Manages 4000+ feature definitions

e All feature definitions are:
o Unit testable
o Documentation friendly
o Centrally curated, stored, and versioned in git.

e Data Science team “'s it;

o Enabled a monthly task to be completed 4x faster
o Easy to onboard new team members
o Code reviews are simpler

16

Overview:
Feature Engineering
with Hamilton

Hamilton + Feature Engineering: Overview

Transform

Fit Use

Inli© Model(s) Model(s)

Features

featurization training prediction

e Can model this all in Hamilton (if you wanted to)

e We'll just focus on featurization
o FYI: Hamilton works for any object type.
m Here we'll assume pandas for simplicity.
o E.g.use Hamilton within Airflow, Dagster, Prefect, Flyte, Metaflow, Kubeflow, etc.

Modeling featurization

holidays (year: pd.Series, week: pd.Series) -> pd.Series:

some_library(year, week)

avg 3wk spend(spend: pd.Series) -> pd.Series: f t
L]
spend. rolling (3) .mean () e(] u reS- py
spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
spend / signups
spend shift 3weeks(spend: pd.Series) -> pd.Series:

Feature code:

spend shift 3weeks_per_ signup(spend_shift 3weeks: pd.Series, signups: pd.Series) -> pd.Series:

spend_shift 3weeks / signups

@ @l k UD: signups
Vi
. avg_3wk_spend spend_shift_3weeks spend_per_signup
Driver:
spend_shift_3weeks_per_signup
Sign ups

Feature run.py
Dataframe;

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Modeling featurization

. T T
Code that needs to be written: Data —— ——
. Loaders
1. Functions to load data
a. normalize/create common index to join on . .

2. Feature functions

a. Optional: model functions. Feature ' ' ' "

3. Drivers materialize data Functions

a. DAG is walked for only what's needed. ‘ . ‘ . ‘
Drivers - -

Modeling featurization

. T T
Code that needs to be written: Data —— ——
. Loaders
1. Functions to load data
a. normalize/create common index to join on . .

2. Feature functions

a. Optional: model functions. Feature ‘ ' ’ "

3. Drivers materialize data Functions

a. DAG is walked for only what's needed. ‘ . ‘ . ‘
Drivers - -

Problems with Feature Engineering

Problems with Feature Engineering

> Human/Team:;

e Highly coupled code
e In ability to reuse/understand work } Hamilton helps here!
e Broken/unhealthy production pipelines

> Machines:

e Dataistoo I?lg to fit |n.memory | Hamilton has

e Cannot easily parallelize computation : ,
integrations here!

23

Scaling Humans/Teams

How Hamilton helps with Human/Team Scaling

Highly coupled code

Decouples “functions” from use (driver code).

25

How Hamilton helps with Human/Team Scaling

Highly coupled code

Decouples “functions” from use (driver code).

In ability to reuse/understand work

Functions are curated into modules.
Everything is unit testable.
Documentation is natural.

Forced to align on naming.

26

How Hamilton helps with Human/Team Scaling

Highly coupled code

Decouples “functions” from use (driver code).

In ability to reuse/understand work

Functions are curated into modules.
Everything is unit testable.
Documentation is natural.

Forced to align on naming.

Broken/unhealthy production pipelines

Debugging is straightforward.

Easy to version features via git/packaging.

Runtime data quality checks. °!

Scaling Humans/Teams

Hamilton Functions:

client features.py

@Qtag(='Data-Science’, ='False')

@check output(=np.floaté4, =(-5.0, 5.0), =False)

def height zero mean unit variance (height zero mean: pd.Series,
height std dev: pd.Series) -> pd.Series:

return height zero mean / height std dev

Hamilton Features:

e Unit testing W always possible

e Documentation W tags, visualization, function doc
e Modularity/reuse ¥ module curation & drivers

e Central feature definition store ¥ naming, curation, versioning

e Data quality W runtime checks

xS

Scaling Humans/Teams

Code base implications:

. Functions are always in modules
2. Driver script, i.e execution script, is decoupled from functions.

> Code reuse from day one!

> Low maintenance to support many driver scripts

23

Scaling Compute/Data

Scaling Compute/Data with Hamilton

Hamilton has the following integrations out of the box:

e Ray
o Single process -> Multiprocessing -> Cluster
e Dask

o Single process -> Multiprocessing -> Cluster

e Pandas on Spark
o Uses enables using Pandas Spark API with your Pandas code easily

e Switching to run on Ray/Dask/Pandas on Spark requires:

> Only changing driver.py code*
> Pandas on Spark also needs changing how data is loaded.

Hamilton + Ray/Dask/Spark: Driver only change

run.py
from hamilton import driver
import data loaders
import date features
import spend features
config = {...} # config, e.g. data location
dr = driver.Driver (config,

data loaders,

date features,

spend features)
features wanted = [...] # choose subset wanted
feature df = dr.execute (features wanted)
save (feature df, 'prod.features')

32

Hamilton + Ray: Driver only change

run on ray.py

from hamilton import base, driver
from hamilton.experimental import h_ ray

ray.init()
config = {...}
rga = h ray.RayGraphAdapter (

=base.PandasDataFrameResult ())
dr = driver.Driver (config,

data loaders, date_ features, spend features,

=rga)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
=date features)

save (feature df, 'prod.features')
ray.shutdown ()

KK]

Hamilton + Dask: Driver only change

run on dask.py

from hamilton import base, driver
from hamilton.experimental import h_dask

client = Client(Cluster(...)) # dask cluster/client
config = {...}
dga = h dask.DaskGraphAdapter (client,
=base.PandasDataFrameResult ())
dr = driver.Driver (config,
data loaders, date_ features, spend features,
=dga)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
=date features)
save (feature df, 'prod.features')
client.shutdown ()

34

Hamilton + Spark: Driver change + loader

run on pandas on_ spark.py

import pyspark.pandas as ps
from hamilton import base, driver
from hamilton.experimental import h_spark

spark = SparkSession.builder.getOrCreate ()
ps.set option(...)
config = {...}
skga = h dask.SparkKoalasGraphAdapter (spark, ='COLUMN NAME',
=base.PandasDataFrameResult())
dr = driver.Driver (config,
spark data loaders, date features,spend features,
=skga)
features wanted = [...] # choose subset wanted
feature df = dr.execute (features wanted,
=date features)
save (feature df, 'prod.features')
spark.stop ()

35

Hamilton + Ray/Dask: How does it work?

| | I .
FUNCTIONS —— —

def c(a: pd.Series, b: pd.Series) -> pd.Series:

return a + b

def d(c: pd.Series) -> pd.Series:
new_column = _transform logic(c)
return new_column
from hamilton import base, driver
from hamilton.experimental import h_ray
ray.init() \

config = {...}
rga = h ray.RayGraphAdapter (

=base.PandasDataFrameResult())
dr = driver.Driver (config,

data loaders,

date features,

spend features,

=rga)
features wanted = [...] # choose subset wanted
feature df = dr.execute (features wanted,
=date_features)

save (feature df, 'prod.features')
ray.shutdown ()

Hamilton + Ray/Dask: How does it work?

FUNCTIONS

def c(a: pd.Series, b: pd.Series) -> pd.Series:
"""Sums a with b"""
return a + b

def d(c: pd.Series) -> pd.Series:
"""Transforms C to ..."""
new_column = _transform logic(c)
return new_column

DRIVER

from hamilton import base, driver
from hamilton.experimental import h_ray

ray.init()
config = {...}
rga = h ray.RayGraphAdapter (

=base.PandasDataFrameResult())
dr = driver.Driver (config,

data loaders,

date features,

spend features,

=rga)
features wanted = [...] # choose subset wanted
feature df = dr.execute (features wanted,
=date_features)

save (feature df, 'prod.features')
ray.shutdown ()

I#DAG“ “‘
® 000

Delegate to Ray/Dask

ray.remote (
node.callable) . remote (**kwargs)

dask.delayed (node.callable) (**kwargs)

37

Hamilton + Spark: How does it work?

FUNCTIONS

def c(a: pd.Series, b: pd.Series) -> pd.Series:
return a + b
def d(c: pd.Series) -> pd.Series:

new_column = _transform logic(c)
return new_column

DRIVER

from hamilton import base, driver
from hamilton.experimental import h_ray

ray.init()
config = {...}
rga = h ray.RayGraphAdapter (

=base.PandasDataFrameResult())
dr = driver.Driver (config,

data loaders,

date features,

spend features,

=rga)
features wanted = [...] # choose subset wanted
feature df = dr.execute (features wanted,
=date_features)

save (feature df, 'prod.features')
ray.shutdown ()

| # DAG ‘l’ ‘l’ ‘l’ "’ '.)
9 000

With Spark

Change these to load
Spark “Pandas”
equivalent object
instead.

Spark will take care
of the rest.

38

Hamilton + Ray/Dask/Pandas on Spark: Caveats

Things to think about:

1. Serialization:
a. Hamilton defaults to serialization methodology of these frameworks.

2. Memory:

a. Defaults should work. But fine tuning memory on a “function” basis is not exposed.

3. Python dependencies:

a. You need to manage them.
4. Looking to graduate these APIs from experimental status

>> Looking for contributions here to extend support in Hamilton! <<

39

summary

Summary: Hamilton for feature/data engineering

e Hamilton is a declarative paradigm to describe data/feature

transformations
o Embeddable anywhere that runs python.

e It grew out of a need to tame a feature code base
o it'll make yours better too!

e The Hamilton paradigm scales humans/teams through software
engineering best practices.
e Hamilton + Ray/Dask/Pandas on Spark enables one to:

scale humans/teams and scale data/compute.

41

Give Hamilton a Try!
We'd love your Feedback

>pip install sf-hamilton
W on qithub (nhttps://github.com/stitchfix/hamilton)
V¥ create & vote on issues on github

£ join us on on Slack

(httos://ioin.slock.com/t/homilton—ooensource/shored invite/zt—]bis72osx—onTqH7q7QX1iquSbbdcq)

42

https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you.

Questions?

https:/ [twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk/

https:/[github.com/stitchfix/hamilton

