Scalable feature engineering with Hamilton on Ray Stefan Krawczyk, formerly of Stitch Fix

Hamilton is Open Source

- > pip install sf-hamilton
- Get started in <15 minutes!
- Documentation
 - https://hamilton-docs.gitbook.io/
- Lots of examples:
 - https://github.com/stitchfix/hamilton/tree/main/examples

What is Hamilton?

What is Hamilton?

A declarative <u>dataflow</u> paradigm.

Hamilton: Code \rightarrow Directed Acyclic Graph \rightarrow Object

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:

def spend shift 3weeks(spend: pd.Series) -> pd.Series;

def spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:

"""Some docs""

"""Some docs""

"""Some docs""" return spend / signups

"""Some docs""" return spend.shift(3)

return some_library(year, week)
def avg 3wk spend(spend: pd.Series) -> pd.Series:

return spend.rolling(3).mean()

Vear

Wook

Code:

Spend Holiday

Object (e.g. DataFrame):

1000		l olgii apo	 opona	11011010
2015	2	57	 123	0
2015	3	58	 123	0
2015	4	59	 123	1
2015	5	59	 123	1
2021	16	1000	 1234	0

User

User

Old way vs Hamilton way:

Instead of:

df['c'] = df['a'] + df['b']df['d'] = transform(df['c'])

You declare:

```
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Sums a with b"""
    return a + b

def d(c: pd.Series) -> pd.Series:
    """Transforms C to ..."""
    new_column = _transform_logic(c)
    return new_column
```

+ some driver code (not shown)

Old way vs Hamilton way:

Explanation of Hamilton way

- 1. Functions names define nodes.
- 2. Function arguments define edges.

3. Via Driver, Hamilton framework creates a DAG & can execute it.

```
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Sums a with b"""
    return a + b

def d(c: pd.Series) -> pd.Series:
    """Transforms C to ..."""
    new_column = _transform_logic(c)
    return new_column
```


Full Hello World

Functions:

```
# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Sums a with b"""
    return a + b
def d(c: pd.Series) -> pd.Series:
    """Transforms C to ..."""
    new_column = _transform_logic(c)
    return new_column
```

"Driver" - this actually says what and when to execute:

Hamilton TL;DR:

- 1. For each `=` statement, you write a function(s).
- 2. Functions declare a DAG.
- 3. Hamilton handles DAG execution.

```
# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
    """Replaces c = a + b"""
    return a + b
```

```
def d(c: pd.Series) -> pd.Series:
    """Replaces d = transform(c)"""
    new_column = _transform_logic(c)
    return new_column
```

run.py from hamilt

Why was Hamilton created?

Backstory: Time-series Forecasting

Biggest problems here

Backstory: TS -> Dataframe creation

O(1000+) of columns							
Year	Week	Sign ups		Spend	Holiday		
2015	2	57		123	0		
2015	3	58		123	0		
2015	4	59		123	1		
2015	5	59		123	1		
2021	16	1000		1234	0		
20XX	Х	XX		XXX	0		
20XX	Х	XX		XXX	1		
20XX	Х	XX		XXX	0		
L							
		J				J	

Columns are functions of other columns

O(1000) weeks

Backstory: TS -> Dataframe creation

		(O(1000+) of	f columns					
			A		В		f(A,B)]	
Т.	Year	Week	Sign ups		Spend	Holiday			
	2015	2	57		123	0			
	2015	3	58		123	0			g(f(A,B),)
	2015	4	59		123	1			
	2015	5	59		123	1			
\$									
ee									
3									h(g(f(A.B)))
<u>ố</u>									
0	2021	16	1000		1234	0			
öl	20XX	X	XX		XXX	0			
	20XX	X	XX		XXX	1			
	20XX	X	XX		XXX	0			
•									etc 🔼

Backstory: TS -> DF -> 🍝 Code

Hamilton @ Stitch Fix

Hamilton @ Stitch Fix

- Running in production for 2.5+ years
- Manages 4000+ feature definitions
- All feature definitions are:
 - Unit testable
 - Documentation friendly
 - Centrally curated, stored, and versioned in git.
- Data Science team 🤎s it:
 - Enabled a monthly task to be completed 4x faster
 - Easy to onboard new team members
 - Code reviews are simpler

Overview: Feature Engineering with Hamilton

Hamilton + Feature Engineering: Overview

- Can model this all in Hamilton (if you wanted to)
- We'll just focus on featurization
 - FYI: Hamilton works for any object type.
 - Here we'll assume pandas for simplicity.
 - Batch: use Hamilton within Airflow, Dagster, Prefect, Flyte, Metaflow, Kubeflow, etc.
 - Online: embed in python web services.

Modeling featurization

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:

Data loading & Feature code:

Via

1000

16

2021

1234

0

features.py

20

Modeling featurization

Drivers

Modeling featurization

Drive<u>rs</u>

Scalable Feature Engineering: Hamilton + Ray

Problems that thwart scaling

> Human/Team:

- Highly coupled code
- In ability to reuse/understand work
- Broken/unhealthy production pipelines
- > Machines:
- Data is too big to fit in memory
- Cannot easily parallelize computation

Hamilton helps here!

How Hamilton helps with Human/Team Scaling

Highly coupled code	Decouples "functions" from use (driver code).

How Hamilton helps with Human/Team Scaling

Highly coupled code	Decouples "functions" from use (driver code).
In ability to reuse/understand work	Functions are curated into modules.
	Everything is unit testable.
	Documentation is natural.
	Forced to align on naming.

How Hamilton helps with Human/Team Scaling

Highly coupled code	Decouples "functions" from use (driver code).
In ability to reuse/understand work	Functions are curated into modules.
	Everything is unit testable.
	Documentation is natural.
	Forced to align on naming.
Broken/unhealthy production pipelines	Debugging is straightforward.
	Easy to version features via git/packaging.
	Runtime data quality checks. 27

Scaling Humans/Teams

Hamilton Functions:

Hamilton Features:

- Unit testing
- Documentation
- Modularity/reuse
- Central feature definition store
- Data quality

always possible
 tags, visualization, function doc
 module curation & <u>drivers</u>
 naming, curation, versioning
 runtime checks

Scaling Humans/Teams

Code base implications:

- 1. Functions are always in modules
- 2. Driver script, i.e execution script, is decoupled from functions.

> Code reuse from day one!

> Low maintenance to support many driver scripts

Scaling Compute/Data with Ray

- Ray enables you to scale beyond your laptop
 - Single process -> Multiprocessing -> Cluster
- Ray building blocks:
 - Built on Ray Core.
 - Ray workflows also supported.
- Switching to run on Ray requires:

> Only changing driver.py code

Architecture Hamilton + Ray: Local

- Parallelism limited by cores on machine.
- Limited by memory on machine.

Architecture Hamilton + Ray: Cluster

Hamilton + Ray: Driver only change

run_on_ray.py

```
from hamilton import base, driver
from hamilton.experimental import h ray
ray.init()
config = \{\ldots\}
rga = h ray.RayGraphAdapter(
    result builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
                  data loaders,
                  date features,
                  spend features,
                   adapter=rga)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
                        inputs=date features)
save(feature df, 'prod.features')
ray.shutdown()
```

Hamilton + Ray: How does it work?

Hamilton + Ray: How does it work?

Hamilton + Ray: Caveats

Currently you need to think about:

- 1. Serialization:
 - a. everything needs to be pickle protocol v5 compatible.
- 2. Memory:
 - a. memory aware scheduling isn't exposed.
 - i. Need to figure out UX to expose this.
- 3. Python dependencies:
 - a. Cluster has what you need installed
 - b. Or, you specify them via ray.init().
- 4. Looking to graduate Ray from experimental status

>> Looking for contributions here to extend support in Hamilton! <<

Demo

Demo Primer

- 1. Give a feel for what code might look like.
- 2. Show scaling to Ray.
- 3. Show visualization.
- 4. Show feature iteration cycle.

Summary: Hamilton + Ray

Summary: Hamilton + Ray

def feature_c(feature_a: pd.Series, feature_b: pd.Series) -> pd.Series:
 """Explanation of feature_c"""
 return a + b

- Hamilton is a declarative paradigm to describe data/feature transformations.
 - Embeddable anywhere that runs python
- It grew out of a need to tame a feature code base
 - it'll make yours better too!
- The Hamilton paradigm scales humans/teams through software engineering best practices.
- Hamilton + Ray enables one to:

scale humans/teams **and** scale data & compute.

Give Hamilton a Try! We'd love your Feedback

> pip install sf-hamilton

On <u>github</u> (https://github.com/stitchfix/hamilton)

🔽 create & vote on issues on github

join us on on <u>Slack</u>

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you.

Questions?

https://twitter.com/stefkrawczyk https://www.linkedin.com/in/skrawczyk/ https://github.com/stitchfix/hamilton

