Scalable feature engineering
with Hamilton on Ray

Hamilton is Open Source

> pip install sf-hamilton
Get started in <15 minutes!
Documentation

https://hamilton-docs.gitbook.io/

Lots of examples:

https://qithub.com/stitchfix/hamilton/tree/main/examples

https://hamilton-docs.gitbook.io/
https://github.com/stitchfix/hamilton/tree/main/examples

What is Hamilton?

What is Hamilton?

A declarative dataflow paradigm.

https://en.wikipedia.org/wiki/Dataflow

Hamilton:
Code — Directed Acyclic Graph — Object

holidays (year: pd.Series, week: pd.Series) -> pd.Series:

some_library(year, week)
avg 3wk spend(spend: pd.Series) -> pd.Series:

. spend. rolling (3) .mean ()
spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
L]

spend / signups
spend shift 3weeks(spend: pd.Series) -> pd.Series:

spend. shift (3)
spend shift 3weeks_per_ signup(spend_shift 3weeks: pd.Series, signups: pd.Series) -> pd.Series:

spend_shift 3weeks / signups

@ @l k UD: signups
spend_per_signup
spend_shift_3weeks_per_signup

Hamilton

57

Object

(e.g. DataFrame): (ENEEE User

SUMMIT 2.

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Old way vs Hamilton way:

= df['a'] + df['b"']
= transform(df['c'])

Instead of: df['c’

]
df['d'"]

def c(a: pd.Series, b: pd.Series) -> pd.Series:
You declare:

return a + b

def d(c: pd.Series) -> pd.Series:

new column = transform logic(c)
return new_column

+ some driver code (not shown)

e
SUMMIT 220

Old way vs Hamilton way:

Instead of: df['c'] =ldf['a'] + dAf['b']

r df['d'] transform(df['c'])

You declare: l PP

def|c(a: pd.Series, b: pd.Series) -> pd.Series:
return a + b
def|d(c: pd.Series) -> pd.Series:

new column = transform logic(c)
return new_column

e
SUMMIT 220

Explanation of Hamilton way

1. Functions names define nodes. [c, d]
2. Function arguments define edges. [c ->a,c->Db; d->c]
3. Via Driver, Hamilton framework creates a DAG & can execute it.

def c(a: pd.Series, b: pd.Series) -> pd.Series: H n

return a + b
def d(c: pd.Series) -> pd.Series:

new column = transform logic(c) o

return new_column

e
SUMMIT 220

Full Hello World

. # feature logic.py

Functions: def c(a: pd.Series, b: pd.Series) -> pd.Series:
wivw Sums a With b" wi

return a + b

def d(c: pd.Series) -> pd.Series:
"""Transforms C to ..."""
new column = transform logic(c)
return new_column

“Driver” - this actually says what and when to execute:

run.py
from hamilton import driver
import feature logic

dr = driver.Driver({'a’': 'b': ...}, feature logic)

df result = dr.execute(['c', 'd']

- print(df_result)

Hamilton TL:DR:

1. For each =" statement, you write a function(s).

2. Functions declare a DAG.

3. Hamilton handles DAG execution.

feature logic.py

def c(a: pd.Series, b: pd.Series) -> pd.Series:

return a + b
def d(c: pd.Series) -> pd.Series:

new column = transform logic(c)
return new column

e
SUMMIT 220

run.py
from hamilton import driver

import feature logic

dr = driver.Driver({'a': ..., 'b': ...},
feature logic)
df result = dr.execute(['c', 'd'])

print (df result)

Why was Hamilton
created?

Backstory: Time-series Forecasting

Biggest problems here

Data, e.g.
Business

Featurized

Per—— Dataframe

What
Hamilton
helped solve!

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

R
SUMMIT 220

)
X
)
o
2
—_—
)
=]
=]
o
N’
@)

Backstory: TS -> Dataframe creation

0(1000+) of columns

Holiday
0

Columns are
functions of
other columns

0
1
il

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985

B
SUMMIT 229

0(1000) weeks

Backstory: TS -> Dataframe creation

0(1000+) of columns

B
[S;Tﬂ Hol(i)day
. g(f(A,B), ...
h(g(f(A,B), ...), ...)

etc @

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787

Backstory: TS -> DF -> & Code

df = load dates() # load date ranges

df = load actuals(df) # load actuals, e.g. spend, signups

df['holidays'] = is holiday(df['year'], df['week']) # holidays

df['avg 3wk spend'] = df['spend'].rolling(3) .mean() # ™~ ° spend
df['spend per signup'] = df['spend'] / df['si~- . -«son signed up

df['spend shift 3weeks'] = df.sper "’
df['spend shift 3weeks =~

. wulrft spend because ...
--_snift 3weeks'] / df['signups']

def my spec -. pd.DataFrame) -> nd Qariae-

return (¢ . -1 - a£1'8'] + a£1'c') Human scaling &:

df['special feature'] = my special feat:

...

e
SUMMIT 220

Testing / Unit testing
Documentation
Code Reviews
Onboarding
Debugging

444404

ol

O O O O O

Hamilton @ Stitch Fix

s
SUMMIT 220

Hamilton @ Stitch Fix

Running in production for 2.5+ years
Manages 4000+ feature definitions

All feature definitions are:
o Unit testable
o Documentation friendly
o Centrally curated, stored, and versioned in git.

Data Science team “" s it;

o Enabled a monthly task to be completed 4x faster
o Easy to onboard new team members
o Code reviews are simpler

Overview:
Feature Engineering
with Hamilton

Hamilton + Feature Engineering: Overview

Transform Fit Use

Model(s) Model(s)

into
Features

featurization training prediction

e Can model this all in Hamilton (if you wanted to)

e We'll just focus on featurization
o FYI: Hamilton works for any object type.
m Here we'll assume pandas for simplicity.
o Batch: use Hamilton within Airflow, Dagster, Prefect, Flyte, Metaflow, Kubeflow, etc.
o Online: embed in python web services.

s
SUMMIT 220

Modeling featurization

holidays (year: pd.Series, week: pd.Series) -> pd.Series:

some_library(year, week)

avg 3wk spend(spend: pd.Series) -> pd.Series: f t
L]
spend. rolling (3) .mean () e(] u reS- py
spend per signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
spend / signups
spend shift 3weeks(spend: pd.Series) -> pd.Series:

Feature code:;

spend shift 3weeks_per_ signup(spend_shift 3weeks: pd.Series, signups: pd.Series) -> pd.Series:

spend_shift 3weeks / signups

@ @l k UD: signups
Vi
. avg_3wk_spend spend_shift_3weeks spend_per_signup
Driver:
spend_shift_3weeks_per_signup
Sign ups

Feature run.py
Dataframe;

20

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Modeling featurization

Code that needs to be written: Data —1 —

Loaders

. Functions to load data
a. normalize/create common index to join on ‘ .

2. Feature functions

a. Optional: model functions. Feature ‘ ‘ ‘ .‘

3. Drivers materialize data Functions

a. DAG is walked for only what's needed. ‘ ‘ ‘ ‘ ‘
Drivers - -

s
SUMMIT 220

Modeling featurization

Code that needs to be written: Data EE
. Loaders
1. Functions to load data
a. normalize/create common index to join on
2. Feature functions
a. Optional: model functions. e

3. Drivers materialize data Functions
a. DAG is walked for only what's needed.

Drivers -

s
SUMMIT 220

Scalable Feature
Engineering:
Hamilton + Ray

Problems that thwart scaling

> Human/Team:;

e Highly coupled code
e In ability to reuse/understand work
e Broken/unhealthy production pipelines

> Machines:

e Data is too big to fit in memory
e Cannot easily parallelize computation

} Hamilton helps here!

} Ray helps here!

24

How Hamilton helps
with Human/Team Scaling

Highly coupled code

Decouples “functions” from use (driver code).

25

How Hamilton helps
with Human/Team Scaling

Highly coupled code

Decouples “functions” from use (driver code).

In ability to reuse/understand work

Functions are curated into modules.
Everything is unit testable.
Documentation is natural.

Forced to align on naming.

e
SUMMIT 220

26

How Hamilton helps
with Human/Team Scaling

Highly coupled code

Decouples “functions” from use (driver code).

In ability to reuse/understand work

Functions are curated into modules.
Everything is unit testable.
Documentation is natural.

Forced to align on naming.

Broken/unhealthy production pipelines

e
SUMMIT 220

Debugging is straightforward.
Easy to version features via git/packaging.

Runtime data quality checks. 27

Scaling Humans/Teams

Hamilton Functions:

client features.py

@Qtag(='Data-Science’, ='False')

@check output (=np.floaté4, =(-5.0, 5.0), =False)

def height zero mean unit variance (height zero mean: pd.Series,
height std dev: pd.Series) -> pd.Series:

return height zero mean / height std dev

Hamilton Features:

e Unit testing W always possible

e Documentation W tags, visualization, function doc
e Modularity/reuse ¥ module curation & drivers

e Central feature definition store ¥ naming, curation, versioning

e Data quality W runtime checks

s
SUMMIT 220

28

Scaling Humans/Teams

Code base implications:

. Functions are always in modules

2. Driver script, i.e execution script, is decoupled from functions.

Module spend_features.py

Driver script 1
Module markerting _features.py ‘ Driver script 2
> Code reuse from day one!

> Low maintenance to support many driver scripts

Module customer _features.py

s
SUMMIT 220

29

Scaling Compute/Data with Ray

Ray enables you to scale beyond your laptop
o Single process -> Multiprocessing -> Cluster

Ray building blocks:

o Built on Ray Core.
o Ray workflows also supported.

Switching to run on Ray requires:

> Only changing driver.py code

30

Architecture Hamilton + Ray: Local

Laptop / Machine

Head Node g

Driver

Worker

Raylet

Scheduler

Object Store

Global Control Store (GCS)

Parallelism limited by cores on machine.
Limited by memory on machine.

Architecture Hamilton + Ray: Cluster

Laptop / Machine

Head Node g

Worker Node #1 s e« s Worker Node #N s

Driver Worker
© Scheduler
>
o
o
Object Store

Global Control Store (GCS)

L
Worker eee | Worker Worker eee | Worker
E; Scheduler A—N é Scheduler
& &
Object Store N—1 Object Store

Each Hamilton function is distributed.
Scalable parallelism.
Data limited by machine memory.

Hamilton + Ray: Driver only change

RAY
SUMMIT

run on ray.py

from hamilton import base, driver
from hamilton.experimental import h ray

ray.init ()
config = {...}
rga = h ray.RayGraphAdapter (

=base.PandasDataFrameResult())
dr = driver.Driver (config,

data loaders,

date features,

spend features,

=rga)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
=date features)

save (feature df, 'prod.features')
ray.shutdown ()

33

Hamilton + Ray: How does it work?

FUNCTIONS 1

def c(a: pd.Series, b: pd.Series) -> pd.Series:

return a + b

def d(c: pd.Series) -> pd.Series:
new_column = _transform logic(c)
return new_column

DRIVER —

from hamilton import , driver

. o ' ‘ ‘ ‘
config = {...} \

dr = driver.Driver (config,

data loaders,

date features,

spend features,

)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
=date_features)

save (feature df,)

e
SUMMIT 220

34

Hamilton + Ray: How does it work?

FUNCTIONS

def c(a: pd.Series, b: pd.Series) -> pd.Series:
return a + b
def d(c: pd.Series) -> pd.Series:

new_column = _transform logic(c)
return new_column

DAG
DRIVER

from hamilton import , driver
from import

config = {...}

dr = driver.Driver (config,
data loaders,
date features,
spend features,
)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
=date_features)
save (feature df,)

\

Ray Local/Cluster

Head node Worker node Worker node

Object Store

——) ‘

Delegate to Ray

ray.remote (
node.callable) . remote (**kwargs)

35

Hamilton + Ray: Caveats

Currently you need to think about:

1. Serialization:
a. everything needs to be pickle protocol vb compatible.
2. Memory:

a. memory aware scheduling isn’'t exposed.
i. Need to figure out UX to expose this.

3. Python dependencies:

a. Cluster has what you need installed
b. Or, you specify them via ray.init ().

4. Looking to graduate Ray from experimental status

>> Looking for contributions here to extend support in Hamilton! <<

1.
2.
3.
4.

Demo Primer

Give a feel for what code might look like.
Show scaling to Ray.

Show visualization.

Show feature iteration cycle.

38

summary:
Hamilton + Ray

Summary: Hamilton + Ray

def feature c(feature a: pd.Series, feature b: pd.Series) -> pd.Series:

return a + b

e
SUMMIT 220

Hamilton is a declarative paradigm to describe data/feature

transformations.
o Embeddable anywhere that runs python

It grew out of a need to tame a feature code base
o it'll make yours better too!

The Hamilton paradigm scales humans/teams through software
engineering best practices.
Hamilton + Ray enables one to:

scale humans/teams and scale data & compute.

40

Give Hamilton a Try!
We'd love your Feedback

>pip install sf-hamilton
w on github (nttps://github.com/stitchfix/hamilton)
V¥ create & vote on issues on github

L join us on on Slack

(httos://ioin.slqck.com/t/hcmilton—ooensource/shored invite/zt—]bis7203x—chTqH7q7QXliquSbbdcq)

4]

https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you.

Questions?
https:/[twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk/

https://github.com/stitchfix/hamilton

