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Hamilton is Open Source

> pip install sf-hamilton

Get started in <15 minutes!

Documentation

https://hamilton-docs.gitbook.io/

Lots of examples:

https://github.com/stitchfix/hamilton/tree/main/examples
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https://hamilton-docs.gitbook.io/
https://github.com/stitchfix/hamilton/tree/main/examples


What is Hamilton?



What is Hamilton?

A declarative dataflow paradigm.
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https://en.wikipedia.org/wiki/Dataflow


Code:

Hamilton: 
Code → Directed Acyclic Graph → Object
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def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups

User

DAG:

Object 
(e.g. DataFrame): 

Hamilton

User 

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916


Old way vs Hamilton way:
Instead of:

You declare:

+  some driver code (not shown)
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df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Sums a with b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Transforms C to ..."""
   new_column = _transform_logic(c)
   return new_column



Instead of:

You declare:
Inputs == Function Arguments

Old way vs Hamilton way:
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df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Sums a with b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Transforms C to ..."""
   new_column = _transform_logic(c)
   return new_column

Outputs == Function Name



Explanation of Hamilton way
1. Functions names define nodes.  [c, d]
2. Function arguments define edges. [c -> a, c -> b; d->c]
3. Via Driver, Hamilton framework creates a DAG & can execute it.
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def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Sums a with b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Transforms C to ..."""
   new_column = _transform_logic(c)
   return new_column

c

d

a b



Full Hello World
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# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Sums a with b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Transforms C to ..."""
   new_column = _transform_logic(c)
   return new_column

# run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd']) 
print(df_result)

Functions:

“Driver” - this actually says what and when to execute:



Hamilton TL;DR:
1. For each `=` statement, you write a function(s).
2. Functions declare a DAG.
3. Hamilton handles DAG execution.
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c

d

a b

# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Replaces c = a + b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Replaces d = transform(c)"""
   new_column = _transform_logic(c)
   return new_column

# run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, 
                   feature_logic)
df_result = dr.execute(['c', 'd']) 
print(df_result)



Why was Hamilton 
created?



Backstory: Time-series Forecasting
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What 
Hamilton 

helped solve!

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536


Backstory: TS -> Dataframe creation
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Columns are 
functions of 

other columns

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985


Backstory: TS -> Dataframe creation
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g(f(A,B), …) 

h(g(f(A,B), …), …)

etc🔥

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787


Backstory: TS -> DF -> 🍝 Code
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df = load_dates()  # load date ranges
df = load_actuals(df)  # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week'])  # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean()  # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups']  # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3)  # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups'] 

def my_special_feature(df: pd.DataFrame) -> pd.Series:
   return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
# ...

Now scale this code to 1000+ columns & a growing team 😬

Human scaling 😔:
○ Testing / Unit testing 👎
○ Documentation 👎
○ Code Reviews 👎
○ Onboarding  📈 👎
○ Debugging  📈 👎



Hamilton @ Stitch Fix



Hamilton @ Stitch Fix
● Running in production for 2.5+ years
● Manages 4000+ feature definitions
● All feature definitions are:

○ Unit testable
○ Documentation friendly
○ Centrally curated, stored, and versioned in git.

● Data Science team ❤s it:
○ Enabled a monthly task to be completed 4x faster
○ Easy to onboard new team members
○ Code reviews are simpler
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Overview:
Feature Engineering 
with Hamilton



Hamilton + Feature Engineering: Overview

         featurization training     prediction

● Can model this all in Hamilton (if you wanted to)

● We’ll just focus on featurization
○ FYI: Hamilton works for any object type.

■ Here we’ll assume pandas for simplicity.
○ Batch: use Hamilton within Airflow, Dagster, Prefect, Flyte, Metaflow, Kubeflow, etc.
○ Online: embed in python web services.
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Load 
Data

Transform 
into 

Features

Fit 
Model(s)

Use 
Model(s)



Data loading & 
Feature code:
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def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups

Via 
Driver:

Feature 
Dataframe:

Modeling featurization

features.py

run.py

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916


Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling featurization
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Data 
Loaders

Feature
Functions

Drivers



Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling featurization
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Data 
Loaders

Drivers

Feature
Functions



Scalable Feature 
Engineering: 
Hamilton + Ray



}

}

Problems that thwart scaling
> Human/Team:

● Highly coupled code
● In ability to reuse/understand work
● Broken/unhealthy production pipelines

> Machines:

● Data is too big to fit in memory
● Cannot easily parallelize computation
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Hamilton helps here!

Ray helps here!



How Hamilton helps 
with Human/Team Scaling

25

Highly coupled code Decouples “functions” from use (driver code).



How Hamilton helps 
with Human/Team Scaling
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Highly coupled code Decouples “functions” from use (driver code).

In ability to reuse/understand work Functions are curated into modules.

Everything is unit testable.

Documentation is natural.

Forced to align on naming.



How Hamilton helps 
with Human/Team Scaling
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Highly coupled code Decouples “functions” from use (driver code).

In ability to reuse/understand work Functions are curated into modules.

Everything is unit testable.

Documentation is natural.

Forced to align on naming.

Broken/unhealthy production pipelines Debugging is straightforward.

Easy to version features via git/packaging.

Runtime data quality checks.



Hamilton Functions:

Scaling Humans/Teams
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# client_features.py
@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
                                   height_std_dev: pd.Series) -> pd.Series:
   """Zero mean unit variance value of height"""
   return height_zero_mean / height_std_dev

Hamilton Features:

● Unit testing ✅ always possible
● Documentation ✅ tags, visualization, function doc
● Modularity/reuse ✅ module curation & drivers
● Central feature definition store ✅ naming, curation, versioning
● Data quality ✅ runtime checks



Code base implications:

1. Functions are always in modules
2. Driver script, i.e execution script, is decoupled from functions.

Scaling Humans/Teams
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Module spend_features.py

Module markerting_features.py

Module customer_features.py

Driver script 1

> Code reuse from day one!
> Low maintenance to support many driver scripts

Driver script 2

Driver script 3



Scaling Compute/Data with Ray
● Ray enables you to scale beyond your laptop

○ Single process -> Multiprocessing -> Cluster 
● Ray building blocks:

○ Built on Ray Core.
○ Ray workflows also supported.

● Switching to run on Ray requires:

> Only changing driver.py code 
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Laptop / Machine

   Driver    Worker

Global Control Store (GCS)

   Scheduler 

   Object Store     
Ra

yl
et

 

Head Node

Architecture Hamilton + Ray: Local

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups

# featurize_on_ray.py
…
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
    result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
                  data_loaders,
                  date_features,
                  spend_features,
                  adapter=rga)
features_wanted = [...]  # choose subset wanted
feature_df = dr.execute(features_wanted,
                       inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

Features

Driver

● Parallelism limited by cores on machine.
● Limited by memory on machine.



   Driver    Worker

Global Control Store (GCS)
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   Worker    Worker
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… …

Head Node Worker Node #1 Worker Node #N

Architecture Hamilton + Ray: Cluster

● Each Hamilton function is distributed.
● Scalable parallelism. 
● Data limited by machine memory.

. . 

.

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
   """Some docs"""
   return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
   """Some docs"""
   return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
   """Some docs"""
   return spend_shift_3weeks / signups

# featurize_on_ray.py
…
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
    result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
                  data_loaders,
                  date_features,
                  spend_features,
                  adapter=rga)
features_wanted = [...]  # choose subset wanted
feature_df = dr.execute(features_wanted,
                       inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

Features

Driver

Laptop / Machine



Hamilton + Ray: Driver only change
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# run.py
from hamilton import driver
import data_loaders
import date_features
import spend_features
config = {...} # config, e.g. data_location
dr = driver.Driver(config,
                  data_loaders,
                  date_features,
                  spend_features)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted)
save(feature_df, 'prod.features')

# run_on_ray.py
…
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
    result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
                  data_loaders,
                  date_features,
                  spend_features,
                  adapter=rga)
features_wanted = [...]  # choose subset wanted
feature_df = dr.execute(features_wanted,
                       inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()



Hamilton + Ray: How does it work?
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# FUNCTIONS
def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Sums a with b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Transforms C to ..."""
   new_column = _transform_logic(c)
   return new_column

# DRIVER
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
    result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
                  data_loaders,
                  date_features,
                  spend_features,
                  adapter=rga)
features_wanted = [...]  # choose subset wanted
feature_df = dr.execute(features_wanted,
                       inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

# DAG



Hamilton + Ray: How does it work?
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# FUNCTIONS
def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Sums a with b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Transforms C to ..."""
   new_column = _transform_logic(c)
   return new_column

# DRIVER
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
    result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
                  data_loaders,
                  date_features,
                  spend_features,
                  adapter=rga)
features_wanted = [...]  # choose subset wanted
feature_df = dr.execute(features_wanted,
                       inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

# Delegate to Ray
…
ray.remote(
    node.callable).remote(**kwargs)

# DAG

Ray Local/Cluster



Hamilton + Ray: Caveats
Currently you need to think about:

1. Serialization: 
a. everything needs to be pickle protocol v5 compatible.

2. Memory: 
a. memory aware scheduling isn’t exposed.

i. Need to figure out UX to expose this.
3. Python dependencies: 

a. Cluster has what you need installed
b. Or, you specify them via ray.init().

4. Looking to graduate Ray from experimental status

>> Looking for contributions here to extend support in Hamilton! <<
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Demo



1. Give a feel for what code might look like.
2. Show scaling to Ray.
3. Show visualization.
4. Show feature iteration cycle.
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Demo Primer



Summary: 
Hamilton + Ray



Summary: Hamilton + Ray

● Hamilton is a declarative paradigm to describe data/feature 
transformations.
○ Embeddable anywhere that runs python

● It grew out of a need to tame a feature code base
○ it’ll make yours better too!

● The Hamilton paradigm scales humans/teams through software 
engineering best practices.

● Hamilton + Ray enables one to:

scale humans/teams and scale data & compute.
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def feature_c(feature_a: pd.Series, feature_b: pd.Series) -> pd.Series:
   """Explanation of feature_c"""
   return a + b



Give Hamilton a Try! 
We’d love your Feedback

> pip install sf-hamilton

⭐ on github (https://github.com/stitchfix/hamilton)

☑ create & vote on issues on github

📣 join us on on Slack 
(https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg) 
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https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg


Thank you.
Questions?

https://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczyk/

https://github.com/stitchfix/hamilton


