
Scalable feature engineering
with Hamilton on Ray
Stefan Krawczyk, formerly of Stitch Fix

Hamilton is Open Source

> pip install sf-hamilton

Get started in <15 minutes!

Documentation

https://hamilton-docs.gitbook.io/

Lots of examples:

https://github.com/stitchfix/hamilton/tree/main/examples

2

https://hamilton-docs.gitbook.io/
https://github.com/stitchfix/hamilton/tree/main/examples

What is Hamilton?

What is Hamilton?

A declarative dataflow paradigm.

4

https://en.wikipedia.org/wiki/Dataflow

Code:

Hamilton:
Code → Directed Acyclic Graph → Object

5

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

User

DAG:

Object
(e.g. DataFrame):

Hamilton

User

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Old way vs Hamilton way:
Instead of:

You declare:

+ some driver code (not shown)
6

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Instead of:

You declare:
Inputs == Function Arguments

Old way vs Hamilton way:

7

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Outputs == Function Name

Explanation of Hamilton way
1. Functions names define nodes. [c, d]
2. Function arguments define edges. [c -> a, c -> b; d->c]
3. Via Driver, Hamilton framework creates a DAG & can execute it.

8

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

c

d

a b

Full Hello World

9

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions:

“Driver” - this actually says what and when to execute:

Hamilton TL;DR:
1. For each `=` statement, you write a function(s).
2. Functions declare a DAG.
3. Hamilton handles DAG execution.

10

c

d

a b

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Replaces c = a + b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Replaces d = transform(c)"""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...},
 feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Why was Hamilton
created?

Backstory: Time-series Forecasting

12

What
Hamilton

helped solve!

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

Backstory: TS -> Dataframe creation

13

Columns are
functions of

other columns

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985

Backstory: TS -> Dataframe creation

14

g(f(A,B), …)

h(g(f(A,B), …), …)

etc🔥

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787

Backstory: TS -> DF -> 🍝 Code

15

df = load_dates() # load date ranges
df = load_actuals(df) # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week']) # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean() # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups'] # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3) # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups']

def my_special_feature(df: pd.DataFrame) -> pd.Series:
 return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
...

Now scale this code to 1000+ columns & a growing team 😬

Human scaling 😔:
○ Testing / Unit testing 👎
○ Documentation 👎
○ Code Reviews 👎
○ Onboarding 📈 👎
○ Debugging 📈 👎

Hamilton @ Stitch Fix

Hamilton @ Stitch Fix
● Running in production for 2.5+ years
● Manages 4000+ feature definitions
● All feature definitions are:

○ Unit testable
○ Documentation friendly
○ Centrally curated, stored, and versioned in git.

● Data Science team ❤s it:
○ Enabled a monthly task to be completed 4x faster
○ Easy to onboard new team members
○ Code reviews are simpler

17

Overview:
Feature Engineering
with Hamilton

Hamilton + Feature Engineering: Overview

 featurization training prediction

● Can model this all in Hamilton (if you wanted to)

● We’ll just focus on featurization
○ FYI: Hamilton works for any object type.

■ Here we’ll assume pandas for simplicity.
○ Batch: use Hamilton within Airflow, Dagster, Prefect, Flyte, Metaflow, Kubeflow, etc.
○ Online: embed in python web services.

19

Load
Data

Transform
into

Features

Fit
Model(s)

Use
Model(s)

Data loading &
Feature code:

20

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

Via
Driver:

Feature
Dataframe:

Modeling featurization

features.py

run.py

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling featurization

21

Data
Loaders

Feature
Functions

Drivers

Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling featurization

22

Data
Loaders

Drivers

Feature
Functions

Scalable Feature
Engineering:
Hamilton + Ray

}

}

Problems that thwart scaling
> Human/Team:

● Highly coupled code
● In ability to reuse/understand work
● Broken/unhealthy production pipelines

> Machines:

● Data is too big to fit in memory
● Cannot easily parallelize computation

24

Hamilton helps here!

Ray helps here!

How Hamilton helps
with Human/Team Scaling

25

Highly coupled code Decouples “functions” from use (driver code).

How Hamilton helps
with Human/Team Scaling

26

Highly coupled code Decouples “functions” from use (driver code).

In ability to reuse/understand work Functions are curated into modules.

Everything is unit testable.

Documentation is natural.

Forced to align on naming.

How Hamilton helps
with Human/Team Scaling

27

Highly coupled code Decouples “functions” from use (driver code).

In ability to reuse/understand work Functions are curated into modules.

Everything is unit testable.

Documentation is natural.

Forced to align on naming.

Broken/unhealthy production pipelines Debugging is straightforward.

Easy to version features via git/packaging.

Runtime data quality checks.

Hamilton Functions:

Scaling Humans/Teams

28

client_features.py
@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
 height_std_dev: pd.Series) -> pd.Series:
 """Zero mean unit variance value of height"""
 return height_zero_mean / height_std_dev

Hamilton Features:

● Unit testing ✅ always possible
● Documentation ✅ tags, visualization, function doc
● Modularity/reuse ✅ module curation & drivers
● Central feature definition store ✅ naming, curation, versioning
● Data quality ✅ runtime checks

Code base implications:

1. Functions are always in modules
2. Driver script, i.e execution script, is decoupled from functions.

Scaling Humans/Teams

29

Module spend_features.py

Module markerting_features.py

Module customer_features.py

Driver script 1

> Code reuse from day one!
> Low maintenance to support many driver scripts

Driver script 2

Driver script 3

Scaling Compute/Data with Ray
● Ray enables you to scale beyond your laptop

○ Single process -> Multiprocessing -> Cluster
● Ray building blocks:

○ Built on Ray Core.
○ Ray workflows also supported.

● Switching to run on Ray requires:

> Only changing driver.py code

30

Laptop / Machine

 Driver Worker

Global Control Store (GCS)

 Scheduler

 Object Store
Ra

yl
et

Head Node

Architecture Hamilton + Ray: Local

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

featurize_on_ray.py
…
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

Features

Driver

● Parallelism limited by cores on machine.
● Limited by memory on machine.

 Driver Worker

Global Control Store (GCS)

 Scheduler

 Object Store
Ra

yl
et

 Worker Worker

 Scheduler

 Object Store
Ra

yl
et

 Worker Worker

 Scheduler

 Object Store
Ra

yl
et

… …

Head Node Worker Node #1 Worker Node #N

Architecture Hamilton + Ray: Cluster

● Each Hamilton function is distributed.
● Scalable parallelism.
● Data limited by machine memory.

. .

.

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

featurize_on_ray.py
…
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

Features

Driver

Laptop / Machine

Hamilton + Ray: Driver only change

33

run.py
from hamilton import driver
import data_loaders
import date_features
import spend_features
config = {...} # config, e.g. data_location
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted)
save(feature_df, 'prod.features')

run_on_ray.py
…
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

Hamilton + Ray: How does it work?

34

FUNCTIONS
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

DRIVER
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

DAG

Hamilton + Ray: How does it work?

35

FUNCTIONS
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

DRIVER
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

Delegate to Ray
…
ray.remote(
 node.callable).remote(**kwargs)

DAG

Ray Local/Cluster

Hamilton + Ray: Caveats
Currently you need to think about:

1. Serialization:
a. everything needs to be pickle protocol v5 compatible.

2. Memory:
a. memory aware scheduling isn’t exposed.

i. Need to figure out UX to expose this.
3. Python dependencies:

a. Cluster has what you need installed
b. Or, you specify them via ray.init().

4. Looking to graduate Ray from experimental status

>> Looking for contributions here to extend support in Hamilton! <<

36

Demo

1. Give a feel for what code might look like.
2. Show scaling to Ray.
3. Show visualization.
4. Show feature iteration cycle.

38

Demo Primer

Summary:
Hamilton + Ray

Summary: Hamilton + Ray

● Hamilton is a declarative paradigm to describe data/feature
transformations.
○ Embeddable anywhere that runs python

● It grew out of a need to tame a feature code base
○ it’ll make yours better too!

● The Hamilton paradigm scales humans/teams through software
engineering best practices.

● Hamilton + Ray enables one to:

scale humans/teams and scale data & compute.
40

def feature_c(feature_a: pd.Series, feature_b: pd.Series) -> pd.Series:
 """Explanation of feature_c"""
 return a + b

Give Hamilton a Try!
We’d love your Feedback

> pip install sf-hamilton

⭐ on github (https://github.com/stitchfix/hamilton)

☑ create & vote on issues on github

📣 join us on on Slack
(https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg)

41

https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you.
Questions?

https://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczyk/

https://github.com/stitchfix/hamilton

