
Hamilton
A Python Micro-Framework

for tidy scalable Pandas

Stefan Krawczyk
August 2022

Hamilton is Open Source Code

> pip install sf-hamilton

Get started in <15 minutes!

Documentation

https://hamilton-docs.gitbook.io/

Lots of examples:

https://github.com/stitchfix/hamilton/tree/main/examples

2

https://hamilton-docs.gitbook.io/
https://github.com/stitchfix/hamilton/tree/main/examples

What is Hamilton?

What is Hamilton?

A declarative dataflow paradigm.

4

https://en.wikipedia.org/wiki/Dataflow

Hamilton:
Code → Directed Acyclic Graph → Object

Code:

5

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

User

DAG:

Object
(e.g. DataFrame):

Hamilton

User

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Old way vs Hamilton way:

Instead of:

You declare:

+ some driver code (not shown)
6

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Instead of:

You declare:
Inputs == Function Arguments

Old way vs Hamilton way:

7

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Outputs == Function Name

Full Hello World

8

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions:

“Driver” - this actually says what and when to execute:

Hamilton TL;DR:

1. For each `=` statement, you write a function(s).
2. Functions declare a DAG.
3. Hamilton handles DAG execution.

9

c

d

a b

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Replaces c = a + b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Replaces d = transform(c)"""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...},
 feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Why was Hamilton created?

Backstory: Time-series Forecasting

11

What
Hamilton

helped solve!

Biggest problems here

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

Backstory: TS -> Dataframe creation

12

Columns are
functions of

other columns

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/6?callback=close&name=slides&callback_type=back&v=28289&s=486.46062992125985

Backstory: TS -> Dataframe creation

13

g(f(A,B), …)

h(g(f(A,B), …), …)

etc🔥

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/5?callback=close&name=slides&callback_type=back&v=28289&s=479.2243393700787

Backstory: TS -> DF -> 🍝 Code

14

df = load_dates() # load date ranges
df = load_actuals(df) # load actuals, e.g. spend, signups
df['holidays'] = is_holiday(df['year'], df['week']) # holidays
df['avg_3wk_spend'] = df['spend'].rolling(3).mean() # moving average of spend
df['spend_per_signup'] = df['spend'] / df['signups'] # spend per person signed up
df['spend_shift_3weeks'] = df.spend['spend'].shift(3) # shift spend because ...
df['spend_shift_3weeks_per_signup'] = df['spend_shift_3weeks'] / df['signups']

def my_special_feature(df: pd.DataFrame) -> pd.Series:
 return (df['A'] - df['B'] + df['C']) * weights

df['special_feature'] = my_special_feature(df)
...

Now scale this code to 1000+ columns & a growing team 😬

Human scaling 😔:
○ Testing / Unit testing 👎
○ Documentation 👎
○ Code Reviews 👎
○ Onboarding 📈 👎
○ Debugging 📈 👎Underrated problem!

Hamilton @ Stitch Fix

Hamilton @ Stitch Fix

● Running in production for 2.5+ years
● Manages 4000+ feature definitions
● All feature definitions are:

○ Unit testable
○ Documentation friendly
○ Centrally curated, stored, and versioned in git.

● Data Science team ❤s it:
○ Enabled a monthly task to be completed 4x faster
○ Easy to onboard new team members
○ Code reviews are simpler

16

Overview:
General usage of

Hamilton

Overview: General usage of Hamilton

1. Create functions in module(s).
2. Create drivers to drive execution of those functions.
3. Execute driver code.

Notes:

● Can model any python object creation (not just pandas)
● Batch: use Hamilton within Airflow, Dagster, Prefect, Flyte, Metaflow,

Kubeflow, Jupyter notebook etc.
● Online: embed within python streaming / python webserivce

18

Data loading &
Feature code:

19

def holidays(year: pd.Series, week: pd.Series) -> pd.Series:
 """Some docs"""
 return some_library(year, week)
def avg_3wk_spend(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.rolling(3).mean()
def spend_per_signup(spend: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend / signups
def spend_shift_3weeks(spend: pd.Series) -> pd.Series:
 """Some docs"""
 return spend.shift(3)
def spend_shift_3weeks_per_signup(spend_shift_3weeks: pd.Series, signups: pd.Series) -> pd.Series:
 """Some docs"""
 return spend_shift_3weeks / signups

Via
Driver:

Feature
Dataframe:

Modeling e.g. featurization

features.py

run.py

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/3?callback=close&name=slides&callback_type=back&v=28289&s=493.77721456692916

Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling e.g. featurization

20

Data
Loaders

Feature
Functions

Drivers

Code that needs to be written:

1. Functions to load data
a. normalize/create common index to join on

2. Feature functions
a. Optional: model functions.

3. Drivers materialize data
a. DAG is walked for only what’s needed.

Modeling e.g. featurization

21

Data
Loaders

Drivers

Feature
Functions

Problems with Pandas Code

Problems with Pandas Code

}

}

> Human/Team:

● Highly coupled code
● In ability to reuse/understand work
● Broken/unhealthy production pipelines

> Machines:

● Data is too big to fit in memory
● Cannot easily parallelize computation

23

Hamilton helps here!

Hamilton has
integrations here!
(will skip this part)

Scaling Humans/Teams

Hamilton Functions:

Scaling Humans/Teams

25

client_features.py
@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
 height_std_dev: pd.Series) -> pd.Series:
 """Zero mean unit variance value of height"""
 return height_zero_mean / height_std_dev

Hamilton Features:

● Unit testing ✅ always possible
● Documentation ✅ tags, visualization, function doc
● Modularity/reuse ✅ module curation & decoupled

 drivers
● Central feature definition store ✅ naming, curation, versioning
● Data quality ✅ runtime checks

Code base implications:

1. Functions are always in modules
2. Driver script, i.e execution script, is decoupled from functions.

Scaling Humans/Teams

26

Module spend_features.py

Module markerting_features.py

Module customer_features.py

Driver script 1

> Code reuse from day one!
> Low maintenance to support many driver scripts

Driver script 2

Driver script 3

Summary

Summary: Hamilton for tidy pandas

● Hamilton is a declarative paradigm to describe data/feature
transformations
○ Embeddable anywhere that runs python.

● It grew out of a need to tame a feature code base
○ it’ll make yours better too!

● The Hamilton paradigm scales humans/teams through software
engineering best practices.

● Hamilton paired with a system (e.g. modin, ray, etc) enables one to:

scale humans/teams and scale data/compute.

28

Give Hamilton a Try!
We’d love your Feedback

> pip install sf-hamilton

⭐ on github (https://github.com/stitchfix/hamilton)

☑ create & vote on issues on github

📣 join us on on Slack
(https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg)

29

https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you.
Questions?

https://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczyk/

https://github.com/stitchfix/hamilton

