
TDFA – Fast Submatch Extraction in Regular Expressions

Angelo Borsotti
angelo.borsotti@mail.polimi.it

Ulya Trofimovich
skvadrik@gmail.com

2021

Abstract

In this paper we revisit the lookahead TDFA algorithm for submatch extraction in regular expressions. We
provide a detailed description of the algorithm with pseudocode and examples, covering a few important practical
optimizations and extensions. We benchmark the algorithm against other submatch extraction algorithms and
show that it is very fast in practice. Our research is based on two independent implementations: an open-source
lexer generator RE2C and an experimental Java library.

Introduction

This paper does not present a new submatch extraction algorithm — instead, we provide an in-depth description of
the algorithm based on Tagged Deterministic Finite Automata (TDFA). The paper is primarily targeted at readers
who want to implement TDFA, but find the previous papers difficult to follow or lacking important details. Here is
a brief history of TDFA development. In 2000 Laurikari published the original paper [Lau00]. In 2007 Kuklewicz
implemented the algorithm as a Haskell library [Regex-TDFA] with POSIX longest-match disambiguation. In 2016
Trofimovich came up with the lookahead optimization [Tro17], implemented the algorithm in the open-source lexer
generator RE2C [RE2C] and formalized Kuklewicz disambiguation algorithm. In 2017 Borsotti implemented TDFA
as a Java library (this wasn’t published), and in 2019 Borsotti and Trofimovich described a more efficient POSIX
disambiguation algorithm based on the combination of Okui-Suzuki disambiguation and Laurikari TNFA that is
also suitable for TDFA construction [BorTro19]. Now that TDFA have been used in real-world software for a while
and have shown their practical use, we set forth to provide a better description of the algorithm and share the
accumulated insight and experimental data. Before diving into details, we start with a brief discussion of the key
concepts.

Regular expressions (RE) are a notation for describing sets of strings known as regular languages, or Type-3 lan-
guages in the Chomsky hierarchy [Cho59]. They were first defined by Kleene [Kle51] as string sets constructed from
the alphabet symbols and empty word via the application of three basic operations: concatenation, alternative and
iteration. Later RE were formalized via the notion of Kleene algebra [Koz94]. The recognition problem for RE is to
determine if a given string belongs to the language defined by RE. A more complex parsing problem additionally
requires to construct a derivation of a string in a regular grammar (a parse tree). Submatch extraction is similar to
parsing, but it does not require a full derivation — only a partial one sufficient to identify parts of the input string
that match specific parts of RE. Generic parsing algorithms are too heavyweight for submatch extraction, and a
different, faster approach can be used.

The recognition problem for RE can be solved with finite state automata, which come in two flavours: deterministic
ones (DFA) and non-determinstic ones (NFA). Both types recognize a string in linear time depending on its length,
but DFA are faster in practice, as they follow a single deterministic path, while NFA follow a set of non-deterministic
paths simultaneously. NFA can be converted to DFA using the determinization procedure, with the caveat that the
DFA may be exponentially larger than the NFA. Submatch extraction is straightforward with Thompson’s NFA
construction which mirrors the structure of RE and allows tracking separate submatch values for different non-
deterministic paths. This idea has been described by many authors, including Laurikari [Lau00] and Cox [Cox07],
who gives a historic overview. It works well for NFA, but not for DFA where different non-deterministic paths are
collapsed into one. To keep track of conflicting submatch values on different paths, DFA are augmented with a fixed
amount of memory — registers, and operations on transitions that update register values. The most difficult part
is determinization, which needs to decide on the number of registers and construct operations. Doing that correctly

1

and efficiently is the main subject of this paper.

Non-determinism should not be confused with ambiguity. Non-determinism is the existense of multiple possibilities
during parsing, all of which need to be considered, but some may lead to a deadend. Ambiguity is the existense
of multiple different ways to parse the input in principle. Non-determinism is a temporary obstacle that a parsing
algorithm has to deal with, and ambiguity is a genuine property of grammar (or sometimes a language). Ambiguity
is as much of a problem for NFA as for DFA, as well as any parsing algorithm. To deal with it, one needs a way
to choose between ambiguous parses — a disambiguation policy. The two most widely known policies are the Perl
leftmost-greedy policy and the POSIX longest-match policy. The latter is much harder to implement, although it
(arguably) better corresponds to the intuitive notion of the “best match”. Some RE engines provide other ways
to resolve ambiguity, such as user-defined precedence rules, but these are ad-hoc, error-prone and often difficult
to reason about. POSIX disambiguation is out of the scope of this paper; see a separate paper [BorTro19] for an
extensive research on the subject. It suffices to say that TDFA can be parameterized over a disambiguation policy,
and there is no overhead on disambiguation at runtime — it happens at determinization time.

The choice of a matching algorithm depends on a particular setting. RE engines can be roughly divided in two
categories: libraries and lexer generators. Libraries perform interpretation or just-in-time compilation of RE —
they face a tradeoff between the time spent on preprocessing and the time spent on matching. Lexer generators, on
the other hand, perform ahead-of-time compilation and do not have such a tradeoff. Consequently, libraries use a
variety of algorithms ranging from recursive backtracking to NFA, DFA, string searching or some combination of the
above; while lexer generators almost always use DFA and may spend considerable time on optimizations in order
to emit better code. TDFA can be used in both settings, but their determinisitc nature and low runtime overhead
makes them especailly well-suited for lexer generators. We have used two independent TDFA implementations: an
open-source lexer generator RE2C that generates C code and an experimental runtime Java library.

The speed of submatch extraction algorithm depends on the form in which submatch results are constructed. The
most generic form is a parse tree — it retains the full information about the derivation of a string in the grammar
defined by RE. A more concise form is a list of offsets per each submatch position in RE. An even more lightweight
form is a single offset per submatch position (usually the last one). We primarily focus on the single-offset form,
as it is useful in practice and it permits various optimizations described in section 3. Optionally the algorithm can
extract offset lists (the choice is individual for each submatch position, not global). As for parse trees, there is no
standard representation, and the runtime performance of the algorithm depends heavily on a particular representa-
tion. We use tagged strings which have very low overhead and retain enough information to reconstruct a full parse
tree. In section ?? we describe registerless TDFA that are better suited to full parsing than TDFA with registers.
The benchmarks in section 6 cover different representations and RE with different submatch density.

In this paper we focus on TDFA with lookahead described by Trofimovich [Tro17], not the original TDFA described
by Laurikari [Lau00]. The two types of automata are called TDFA(1) and TDFA(0) by analogy with LR(1) and
LR(0) automata: TDFA(1) utilize the lookahead symbol during determinization, which allows them to reduce
non-determinism and use fewer registers and register operations than TDFA(0). We benchmark TDFA(1) against
TDFA(0), as well as two other types of automata: sta-DFA [Cho19] and DSST [Gra15]. Sta-DFA are very similar
to TDFA, but they have register operations in states rather than on transitions (and do not use lookahead). DSST
stands for Deterministic Streaming String Transducers; these are more distant relatives to TDFA, better suited to
string rewriting and full parsing. We also benchmark TDFA against Ragel [Ragel], which uses simple DFA with
ad-hoc user-defined actions.

The rest of the paper is structured as follows. Section 1 formally defines RE and explains how to construct TNFA.
Section 2 defines TDFA and describes the determinization procedure. Section ?? describes important practical
optimizations. Section 4 gives a complete example from RE to an optimized TDFA, covering TNFA simula-
tion, determinization and different optimization passes. Section ?? describes registerless TDFA. Section 6 provides
benchmarks and comparison with other algorithms. Finally, section 7 has conclusions and directions for future work.

To reduce pseudocode verbosity throughout the paper we assume that function arguments are passed by reference
and modifications to them are visible to the calling function.

2

1 TNFA

In this section we define RE and TNFA, show how to construct TNFA from RE and how to match a string.

Definition 1. Regular expressions (RE) over finite alphabet Σ are:
1. Empty RE ε, unit RE a ∈ Σ and tag t ∈ N.
2. Alternative e1|e2, concatenation e1e2 and repetition en,m1 (0≤n≤m≤∞) where e1 and e2 are RE over Σ.

Tags are submatch markers that can be placed anywhere in RE. They may be standalone or correspond to capturing
parentheses (the correspondence may be nontrivial, e.g. POSIX capturing groups require insertion of hierarchical
tags [BorTro19]). Generalized repetition en,m can be bounded (m < ∞) or unbounded (m = ∞). Unbounded
repetition e0,∞ is the canonical Kleene iteration, shortened as e∗. Bounded repetition is often desugared via
concatenation, but in the presence of tags that could change submatch information in RE.

Definition 2. Tagged Nondeterministic Finite Automaton (TNFA) is a structure (Σ, T,Q, q0, qf ,∆), where:
Σ is a finite set of symbols (alphabet)
T ⊂ N is a finite set of tags
Q is a finite set of states with initial state q0 and final state qf
∆ is a transition relation that contains transitions of two kinds:

transitions on alphabet symbols (q, a, p) where q, p ∈ Q and a ∈ Σ
optionally tagged ε-transitions with priority (q, i, t, p) where q, p ∈ Q, i ∈ N and t ∈ T ∪ T ∪ {ε}

TNFA is in essence a non-deterministic finite state transducer with input alphabet Σ and output alphabet Σ∪T ∪T ,
it rewrites symbolic strings into tagged strings. T = {−t | t ∈ T} is the set of all negative tags, which represent
the absence of match: they appear whenever there is a way to bypass a tagged subexpression in RE, such as
alternative or repetition with zero lower bound. Explicit representation of negative match serves a few purposes:
it prevents stale submatch values from propagating to subsequent iterations, it spares the need to initialize tags,
and it is required by POSIX disambiguation [BorTro19]. Priorities are used for transition ordering during ε-closure
construction. Algorithm 2 on page 4 shows TNFA construction: it performs top-down structural recursion on RE,
passing the final state on recursive descent into subexpressions and using it to connect subautomata. This is similar
to Thompson’s construction, except that non-essential ε-transitions are removed and tagged transitions are added.
The resulting automaton mirrors the structure of RE and preserves submatch information and ambiguity in it.

simulation
(
(Σ, T,Q, q0, qf ,∆), a1 . . . an

)
1 m0 : vector of offsets of size |T |
2 C = {(q0,m0)}

3 for k = 1, n do
4 C = epsilon closure(C,∆, qf , k)
5 C = step on symbol(C,∆, ak)
6 if C = ∅ then return ∅
7 C = epsilon closure(C,∆, qf , n)

8 if ∃(q,m) in C | q = qf then return m
9 else return ∅

step on symbol
(
C,∆, a

)
10 return {(p,m) | (q,m) in C and (q, a, p) ∈ ∆}

epsilon closure
(
C,∆, qf , k

)
11 C′ : empty sequence of configurations

12 for (q,m) in C in reverse order do
13 push (q,m) on stack

14 while stack is not empty do
15 pop (q,m) from stack
16 append (q,m) to C′

17 for each (q, i, t, p) ∈ ∆ ordered by priority i do
18 if t > 0 then m[t] = k
19 else m[−t] = n
20 if configuration with state p is not in C′ then
21 push (p,m) on stack

22 return {(q,m) in C′ | q = qf or
23 ∃(q, a,) ∈ ∆ where a ∈ Σ}

Algorithm 1: TNFA simulation.

Algorithm 1 defines TNFA simulation on a string. It starts with a single configuration (q0,m0) consisting of the
initial state q0 and an empty vector of tag values, and loops over the input symbols until all of them are matched or
the configuration set becomes empty, indicating match failure. At each step the algorithm constructs ε-closure of
the current configuration set, updating tag values along the way, and steps on transitions labeled with the current
input symbol. Finally, if all symbols have been matched and there is a configuration with the final state qf , the
algorithm terminates successfully and returns the final vector of tag values. Otherwise it returns a failure. The
algorithm uses leftmost greedy disambiguation; POSIX disambiguation is more complex and requires a different
ε-closure algorithm [BorTro19]. Figure 1 in section 4 shows an example of TNFA simulation.

3

tnfa(e, qf)

1 if e = ε then

2 return (Σ, ∅, {qf}, qf , qf , ∅)

3 else if e = a ∈ Σ then

4 return (Σ, ∅, {q0, qf}, q0, qf , {(q0, a, qf)})

5 else if e = t ∈ N then

6 return (Σ, {t}, {q0, qf}, q0, qf , {(q0, 1, t, qf)})

7 else if e = e1 · e2 then

8 (Σ, T2, Q2, q2, qf ,∆2) = tnfa(e2, qf)

9 (Σ, T1, Q1, q1, q2,∆1) = tnfa(e1, q2)

10 return (Σ, T1 ∪ T2, Q1 ∪Q2, q1, qf ,∆1 ∪∆2)

11 else if e = e1 | e2 then

12 (Σ, T2, Q2, q2, qf ,∆2) = tnfa(e2, qf)

13 (Σ, T2, Q
′
2, q
′
2, qf ,∆

′
2) = ntags(T2, qf)

14 (Σ, T1, Q1, q1, q
′
2,∆1) = tnfa(e2, q

′
2)

15 (Σ, T1, Q
′
1, q
′
1, q2,∆

′
1) = ntags(T1, q2)

16 Q = Q1 ∪Q′1 ∪Q2 ∪Q′2 ∪ {q0}
17 ∆ = ∆1 ∪∆′1 ∪∆2 ∪∆′2 ∪ {(q0, 1, ε, q1), (q0, 2, ε, q

′
1)}

18 return (Σ, T1 ∪ T2, Q, q0, qf ,∆)

19 else if e = en,m
1 |1<n≤m≤∞ then

20 (Σ, T1, Q1, q2, qf ,∆1) = tnfa(en−1,m−11 , qf)

21 (Σ, T2, Q2, q1, q2,∆2) = tnfa(e1, q2)

22 return (Σ, T1 ∪ T2, Q1 ∪Q2, q1, qf ,∆1 ∪∆2)

23 else if e = e1,m1 |1<m<∞ then

24 if m = 1 then return tnfa(e1, qf)

25 (Σ, T1, Q1, q1, qf ,∆1) = tnfa(e1,m−11 , qf)

26 (Σ, T2, Q2, q0, q2,∆2) = tnfa(e1, q1)

27 ∆ = ∆1 ∪∆2 ∪ {(q1, 1, ε, qf), (q1, 2, ε, q2)}
28 return (Σ, T1 ∪ T2, Q1 ∪Q2, q0, qf ,∆)

29 else if e = e0,m1 then

30 (Σ, T1, Q1, q1, qf ,∆1) = tnfa(e1,m1 , qf)

31 (Σ, T1, Q
′
1, q
′
1, qf ,∆

′
1) = ntags(T1, qf)

32 Q = Q1 ∪Q′1 ∪ {q0}
33 ∆ = ∆1 ∪∆′1 ∪ {(q0, 1, ε, q1), (q0, 2, ε, q

′
1)}

34 return (Σ, T1, Q, q0, qf ,∆)

35 else if e = e1,∞1 then

36 (Σ, T1, Q1, q0, q1,∆1) = tnfa(e1, q1)

37 Q = Q1 ∪ {qf}
38 ∆ = ∆1 ∪ {(q1, 1, ε, q0), (q1, 2, ε, qf)}
39 return (Σ, T1, Q, q0, qf ,∆)

ntags(T, qf)

40 {ti}ni=1 = T

41 Q = {qi}ni=0 where qn = qf
42 ∆ = {(qi−1, 1,−ti, qi)}ni=1

43 return (Σ, T,Q, q0, qf ,∆)

qf

tnfa(ε, qf)

q0 qf
a/ε

tnfa(a, qf) |a∈Σ

q0 qf
1/t

tnfa(t, qf) |t∈N

q1 tnfa(e1, q2) q2 tnfa(e2, qf) qf

tnfa(e1 · e2, qf)

q0

q1 tnfa(e1, q
′
2) q′2 ntags(T2 , qf)

q′1 ntags(T1, q2) q2
tnfa(

e2, qf
)

qf

1/ε

2/ε

tnfa(e1 | e2, qf)

q1 tnfa(e1, q2) q2 tnfa(en−1,m−1
1 , qf) qf

tnfa(en,m1 , qf) |1<n≤m≤∞

q0 tnfa(e1, q1) q1 q2 tnfa(e1,m−1
1 , qf) qf

2/ε

1/ε

tnfa(e1,m1 , qf) |1<m<∞

q0

q1
tnfa(e1,m

1 ,qf)

q′1
ntags(

T1, qf
)

qf

1/ε

2/ε

tnfa(e0,m1 , qf)

q0 tnfa(e1, q1) q1 qf
2/ε

1/ε

tnfa(e1,∞1 , qf)

q0 q1 . . . qn−1 qf
1/− t1 1/− tn

ntags(T, qf)

Algorithm 2: TNFA construction.

4

2 TDFA

In this section we define TDFA and show how to convert TNFA to TDFA.

Definition 3. Tagged Deterministic Finite Automaton (TDFA) is a structure (Σ, T, S, Sf , s0, R, rf , δ, ϕ), where:
Σ is a finite set of symbols (alphabet)
T ⊂ N is a finite set of tags
S is a finite set of states with initial state s0 and a subset of final states Sf ⊆ S
R ⊂ N is a finite set of registers with a vector of final registers rf (one per tag)
δ : S × Σ→ S ×O∗ is a transition function
ϕ : Sf → O∗ is a final function

where O is a set of register operations of the following types:
set register i to nil or to the current position: i← v, where v ∈ {n,p}
copy register j to register i: i← j
copy register j to register i and append history: i← j · h, where h is a string over {n,p}

Compared to an ordinary DFA, TDFA is extended with a set of tags T , a set of registers R with one final register
per tag, and register operations that are attributed to transitions and final states (the δ and ϕ functions). O∗
denotes the set of all sequences of operations over O. Operations can be of three types: set, copy, append. Set
operations are used for single-valued tags (those represented with a single offset), append operations are used for
multi-valued tags (those represented with an offset list), and copy operations are used for all tags. The decision
which tags are single-valued and which ones are multi-valued is arbitrary and individual for each tag. It may be
based on whether the tag is under repetition, but not necessarily. Register values are denoted by special symbols
n and p, which mean nil and the current position (offset from the beginning of the input string).

Recall the canonical determinization algorithm that is based on powerset construction: NFA is simulated on all
possible strings, and the subset of NFA states at each step of the simulation forms a new DFA state, which is either
mapped to an existing identical state or added to the growing set of DFA states. Since the number of different
subsets of NFA states is finite, determinization eventually terminates. The presence of tags complicates things: it is
necessary to track tag values, which depend on the offset that increases at every step. This makes the usual powerset
construction impossible: DFA states augmented with tag values are different and cannot be mapped. As a result
the set of states grows indefinitely and determinization does not terminate. To address this problem, Laurikari
used indirection: instead of storing tag values in TDFA states, he stored value locations — registers. As long as
two TDFA states have the same registers, the actual values in registers do not matter: they change dynamically
at runtime (during TDFA execution), but they do not affect TDFA structure. A similar approach was used by
Grathwohl [Gra15], who described it as splitting the information contained in a value into static and dynamic parts.
The indirection is not free: it comes at the cost of runtime operations that update register values. But it solves the
termination problem, as the required number of registers is finite, unlike the number of possible register values.

From the standpoint of determinization TDFA state is a pair. The first component is a set of configurations (q, r, l)
where q is a TNFA state, r is a vector of registers (one per tag) and l is a sequence of tags. Unlike TNFA simulation
that updates tag values immediately when it encounters a tagged transition, determinization delays the application
of tags until the next step. It records tag sequences along TNFA paths in the ε-closure, but instead of applying them
to the current transition, it stores them in configurations of the new TDFA state and later applies to the outgoing
transitions. This allows filtering tags by the lookahead symbol: confgurations that have no TNFA transitions on
the lookahead symbol do not contribute any register operations to TDFA transition on that symbol. The use of the
lookahead symbol is what distingushes TDFA(1) from TDFA(0) [Tro17]; it considerably reduces the number of oper-
ations and registers. During ε-closure construction configurations are extended to four components (q, r, h, l) where
h is the sequence of tags inherited from the origin TDFA state and l is the new sequence constructed by the ε-closure.

The second component of TDFA state is precedence information. It is needed for ambiguity resolution: if some
TNFA state in the ε-closure can be reached by different paths, one path must be preferred over the others. This
affects submatch extraction, as the paths may have different tags. The form of precedence information depends
on the disambiguation policy; we keep the details encapsulated in the precedence function, so that algorithm 3
can be adapted to different policies without the need to change its structure. In the case of leftmost greedy policy
precedence information is a vector of TNFA states that represents an order on configurations: step on symbol uses
it to construct the initial closure, and epsilon closure performs depth-first search following transitions from left to

5

right. POSIX policy is more complex, and we do not include pseudocode for it in this paper (see another paper
[BorTro19] for a detailed explanation).

Algorithm 3 works as follows. The main function determinization starts by allocating initial registers r0 from
1 to |T | and final registers rf from |T | + 1 to 2|T |. It constructs the initial TDFA state s0 as the ε-closure of
the initial configuration (q0, r0, ε, ε). The initial state s0 is added to the set of states S and the algorithm loops
over states in S, possibly adding new states on each iteration. For each state s the algorithm explores outgoing
transitions on all alphabet symbols. Function step on symbol follows transitions marked with a given symbol,
and function epsilon closure constructs ε-closure C, recording tag sequences along each fragment of TNFA path.
The set of configurations in the ε-closure forms a new TDFA state s′. Function transition regops uses the h-
components of configurations in C to construct register operations on transition from s to s′. The same register
is allocated for all outgoing transitions with identical operation right-hand-sides, but different tags do not share
registers, and vacant registers from other TDFA states are not reused (these rules ensure that there are no artificial
dependencies between registers, which makes optimizations easier without the need to construct SSA [SSA]). The
new state s′ is inserted into the set of states S: function add state first tries to find an identical state in S; if that
fails, it looks for a state that can be mapped to s′; if that also fails, s′ is added to S. If the new state contains
the final TNFA state, it is added to Sf , and the final regops function constructs register operations for the final
quasi-transition (called so because it does not consume input characters and gets executed only at the end of match).

TDFA states are considered identical if both components (configuration set and precedence) coincide. States that
are not identical, but differ only in registers, can be mapped, provided that there is a bijection between registers.
Function map attempts to construct such a bijection M : for every tag, and for each pair of configurations it adds
the corresponding pair of registers to M . If either of the two registers is already mapped to some other register,
bijection cannot be constructed. For single-valued tags mapping ignores configurations that have the tag in the
lookahead sequence — every transition out of TDFA state overwrites tag value with a set operation, making the
current register values obsolete. For multi-valued tags this optimization is not possible, because append operations
do not overwrite previous values. If the mapping has been constructed successfully, map updates register operations:
for each pair of registers in M it adds a copy operation, unless the left-hand-side is already updated by a set or
append operation, in which case it replaces left-hand-side with the register it is mapped to. The operations are
topologically sorted (topological sort is defined on page ??); in the presence of copy and append operations this is
necessary to ensure that old register values are used before they are updated. Topological sort ignores trivial cycles
such as append operation i← i · h, but if there are nontrivial cycles the mapping is rejected (handling such cycles
requires a temporary register, which makes control flow more complex for optimizations).

After determinization is done, the information in TDFA states is erased — it is no longer needed for TDFA ex-
ecution. States are just atomic values that can be represented with integer numbers. Disambiguation decisions
are embedded in TDFA structure; there is no explicit disambiguation at runtime. The only runtime overhead on
submatch extraction is the execution of register operations on transitions. TDFA may have more states than an
ordinary DFA for the same RE without tags, because states that can be mapped in a DFA cannot always be mapped
in a TDFA. Minimization can reduce the number of states, especially if it is applied after register optimizations
that can get rid of many operations and make more states compatible. We focus on optimizations in section 3.

3 Optimizations

6

determinization
(
Σ, T,Q, q0, qf ,∆

)
1 S, Sf : empty sets of states
2 δ : undefined transition function
3 ϕ : undefined final function
4 r0 = {1, ... , |T |}, rf = {|T |+1, ... , 2|T |}, R = r0 ∪ rf
5 C = epsilon closure({(q0, r0, ε, ε)})
6 P = precedence(C)
7 s0 = add state(S, Sf , rf , ϕ, C, P, ε)

8 for each state s ∈ S do
9 V : map from tag and operation RHS to register

10 for each symbol a ∈ Σ do
11 B = step on symbol(s, a)
12 C = epsilon closure(B)
13 O = transition regops(C,R, V)
14 P = precedence(C)
15 s′ = add state(S, Sf , rf , ϕ, C, P,O)
16 δ(s, a) = (s′, O)

17 return TDFA (Σ, T, S, Sf , s0, R, rf , δ, ϕ)

add state
(
S, Sf , rf , ϕ, C, P,O

)
18 X = {(q, r, l) | (q, r, , l) ∈ C}
19 s = (X,P)

20 if s ∈ S then
21 return s

22 else if ∃s′ ∈ S such that map(s, s′, O) then
23 return s′

24 else
25 add s to S
26 if ∃(q, r, l) ∈ X such that q = qf then
27 add s to Sf

28 ϕ(s) = final regops(rf , r, l)
29 return s

map
(
(X,P), (X ′, P ′), O

)
30 if X and X ′ have different subsets of TNFA states
31 or different lookahead tags for some TNFA state
32 or precedence is different: P 6= P ′ then
33 return false

34 M,M ′ : empty maps from register to register
35 for each pair (q, r, l) ∈ X and (q, r′, l) ∈ X ′ do
36 for each t ∈ T do
37 if history(l, t) = ε or t is a multi-tag then
38 i = r[t], j = r′[t]
39 if both M [i],M ′[j] are undefined then
40 M [i] = j, M ′[j] = i
41 else if M [i] 6= j or M ′[j] 6= i then
42 return false

43 for each operation i← in O do
44 replace register i with M [i]
45 remove pair (i,M [i]) from M

46 for each pair (j, i) ∈M where j 6= i do
47 prepend copy operation i← j to O

48 return topological sort(O)

precedence
(
C
)

49 return vector {q | (q, , ,) in C}

step on symbol
(
(X,P), a

)
50 B : empty sequence of configurations

51 for (q, r, l) ∈ X ordered by q in the order of P do
52 if ∃(q, a, p) ∈ ∆ | a ∈ Σ then
53 append (p, r, l, ε) to B

54 return B

epsilon closure
(
B
)

55 C : empty sequence of configurations

56 for (q, r, h, ε) in B in reverse order do
57 push (q, r, h, ε) on stack

58 while stack is not empty do
59 pop (q, r, h, l) from stack
60 append (q, r, h, l) to C
61 for each (q, i, t, p) ∈ ∆ ordered by priority i do
62 if configuration with state p is not in C then
63 push (p, r, h, lt) on stack

64 return {(q, r, h, l) in C | q = qf or
65 ∃(q, a,) ∈ ∆ where a ∈ Σ}

transition regops
(
C,R, V

)
66 O : empty list of operations

67 for each (q, r, h, l) ∈ C do
68 for each tag t ∈ T do
69 if ht = history(h, t) 6= ε then
70 v = regop rhs(r, ht, t)

71 if V [t][v] is undefined then
72 i = max{R}+ 1
73 R = R ∪ {i}
74 V [t][v] = i
75 append operation i← v to O

76 r[t] = V [t][v]

77 return O

final regops
(
rf , r, l

)
78 O : empty list of operations

79 for each tag t ∈ T do
80 if lt = history(l, t) 6= ε then
81 append operation rf [t]← regop rhs(r, lt, t) to O

82 return O

regop rhs
(
r, ht, t

)
83 if t is a multi-valued tag then
84 return r[t] · ht

85 else
86 return the last element of ht

history
(
h, t

)
87 switch h do
88 case ε do return ε
89 case t · h′ do return p · history(h′)
90 case −t · h′ do return n · history(h′)
91 case · h′ do return history(h′)

Algorithm 3: Determinization of TNFA (Σ, T,Q, q0, qf ,∆).

7

4 Example

8

0

1

2 3

4

7

5 6

8

9

11

10

12

13 14

15 16

17

1/ε

1/t1
a/ε

1/t2

2/ε
1/ε

2/ε
1/−t1

1/−t2
1/t3

1/ε
a/ε

1/−t4

2/ε
1/t4

b/ε

1/t5

1/ε

b/ε

1/ε

2/ε

2/ε

closure 0
state t1 t2 t3 t4 t5

2 − − − − −
9 n n 0 − −
12 n n 0 0 −

closure 1
state t1 t2 t3 t4 t5

2 1 1 − − −
9 0 1 1 − −
12 0 1 1 1 −
15 n n 0 n 1

17 n n 0 n 1

closure 2
state t1 t2 t3 t4 t5

2 2 2 − − −
9 1 2 2 − −
12 1 2 2 2 −
15 0 1 1 n 2

17 0 1 1 n 2

closure 3
state t1 t2 t3 t4 t5

15 1 2 2 2 3

17 1 2 2 2 3

t1

−t1−t2 t3
−t1−t2 t3 t4

a/t2 t1

a/t2 t3

a/t2 t3 t4

a/−t4 t5
a/−t4 t5

a/t2 t1
a/t2 t3

a/t2 t3 t4

a/−t4 t5
a/−t4 t5

b/t5

b/t50

TDFA state 0
state t1 t2 t3 t4 t5 la

2 r1 r2 r3 r4 r5 t1
9 r1 r2 r3 r4 r5 −t1−t2 t3
12 r1 r2 r3 r4 r5 −t1−t2 t3 t4

TDFA state 1
state t1 t2 t3 t4 t5 la

2 r11 r2 r3 r4 r5 t2 t1
9 r11 r2 r3 r4 r5 t2 t3
12 r11 r2 r3 r4 r5 t2 t3 t4
15 r12 r13 r14 r4 r5 −t4 t5
17 r12 r13 r14 r4 r5 −t4 t5

mapped to state 1
state t1 t2 t3 t4 t5 la

2 r16 r17 r3 r4 r5 t2 t1
9 r16 r17 r3 r4 r5 t2 t3
12 r16 r17 r3 r4 r5 t2 t3 t4
15 r11 r17 r18 r4 r5 −t4 t5
17 r11 r17 r18 r4 r5 −t4 t5

mapped to state 2
state t1 t2 t3 t4 t5 la
15 r11 r17 r18 r19 r5 t5
17 r11 r17 r18 r19 r5 t5

TDFA state 2
state t1 t2 t3 t4 t5 la
15 r12 r13 r14 r15 r5 t5
17 r12 r13 r14 r15 r5 t5

TDFA state 3
state t1 t2 t3 t4 t5 la
15 r12 r13 r14 r15 r20
17 r12 r13 r14 r15 r20

mapped to state 3
state t1 t2 t3 t4 t5 la
15 r12 r13 r14 r15 r20
17 r12 r13 r14 r15 r20

b/r12 ← n
r13 ← n
r14 ← p
r15 ← p

a/r11 ← p

a/r12 ← n
r13 ← n
r14 ← p

a/r16 ← p
r17 ← p

a/r17 ← p
r18 ← p

b/r17 ← p
r18 ← p
r19 ← p

r6 ← r12
r7 ← r13
r8 ← r14
r9 ← n
r10 ← p

r12 ← r11
r11 ← p
r13 ← p
r14 ← p

r12 ← r11
r13 ← p
r14 ← p
r15 ← p

b/r20 ← p

r6 ← r12
r7 ← r13
r8 ← r14
r9 ← r15
r10 ← p

b

r6 ← r12
r7 ← r13
r8 ← r14
r9 ← r15
r10 ← r20

0

1

2 3

r6 ← r12
r7 ← r13
r8 ← r14
r9 ← n
r10 ← p

r6 ← r12
r7 ← r13
r8 ← r14
r9 ← r15
r10 ← p

r6 ← r12
r7 ← r13
r8 ← r14
r9 ← r15
r10 ← r20

a/r12 ← r11
r11 ← p
r13 ← p
r14 ← p

a/r11 ← p
r12 ← n
r13 ← n
r14 ← p

b/r12 ← r11
r13 ← p
r14 ← p
r15 ← p

b/r12 ← n
r13 ← n
r14 ← p
r15 ← p

b/r20 ← p

b

Figure 1: Example for RE (1a2)∗3(a|4b)5b∗: TNFA, simulation on string aab, determinization, TDFA.

9

5 Registerless TDFA

6 Evaluation

7 Conclusions

10

