Permalink
Find file
Fetching contributors…
Cannot retrieve contributors at this time
1889 lines (1642 sloc) 54.7 KB
////////////////////////////////////////////////////////////////////////////////
// checkstyle: Checks Java source code for adherence to a set of rules.
// Copyright (C) 2001 - 2007 Oliver Burn
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
////////////////////////////////////////////////////////////////////////////////
header {
package com.puppycrawl.tools.checkstyle.grammars;
import com.puppycrawl.tools.checkstyle.api.DetailAST;
import java.text.MessageFormat;
import antlr.CommonToken;
}
/** Java 1.5 Recognizer
*
* This grammar is in the PUBLIC DOMAIN
*/
class GeneratedJavaRecognizer extends Parser;
options {
k = 2; // two token lookahead
exportVocab=GeneratedJava; // Call its vocabulary "GeneratedJava"
codeGenMakeSwitchThreshold = 2; // Some optimizations
codeGenBitsetTestThreshold = 3;
defaultErrorHandler = false; // Don't generate parser error handlers
buildAST = true;
}
tokens {
//Pre-1.4 tokens
BLOCK; MODIFIERS; OBJBLOCK; SLIST; CTOR_DEF; METHOD_DEF; VARIABLE_DEF;
INSTANCE_INIT; STATIC_INIT; TYPE; CLASS_DEF; INTERFACE_DEF;
PACKAGE_DEF; ARRAY_DECLARATOR; EXTENDS_CLAUSE; IMPLEMENTS_CLAUSE;
PARAMETERS; PARAMETER_DEF; LABELED_STAT; TYPECAST; INDEX_OP;
POST_INC; POST_DEC; METHOD_CALL; EXPR; ARRAY_INIT;
IMPORT; UNARY_MINUS; UNARY_PLUS; CASE_GROUP; ELIST; FOR_INIT; FOR_CONDITION;
FOR_ITERATOR; EMPTY_STAT; FINAL="final"; ABSTRACT="abstract";
STRICTFP="strictfp"; SUPER_CTOR_CALL; CTOR_CALL;
//ANTLR-generated pre-1.4 tokens now listed here to preserve their numerical
//order so as to make all future version of this grammar backwardly compatibile
LITERAL_package="package";SEMI;LITERAL_import="import";LBRACK;RBRACK;
LITERAL_void="void";LITERAL_boolean="boolean";LITERAL_byte="byte";
LITERAL_char="char";LITERAL_short="short";LITERAL_int="int";
LITERAL_float="float";LITERAL_long="long";LITERAL_double="double";
IDENT;DOT;STAR;LITERAL_private="private";LITERAL_public="public";
LITERAL_protected="protected";LITERAL_static="static";
LITERAL_transient="transient";LITERAL_native="native";
LITERAL_synchronized="synchronized";LITERAL_volatile="volatile";
LITERAL_class="class";LITERAL_extends="extends";
LITERAL_interface="interface";LCURLY;RCURLY;COMMA;
LITERAL_implements="implements";LPAREN;RPAREN;LITERAL_this="this";
LITERAL_super="super";ASSIGN;LITERAL_throws="throws";COLON;
LITERAL_if="if";LITERAL_while="while";LITERAL_do="do";
LITERAL_break="break";LITERAL_continue="continue";LITERAL_return="return";
LITERAL_switch="switch";LITERAL_throw="throw";LITERAL_for="for";
LITERAL_else="else";LITERAL_case="case";LITERAL_default="default";
LITERAL_try="try";LITERAL_catch="catch";LITERAL_finally="finally";
PLUS_ASSIGN;MINUS_ASSIGN;STAR_ASSIGN;DIV_ASSIGN;MOD_ASSIGN;SR_ASSIGN;
BSR_ASSIGN;SL_ASSIGN;BAND_ASSIGN;BXOR_ASSIGN;BOR_ASSIGN;QUESTION;
LOR;LAND;BOR;BXOR;BAND;NOT_EQUAL;EQUAL;LT;GT;LE;GE;
LITERAL_instanceof="instanceof";SL;SR;BSR;PLUS;MINUS;DIV;MOD;
INC;DEC;BNOT;LNOT;LITERAL_true="true";LITERAL_false="false";
LITERAL_null="null";LITERAL_new="new";NUM_INT;CHAR_LITERAL;
STRING_LITERAL;NUM_FLOAT;NUM_LONG;NUM_DOUBLE;WS;SL_COMMENT;
ML_COMMENT;ESC;HEX_DIGIT;VOCAB;EXPONENT;FLOAT_SUFFIX;
//Token for Java 1.4 language enhancements
ASSERT;
//Tokens for Java 1.5 language enhancements
STATIC_IMPORT; ENUM; ENUM_DEF; ENUM_CONSTANT_DEF; FOR_EACH_CLAUSE;
ANNOTATION_DEF; ANNOTATIONS; ANNOTATION; ANNOTATION_MEMBER_VALUE_PAIR; ANNOTATION_FIELD_DEF;
ANNOTATION_ARRAY_INIT; TYPE_ARGUMENTS; TYPE_ARGUMENT; TYPE_PARAMETERS;
TYPE_PARAMETER; WILDCARD_TYPE; TYPE_UPPER_BOUNDS; TYPE_LOWER_BOUNDS; AT; ELLIPSIS;
GENERIC_START; GENERIC_END; TYPE_EXTENSION_AND;
// token which was not included to grammar initially
// we need to put it to the end to maintain binary compatibility
// with previous versions
DO_WHILE;
}
{
/**
* Counts the number of LT seen in the typeArguments production.
* It is used in semantic predicates to ensure we have seen
* enough closing '>' characters; which actually may have been
* either GT, SR or BSR tokens.
*/
private int ltCounter = 0;
/**
* Counts the number of '>' characters that have been seen but
* have not yet been associated with the end of a typeParameters or
* typeArguments production. This is necessary because SR and BSR
* tokens have significance (the extra '>' characters) not only for the production
* that sees them but also productions higher in the stack (possibly right up to an outer-most
* typeParameters production). As the stack of the typeArguments/typeParameters productions unwind,
* any '>' characters seen prematurely through SRs or BSRs are reconciled.
*/
private int gtToReconcile = 0;
/**
* The most recently seen gt sequence (GT, SR or BSR)
* encountered in any type argument or type parameter production.
* We retain this so we can keep manage the synthetic GT tokens/
* AST nodes we emit to have '<' & '>' balanced trees when encountering
* SR and BSR tokens.
*/
private DetailAST currentGtSequence = null;
/**
* Consume a sequence of '>' characters (GT, SR or BSR)
* and match these against the '<' characters seen.
*/
private void consumeCurrentGtSequence(DetailAST gtSequence)
{
currentGtSequence = gtSequence;
gtToReconcile += currentGtSequence.getText().length();
ltCounter -= currentGtSequence.getText().length();
}
/**
* Emits a single GT AST node with the line and column correctly
* set to its position in the source file. This must only
* ever be called when a typeParameters or typeArguments production
* is ending and there is at least one GT character to be emitted.
*
* @see #areThereGtsToEmit
*/
private DetailAST emitSingleGt()
{
gtToReconcile -= 1;
CommonToken gtToken = new CommonToken(GENERIC_END, ">");
gtToken.setLine(currentGtSequence.getLineNo());
gtToken.setColumn(currentGtSequence.getColumnNo() + (currentGtSequence.getText().length() - gtToReconcile));
return (DetailAST)astFactory.create(gtToken);
}
/**
* @return true if there is at least one '>' seen but
* not reconciled with the end of a typeParameters or
* typeArguments production; returns false otherwise
*/
private boolean areThereGtsToEmit()
{
return (gtToReconcile > 0);
}
/**
* @return true if there is exactly one '>' seen but
* not reconciled with the end of a typeParameters
* production; returns false otherwise
*/
private boolean isThereASingleGtToEmit()
{
return (gtToReconcile == 1);
}
/**
* @return true if the '<' and '>' are evenly matched
* at the current typeParameters/typeArguments nested depth
*/
private boolean areLtsAndGtsBalanced(int currentLtLevel)
{
return ((currentLtLevel != 0) || ltCounter == currentLtLevel);
}
}
// Compilation Unit: In Java, this is a single file. This is the start
// rule for this parser
compilationUnit
: // A compilation unit starts with an optional package definition
// semantic check because package definitions can be annotated
// which causes possible non-determinism in Antrl
( (annotations "package")=> packageDefinition
| /* nothing */
)
// Next we have a series of zero or more import statements
( importDefinition )*
// Wrapping things up with any number of class or interface
// definitions
( typeDefinition )*
EOF!
;
// Package statement: "package" followed by an identifier.
packageDefinition
options {defaultErrorHandler = true;} // let ANTLR handle errors
: annotations p:"package"^ {#p.setType(PACKAGE_DEF);} identifier SEMI
;
// Import statement: import followed by a package or class name
importDefinition
options {defaultErrorHandler = true;}
: i:"import"^ {#i.setType(IMPORT);} ( "static" {#i.setType(STATIC_IMPORT);} )? identifierStar SEMI
;
// A type definition in a file is either a class, interface, enum of annotation definition
typeDefinition
options {defaultErrorHandler = true;}
: m:modifiers! typeDefinitionInternal[#m]
| SEMI
;
// Internal type definition for production reuse
protected
typeDefinitionInternal[AST modifiers]
: classDefinition[#modifiers]
| interfaceDefinition[#modifiers]
| enumDefinition[#modifiers]
| annotationDefinition[#modifiers]
;
// A type specification is a type name with possible brackets afterwards
// (which would make it an array type).
typeSpec[boolean addImagNode]
: classTypeSpec[addImagNode]
| builtInTypeSpec[addImagNode]
;
// A class type specification is a class type with either:
// - possible brackets afterwards
// (which would make it an array type).
// - generic type arguments after
classTypeSpec[boolean addImagNode]
: classOrInterfaceType[addImagNode]
(options{greedy=true;}: lb:LBRACK^ {#lb.setType(ARRAY_DECLARATOR);} RBRACK)*
{
if ( addImagNode ) {
#classTypeSpec = #(#[TYPE,"TYPE"], #classTypeSpec);
}
}
;
classOrInterfaceType[boolean addImagNode]
: IDENT (typeArguments[addImagNode])?
(options{greedy=true;}: // match as many as possible
DOT^
IDENT (typeArguments[addImagNode])?
)*
;
// A generic type argument is a class type, a possibly bounded wildcard type or a built-in type array
typeArgument[boolean addImagNode]
: ( classTypeSpec[addImagNode]
| builtInTypeArraySpec[addImagNode]
| wildcardType[addImagNode]
)
{#typeArgument = #(#[TYPE_ARGUMENT,"TYPE_ARGUMENT"], #typeArgument);}
;
wildcardType[boolean addImagNode]
: q:QUESTION {#q.setType(WILDCARD_TYPE);}
(("extends" | "super")=> typeArgumentBounds[addImagNode])?
;
typeArguments[boolean addImagNode]
{int currentLtLevel = 0;}
:
{currentLtLevel = ltCounter;}
lt:LT {#lt.setType(GENERIC_START); ;ltCounter++;}
typeArgument[addImagNode]
(options{greedy=true;}: // match as many as possible
// If there are any '>' to reconcile
// (i.e. we've recently encountered a DT, SR or BSR
// - the end of one or more type arguments and
// possibly an enclosing type parameter)
// then further type arguments are not possible
{gtToReconcile == 0}? COMMA typeArgument[addImagNode]
)*
( // turn warning off since Antlr generates the right code,
// plus we have our semantic predicate below
options{generateAmbigWarnings=false;}:
typeArgumentsOrParametersEnd
)?
// As we are leaving a typeArguments production, the enclosing '>'
// we've just read (and we've possibly seen more than one in the
// case of SRs and BSRs) can now be marked as reconciled with a '<'
// but we still leave unreconciled the count for any excess '>'
// for other typeArguments or typeParameters productions higher in
// the stack
{
if (areThereGtsToEmit())
{
astFactory.addASTChild(currentAST, emitSingleGt());
}
}
// make sure we have gobbled up enough '>' characters
// if we are at the "top level" of nested typeArgument productions
{areLtsAndGtsBalanced(currentLtLevel)}?
{#typeArguments = #(#[TYPE_ARGUMENTS, "TYPE_ARGUMENTS"], #typeArguments);}
;
// this gobbles up *some* amount of '>' characters, and counts how many
// it gobbled.
protected typeArgumentsOrParametersEnd!
: g:GT {consumeCurrentGtSequence((DetailAST)#g);}
| sr:SR {consumeCurrentGtSequence((DetailAST)#sr);}
| bsr:BSR {consumeCurrentGtSequence((DetailAST)#bsr);}
;
typeArgumentBounds[boolean addImagNode]
:
(
e:"extends"^ {#e.setType(TYPE_UPPER_BOUNDS); }
| s:"super"^ { #s.setType(TYPE_LOWER_BOUNDS); }
)
classOrInterfaceType[addImagNode]
(options{greedy=true;}: lb:LBRACK^ {#lb.setType(ARRAY_DECLARATOR);} RBRACK)?
;
// A builtin type array specification is a builtin type with brackets afterwards
builtInTypeArraySpec[boolean addImagNode]
: builtInType
(options{greedy=true;}: lb:LBRACK^ {#lb.setType(ARRAY_DECLARATOR);} RBRACK)+
{
if ( addImagNode ) {
#builtInTypeArraySpec = #(#[TYPE,"TYPE"], #builtInTypeArraySpec);
}
}
;
// A builtin type specification is a builtin type with possible brackets
// afterwards (which would make it an array type).
builtInTypeSpec[boolean addImagNode]
: builtInType (lb:LBRACK^ {#lb.setType(ARRAY_DECLARATOR);} RBRACK)*
{
if ( addImagNode ) {
#builtInTypeSpec = #(#[TYPE,"TYPE"], #builtInTypeSpec);
}
}
;
// A type name. which is either a (possibly qualified and parameterized)
// class name or a primitive (builtin) type
type
: classOrInterfaceType[false]
| builtInType
;
/** A declaration is the creation of a reference or primitive-type variable
* Create a separate Type/Var tree for each var in the var list.
*/
declaration!
: m:modifiers t:typeSpec[false] v:variableDefinitions[#m,#t]
{#declaration = #v;}
;
// The primitive types.
builtInType
: "void"
| "boolean"
| "byte"
| "char"
| "short"
| "int"
| "float"
| "long"
| "double"
;
// A (possibly-qualified) java identifier. We start with the first IDENT
// and expand its name by adding dots and following IDENTS
identifier
: IDENT ( DOT^ IDENT )*
;
identifierStar
: IDENT
( DOT^ IDENT )*
( DOT^ STAR )?
;
// A list of zero or more modifiers. We could have used (modifier)* in
// place of a call to modifiers, but I thought it was a good idea to keep
// this rule separate so they can easily be collected in a Vector if
// someone so desires
modifiers
:
(
//hush warnings since the semantic check for "@interface" solves the non-determinism
options{generateAmbigWarnings=false;}:
modifier
|
//Semantic check that we aren't matching @interface as this is not an annotation
//A nicer way to do this would be, um, nice
{LA(1)==AT && !LT(2).getText().equals("interface")}? annotation
)*
{#modifiers = #([MODIFIERS, "MODIFIERS"], #modifiers);}
;
// modifiers for Java classes, interfaces, class/instance vars and methods
modifier
: "private"
| "public"
| "protected"
| "static"
| "transient"
| "final"
| "abstract"
| "native"
| "synchronized"
// | "const" // reserved word, but not valid
| "volatile"
| "strictfp"
;
annotation!
: AT i:identifier ( l:LPAREN ( args:annotationArguments )? r:RPAREN )?
{#annotation = #(#[ANNOTATION,"ANNOTATION"], AT, i, l, args, r);}
;
annotations
: (annotation)*
{#annotations = #(#[ANNOTATIONS,"ANNOTATIONS"], #annotations);}
;
annotationArguments
: annotationMemberValueInitializer | annotationMemberValuePairs
;
annotationMemberValuePairs
: annotationMemberValuePair ( COMMA annotationMemberValuePair )*
;
annotationMemberValuePair!
: i:IDENT a:ASSIGN v:annotationMemberValueInitializer
{#annotationMemberValuePair = #(#[ANNOTATION_MEMBER_VALUE_PAIR,"ANNOTATION_MEMBER_VALUE_PAIR"], i, a, v);}
;
annotationMemberValueInitializer
:
annotationExpression | annotation | annotationMemberArrayInitializer
;
// This is an initializer used to set up an annotation member array.
annotationMemberArrayInitializer
: lc:LCURLY^ {#lc.setType(ANNOTATION_ARRAY_INIT);}
( annotationMemberArrayValueInitializer
(
// CONFLICT: does a COMMA after an initializer start a new
// initializer or start the option ',' at end?
// ANTLR generates proper code by matching
// the comma as soon as possible.
options {
warnWhenFollowAmbig = false;
}
:
COMMA annotationMemberArrayValueInitializer
)*
(COMMA)?
)?
RCURLY
;
// The two things that can initialize an annotation array element are a conditional expression
// and an annotation (nested annotation array initialisers are not valid)
annotationMemberArrayValueInitializer
: annotationExpression
| annotation
;
annotationExpression
: conditionalExpression
{#annotationExpression = #(#[EXPR,"EXPR"],#annotationExpression);}
;
// Definition of a Java class
classDefinition![AST modifiers]
: c:"class" IDENT
// it _might_ have type paramaters
(tp:typeParameters)?
// it _might_ have a superclass...
sc:superClassClause
// it might implement some interfaces...
ic:implementsClause
// now parse the body of the class
cb:classBlock
{#classDefinition = #(#[CLASS_DEF,"CLASS_DEF"],
modifiers, c, IDENT, tp, sc, ic, cb);}
;
superClassClause
: ( e:"extends"^ {#e.setType(EXTENDS_CLAUSE);}
c:classOrInterfaceType[false] )?
;
// Definition of a Java Interface
interfaceDefinition![AST modifiers]
: i:"interface" IDENT
// it _might_ have type paramaters
(tp:typeParameters)?
// it might extend some other interfaces
ie:interfaceExtends
// now parse the body of the interface (looks like a class...)
cb:classBlock
{#interfaceDefinition = #(#[INTERFACE_DEF,"INTERFACE_DEF"],
modifiers, i, IDENT,tp,ie,cb);}
;
enumDefinition![AST modifiers]
: e:ENUM IDENT
// it might implement some interfaces...
ic:implementsClause
// now parse the body of the enum
eb:enumBlock
{#enumDefinition = #(#[ENUM_DEF,"ENUM_DEF"],
modifiers, e, IDENT, ic, eb);}
;
annotationDefinition![AST modifiers]
: a:AT i:"interface" IDENT
// now parse the body of the annotation
ab:annotationBlock
{#annotationDefinition = #(#[ANNOTATION_DEF,"ANNOTATION_DEF"],
modifiers, a, i, IDENT, ab);}
;
typeParameters
{int currentLtLevel = 0;}
:
{currentLtLevel = ltCounter;}
lt:LT {#lt.setType(GENERIC_START); ltCounter++;}
typeParameter (COMMA typeParameter)*
(typeArgumentsOrParametersEnd)?
// There should be only one '>' to reconcile - the enclosing
// '>' for the type parameter. Any other adjacent '>' seen should
// have been reconciled with type arguments for the last type parameter
// hence we can assert here that there is but one unaccounted '>'.
{isThereASingleGtToEmit()}?
//And then there were none..
{
astFactory.addASTChild(currentAST, emitSingleGt());
}
// make sure we have gobbled up enough '>' characters
// if we are at the "top level" of nested typeArgument productions
{areLtsAndGtsBalanced(currentLtLevel)}?
{#typeParameters = #(#[TYPE_PARAMETERS, "TYPE_PARAMETERS"], #typeParameters);}
;
typeParameter
:
// I'm pretty sure Antlr generates the right thing here:
(id:IDENT) ( options{generateAmbigWarnings=false;}: typeParameterBounds )?
{#typeParameter = #(#[TYPE_PARAMETER,"TYPE_PARAMETER"], #typeParameter);}
;
typeParameterBounds
:
e:"extends"^ classOrInterfaceType[true]
(b:BAND {#b.setType(TYPE_EXTENSION_AND);} classOrInterfaceType[true])*
{#e.setType(TYPE_UPPER_BOUNDS);}
;
// This is the body of an annotation. You can have annotation fields and extra semicolons,
// That's about it (until you see what an annoation field is...)
annotationBlock
: LCURLY
( annotationField | SEMI )*
RCURLY
{#annotationBlock = #([OBJBLOCK, "OBJBLOCK"], #annotationBlock);}
;
// An annotation field
annotationField!
: mods:modifiers
( td:typeDefinitionInternal[#mods]
{#annotationField = #td;}
| t:typeSpec[false] // annotation field
( i:IDENT // the name of the field
LPAREN RPAREN
rt:declaratorBrackets[#t]
( d:annotationDefault )?
s:SEMI
{#annotationField =
#(#[ANNOTATION_FIELD_DEF,"ANNOTATION_FIELD_DEF"],
mods,
#(#[TYPE,"TYPE"],rt),
i,
LPAREN,
RPAREN,
d,
s
);}
| v:variableDefinitions[#mods,#t] s6:SEMI
{
#annotationField = #v;
#v.addChild(#s6);
}
)
)
;
annotationDefault
: "default"^ annotationMemberValueInitializer
;
// This is the body of an enum. You can have zero or more enum constants
// followed by any number of fields like a regular class
enumBlock
: LCURLY
( enumConstant ( options{greedy=true;}: COMMA enumConstant )* ( COMMA )? )?
( SEMI ( field | SEMI )* )?
RCURLY
{#enumBlock = #([OBJBLOCK, "OBJBLOCK"], #enumBlock);}
;
//An enum constant may have optional parameters and may have a
//a body
enumConstant!
: an:annotations
i:IDENT
( l:LPAREN
args:argList
r:RPAREN
)?
( b:enumConstantBlock )?
{#enumConstant = #([ENUM_CONSTANT_DEF, "ENUM_CONSTANT_DEF"], an, i, l, args, r, b);}
;
//The class-like body of an enum constant
enumConstantBlock
: LCURLY
( enumConstantField | SEMI )*
RCURLY
{#enumConstantBlock = #([OBJBLOCK, "OBJBLOCK"], #enumConstantBlock);}
;
//An enum constant field is just like a class field but without
//the posibility of a constructor definition or a static initializer
enumConstantField!
: mods:modifiers
( td:typeDefinitionInternal[#mods]
{#enumConstantField = #td;}
| // A generic method has the typeParameters before the return type.
// This is not allowed for variable definitions, but this production
// allows it, a semantic check could be used if you wanted.
(tp:typeParameters)? t:typeSpec[false] // method or variable declaration(s)
( IDENT // the name of the method
// parse the formal parameter declarations.
LPAREN param:parameterDeclarationList RPAREN
rt:declaratorBrackets[#t]
// get the list of exceptions that this method is
// declared to throw
(tc:throwsClause)?
( s2:compoundStatement | s3:SEMI )
{#enumConstantField = #(#[METHOD_DEF,"METHOD_DEF"],
mods,
tp,
#(#[TYPE,"TYPE"],rt),
IDENT,
LPAREN,
param,
RPAREN,
tc,
s2,
s3);}
| v:variableDefinitions[#mods,#t] s6:SEMI
{
#enumConstantField = #v;
#v.addChild(#s6);
}
)
)
// "{ ... }" instance initializer
| s4:compoundStatement
{#enumConstantField = #(#[INSTANCE_INIT,"INSTANCE_INIT"], s4);}
;
// This is the body of a class. You can have fields and extra semicolons,
// That's about it (until you see what a field is...)
classBlock
: LCURLY
( field | SEMI )*
RCURLY
{#classBlock = #([OBJBLOCK, "OBJBLOCK"], #classBlock);}
;
// An interface can extend several other interfaces...
interfaceExtends
: (
e:"extends"^ {#e.setType(EXTENDS_CLAUSE);}
classOrInterfaceType[false] ( COMMA classOrInterfaceType[false] )*
)?
;
// A class can implement several interfaces...
implementsClause
: (
i:"implements"^ {#i.setType(IMPLEMENTS_CLAUSE);}
classOrInterfaceType[false] ( COMMA classOrInterfaceType[false] )*
)?
;
// Now the various things that can be defined inside a class or interface...
// Note that not all of these are really valid in an interface (constructors,
// for example), and if this grammar were used for a compiler there would
// need to be some semantic checks to make sure we're doing the right thing...
field!
: // method, constructor, or variable declaration
mods:modifiers
( td:typeDefinitionInternal[#mods]
{#field = #td;}
// A generic method/ctor has the typeParameters before the return type.
// This is not allowed for variable definitions, but this production
// allows it, a semantic check could be used if you wanted.
| (tp:typeParameters)?
(
h:ctorHead s:constructorBody // constructor
{#field = #(#[CTOR_DEF,"CTOR_DEF"], mods, tp, h, s);}
|
t:typeSpec[false] // method or variable declaration(s)
( IDENT // the name of the method
// parse the formal parameter declarations.
LPAREN param:parameterDeclarationList RPAREN
rt:declaratorBrackets[#t]
// get the list of exceptions that this method is
// declared to throw
(tc:throwsClause)?
( s2:compoundStatement | s5:SEMI )
{#field = #(#[METHOD_DEF,"METHOD_DEF"],
mods,
tp,
#(#[TYPE,"TYPE"],rt),
IDENT,
LPAREN,
param,
RPAREN,
tc,
s2,
s5);}
| v:variableDefinitions[#mods,#t] s6:SEMI
{
#field = #v;
#v.addChild(#s6);
}
)
)
)
// "static { ... }" class initializer
| si:"static" s3:compoundStatement
{#si.setType(STATIC_INIT);
#si.setText("STATIC_INIT");
#field = #(#si, s3);}
// "{ ... }" instance initializer
| s4:compoundStatement
{#field = #(#[INSTANCE_INIT,"INSTANCE_INIT"], s4);}
;
constructorBody
: lc:LCURLY^ {#lc.setType(SLIST);}
// Predicate might be slow but only checked once per constructor def
// not for general methods.
( (explicitConstructorInvocation) => explicitConstructorInvocation
|
)
(statement)*
RCURLY
;
explicitConstructorInvocation
: ( options {
// this/super can begin a primaryExpression too; with finite
// lookahead ANTLR will think the 3rd alternative conflicts
// with 1, 2. I am shutting off warning since ANTLR resolves
// the nondeterminism by correctly matching alts 1 or 2 when
// it sees this( or super(
generateAmbigWarnings=false;
}
:
(typeArguments[false])?
( t:"this"^ LPAREN argList RPAREN SEMI
{#t.setType(CTOR_CALL);}
| s:"super"^ LPAREN argList RPAREN SEMI
{#s.setType(SUPER_CTOR_CALL);}
)
| // (new Outer()).super() (create enclosing instance)
primaryExpression DOT (typeArguments[false])? s1:"super"^ LPAREN argList RPAREN SEMI
{#s1.setType(SUPER_CTOR_CALL);}
)
;
variableDefinitions[AST mods, AST t]
: variableDeclarator[(AST) getASTFactory().dupTree(mods),
(AST) getASTFactory().dupList(t)] //dupList as this also copies siblings (like TYPE_ARGUMENTS)
( COMMA
variableDeclarator[(AST) getASTFactory().dupTree(mods),
(AST) getASTFactory().dupList(t)] //dupList as this also copies siblings (like TYPE_ARGUMENTS)
)*
;
/** Declaration of a variable. This can be a class/instance variable,
* or a local variable in a method
* It can also include possible initialization.
*/
variableDeclarator![AST mods, AST t]
: id:IDENT d:declaratorBrackets[t] v:varInitializer
{#variableDeclarator = #(#[VARIABLE_DEF,"VARIABLE_DEF"], mods, #(#[TYPE,"TYPE"],d), id, v);}
;
declaratorBrackets[AST typ]
: {#declaratorBrackets=typ;}
(lb:LBRACK^ {#lb.setType(ARRAY_DECLARATOR);} RBRACK)*
;
varInitializer
: ( ASSIGN^ initializer )?
;
// This is an initializer used to set up an array.
arrayInitializer
: lc:LCURLY^ {#lc.setType(ARRAY_INIT);}
( initializer
(
// CONFLICT: does a COMMA after an initializer start a new
// initializer or start the option ',' at end?
// ANTLR generates proper code by matching
// the comma as soon as possible.
options {
warnWhenFollowAmbig = false;
}
:
COMMA initializer
)*
(COMMA)?
)?
RCURLY
;
// The two "things" that can initialize an array element are an expression
// and another (nested) array initializer.
initializer
: expression
| arrayInitializer
;
// This is the header of a method. It includes the name and parameters
// for the method.
// This also watches for a list of exception classes in a "throws" clause.
ctorHead
: IDENT // the name of the method
// parse the formal parameter declarations.
LPAREN parameterDeclarationList RPAREN
// get the list of exceptions that this method is declared to throw
(throwsClause)?
;
// This is a list of exception classes that the method is declared to throw
throwsClause
: "throws"^ identifier ( COMMA identifier )*
;
// A list of formal parameters
// Zero or more parameters
// If a parameter is variable length (e.g. String... myArg) it is the right-most parameter
parameterDeclarationList
// The semantic check in ( .... )* block is flagged as superfluous, and seems superfluous but
// is the only way I could make this work. If my understanding is correct this is a known bug in Antlr
: ( ( parameterDeclaration )=> parameterDeclaration
( options {warnWhenFollowAmbig=false;} : ( COMMA parameterDeclaration ) => COMMA parameterDeclaration )*
( COMMA variableLengthParameterDeclaration )?
|
variableLengthParameterDeclaration
)?
{#parameterDeclarationList = #(#[PARAMETERS,"PARAMETERS"],
#parameterDeclarationList);}
;
variableLengthParameterDeclaration!
: pm:parameterModifier t:typeSpec[false] td:ELLIPSIS IDENT
pd:declaratorBrackets[#t]
{#variableLengthParameterDeclaration = #(#[PARAMETER_DEF,"PARAMETER_DEF"],
pm, #([TYPE,"TYPE"],pd), td, IDENT);}
;
parameterModifier
//final can appear amongst annotations in any order - greedily consume any preceding
//annotations to shut nond-eterminism warnings off
: (options{greedy=true;} : annotation)* (f:"final")? (annotation)*
{#parameterModifier = #(#[MODIFIERS,"MODIFIERS"], #parameterModifier);}
;
// A formal parameter.
parameterDeclaration!
: pm:parameterModifier t:typeSpec[false] id:IDENT
pd:declaratorBrackets[#t]
{#parameterDeclaration = #(#[PARAMETER_DEF,"PARAMETER_DEF"],
pm, #([TYPE,"TYPE"],pd), id);}
;
// Compound statement. This is used in many contexts:
// Inside a class definition prefixed with "static":
// it is a class initializer
// Inside a class definition without "static":
// it is an instance initializer
// As the body of a method
// As a completely indepdent braced block of code inside a method
// it starts a new scope for variable definitions
compoundStatement
: lc:LCURLY^ {#lc.setType(SLIST);}
// include the (possibly-empty) list of statements
(statement)*
RCURLY
;
// overrides the statement production in java.g, adds assertStatement
statement
: traditionalStatement
| assertStatement
;
// assert statement, available since JDK 1.4
assertStatement
: ASSERT^ expression ( COLON expression )? SEMI
;
// a traditional (JDK < 1.4) java statement, assert keyword is not allowed
traditionalStatement
// A list of statements in curly braces -- start a new scope!
: compoundStatement
// declarations are ambiguous with "ID DOT" relative to expression
// statements. Must backtrack to be sure. Could use a semantic
// predicate to test symbol table to see what the type was coming
// up, but that's pretty hard without a symbol table ;)
| (declaration)=> declaration SEMI
// An expression statement. This could be a method call,
// assignment statement, or any other expression evaluated for
// side-effects.
| expression SEMI
// class definition
| m:modifiers! classDefinition[#m]
// Attach a label to the front of a statement
| IDENT c:COLON^ {#c.setType(LABELED_STAT);} statement
// If-else statement
| "if"^ LPAREN expression RPAREN statement
(
// CONFLICT: the old "dangling-else" problem...
// ANTLR generates proper code matching
// as soon as possible. Hush warning.
options {
warnWhenFollowAmbig = false;
}
:
elseStatement
)?
// For statement
| forStatement
// While statement
| "while"^ LPAREN expression RPAREN statement
// do-while statement
| "do"^ statement w:"while" {#w.setType(DO_WHILE);} LPAREN expression RPAREN SEMI
// get out of a loop (or switch)
| "break"^ (IDENT)? SEMI
// do next iteration of a loop
| "continue"^ (IDENT)? SEMI
// Return an expression
| "return"^ (expression)? SEMI
// switch/case statement
| "switch"^ LPAREN expression RPAREN LCURLY
( casesGroup )*
RCURLY
// exception try-catch block
| tryBlock
// throw an exception
| "throw"^ expression SEMI
// synchronize a statement
| "synchronized"^ LPAREN expression RPAREN compoundStatement
// empty statement
| s:SEMI {#s.setType(EMPTY_STAT);}
;
forStatement
: f:"for"^
LPAREN
( (forInit SEMI)=>traditionalForClause
|
forEachClause)
RPAREN
statement // statement to loop over
;
traditionalForClause
:
forInit SEMI // initializer
forCond SEMI // condition test
forIter // updater
;
forEachClause
:
forEachDeclarator COLON expression
{#forEachClause = #(#[FOR_EACH_CLAUSE,"FOR_EACH_CLAUSE"], #forEachClause);}
;
forEachDeclarator!
: m:modifiers t:typeSpec[false] id:IDENT d:declaratorBrackets[#t]
{#forEachDeclarator = #(#[VARIABLE_DEF,"VARIABLE_DEF"], m, #(#[TYPE,"TYPE"],d), id);}
;
elseStatement
: "else"^ statement
;
casesGroup
: ( // CONFLICT: to which case group do the statements bind?
// ANTLR generates proper code: it groups the
// many "case"/"default" labels together then
// follows them with the statements
options {
warnWhenFollowAmbig = false;
}
:
aCase
)+
caseSList
{#casesGroup = #([CASE_GROUP, "CASE_GROUP"], #casesGroup);}
;
aCase
: ("case"^ expression | "default"^) COLON
;
caseSList
: (statement)*
{#caseSList = #(#[SLIST,"SLIST"],#caseSList);}
;
// The initializer for a for loop
forInit
// if it looks like a declaration, it is
: ( (declaration)=> declaration
// otherwise it could be an expression list...
| expressionList
)?
{#forInit = #(#[FOR_INIT,"FOR_INIT"],#forInit);}
;
forCond
: (expression)?
{#forCond = #(#[FOR_CONDITION,"FOR_CONDITION"],#forCond);}
;
forIter
: (expressionList)?
{#forIter = #(#[FOR_ITERATOR,"FOR_ITERATOR"],#forIter);}
;
// an exception handler try/catch block
tryBlock
: "try"^ compoundStatement
(handler)*
( finallyHandler )?
;
// an exception handler
handler
: "catch"^ LPAREN parameterDeclaration RPAREN compoundStatement
;
finallyHandler
: "finally"^ compoundStatement
;
// expressions
// Note that most of these expressions follow the pattern
// thisLevelExpression :
// nextHigherPrecedenceExpression
// (OPERATOR nextHigherPrecedenceExpression)*
// which is a standard recursive definition for a parsing an expression.
// The operators in java have the following precedences:
// lowest (13) = *= /= %= += -= <<= >>= >>>= &= ^= |=
// (12) ?:
// (11) ||
// (10) &&
// ( 9) |
// ( 8) ^
// ( 7) &
// ( 6) == !=
// ( 5) < <= > >=
// ( 4) << >>
// ( 3) +(binary) -(binary)
// ( 2) * / %
// ( 1) ++ -- +(unary) -(unary) ~ ! (type)
// [] () (method call) . (dot -- identifier qualification)
// new () (explicit parenthesis)
//
// the last two are not usually on a precedence chart; I put them in
// to point out that new has a higher precedence than '.', so you
// can validy use
// new Frame().show()
//
// Note that the above precedence levels map to the rules below...
// Once you have a precedence chart, writing the appropriate rules as below
// is usually very straightfoward
// the mother of all expressions
expression
: assignmentExpression
{#expression = #(#[EXPR,"EXPR"],#expression);}
;
// This is a list of expressions.
expressionList
: expression (COMMA expression)*
{#expressionList = #(#[ELIST,"ELIST"], expressionList);}
;
// assignment expression (level 13)
assignmentExpression
: conditionalExpression
( ( ASSIGN^
| PLUS_ASSIGN^
| MINUS_ASSIGN^
| STAR_ASSIGN^
| DIV_ASSIGN^
| MOD_ASSIGN^
| SR_ASSIGN^
| BSR_ASSIGN^
| SL_ASSIGN^
| BAND_ASSIGN^
| BXOR_ASSIGN^
| BOR_ASSIGN^
)
assignmentExpression
)?
;
// conditional test (level 12)
conditionalExpression
: logicalOrExpression
( QUESTION^ assignmentExpression COLON conditionalExpression )?
;
// logical or (||) (level 11)
logicalOrExpression
: logicalAndExpression (LOR^ logicalAndExpression)*
;
// logical and (&&) (level 10)
logicalAndExpression
: inclusiveOrExpression (LAND^ inclusiveOrExpression)*
;
// bitwise or non-short-circuiting or (|) (level 9)
inclusiveOrExpression
: exclusiveOrExpression (BOR^ exclusiveOrExpression)*
;
// exclusive or (^) (level 8)
exclusiveOrExpression
: andExpression (BXOR^ andExpression)*
;
// bitwise or non-short-circuiting and (&) (level 7)
andExpression
: equalityExpression (BAND^ equalityExpression)*
;
// equality/inequality (==/!=) (level 6)
equalityExpression
: relationalExpression ((NOT_EQUAL^ | EQUAL^) relationalExpression)*
;
// boolean relational expressions (level 5)
relationalExpression
: shiftExpression
( ( ( LT^
| GT^
| LE^
| GE^
)
shiftExpression
)*
| "instanceof"^ typeSpec[true]
)
;
// bit shift expressions (level 4)
shiftExpression
: additiveExpression ((SL^ | SR^ | BSR^) additiveExpression)*
;
// binary addition/subtraction (level 3)
additiveExpression
: multiplicativeExpression ((PLUS^ | MINUS^) multiplicativeExpression)*
;
// multiplication/division/modulo (level 2)
multiplicativeExpression
: unaryExpression ((STAR^ | DIV^ | MOD^ ) unaryExpression)*
;
unaryExpression
: INC^ unaryExpression
| DEC^ unaryExpression
| MINUS^ {#MINUS.setType(UNARY_MINUS);} unaryExpression
| PLUS^ {#PLUS.setType(UNARY_PLUS);} unaryExpression
| unaryExpressionNotPlusMinus
;
unaryExpressionNotPlusMinus
: BNOT^ unaryExpression
| LNOT^ unaryExpression
| ( // subrule allows option to shut off warnings
options {
// "(int" ambig with postfixExpr due to lack of sequence
// info in linear approximate LL(k). It's ok. Shut up.
generateAmbigWarnings=false;
}
: // If typecast is built in type, must be numeric operand
// Also, no reason to backtrack if type keyword like int, float...
lpb:LPAREN^ {#lpb.setType(TYPECAST);} builtInTypeSpec[true] RPAREN
unaryExpression
// Have to backtrack to see if operator follows. If no operator
// follows, it's a typecast. No semantic checking needed to parse.
// if it _looks_ like a cast, it _is_ a cast; else it's a "(expr)"
| (LPAREN classTypeSpec[true] RPAREN unaryExpressionNotPlusMinus)=>
lp:LPAREN^ {#lp.setType(TYPECAST);} classTypeSpec[true] RPAREN
unaryExpressionNotPlusMinus
| postfixExpression
)
;
// TODO: handle type parameters more effectively - I think this production needs
// a refactoring like the original Antlr Java grammar got
// qualified names, array expressions, method invocation, post inc/dec
postfixExpression
: primaryExpression // start with a primary
( // qualified id (id.id.id.id...) -- build the name
DOT^
( (typeArguments[false])?
( IDENT
| "this"
| "super" // ClassName.super.field
)
| "class"
| newExpression
)
// the above line needs a semantic check to make sure "class"
// is the _last_ qualifier.
// allow ClassName[].class
| ( lbc:LBRACK^ {#lbc.setType(ARRAY_DECLARATOR);} RBRACK )+
DOT^ "class"
// an array indexing operation
| lb:LBRACK^ {#lb.setType(INDEX_OP);} expression RBRACK
// method invocation
// The next line is not strictly proper; it allows x(3)(4) or
// x[2](4) which are not valid in Java. If this grammar were used
// to validate a Java program a semantic check would be needed, or
// this rule would get really ugly...
// It also allows ctor invocation like super(3) which is now
// handled by the explicit constructor rule, but it would
// be hard to syntactically prevent ctor calls here
| lp:LPAREN^ {#lp.setType(METHOD_CALL);}
argList
RPAREN
)*
// possibly add on a post-increment or post-decrement.
// allows INC/DEC on too much, but semantics can check
( in:INC^ {#in.setType(POST_INC);}
| de:DEC^ {#de.setType(POST_DEC);}
| // nothing
)
;
// the basic element of an expression
primaryExpression
: IDENT
| constant
| "true"
| "false"
| "this"
| "null"
| newExpression
| LPAREN assignmentExpression RPAREN
| "super"
// look for int.class and int[].class
| builtInType
( lbt:LBRACK^ {#lbt.setType(ARRAY_DECLARATOR);} RBRACK )*
DOT^ "class"
;
/** object instantiation.
* Trees are built as illustrated by the following input/tree pairs:
*
* new T()
*
* new
* |
* T -- ELIST
* |
* arg1 -- arg2 -- .. -- argn
*
* new int[]
*
* new
* |
* int -- ARRAY_DECLARATOR
*
* new int[] {1,2}
*
* new
* |
* int -- ARRAY_DECLARATOR -- ARRAY_INIT
* |
* EXPR -- EXPR
* | |
* 1 2
*
* new int[3]
* new
* |
* int -- ARRAY_DECLARATOR
* |
* EXPR
* |
* 3
*
* new int[1][2]
*
* new
* |
* int -- ARRAY_DECLARATOR
* |
* ARRAY_DECLARATOR -- EXPR
* | |
* EXPR 1
* |
* 2
*
*/
newExpression
: "new"^ (typeArguments[false])? type
( LPAREN argList RPAREN (classBlock)?
//java 1.1
// Note: This will allow bad constructs like
// new int[4][][3] {exp,exp}.
// There needs to be a semantic check here...
// to make sure:
// a) [ expr ] and [ ] are not mixed
// b) [ expr ] and an init are not used together
| newArrayDeclarator (arrayInitializer)?
)
;
argList
: ( expressionList
| /*nothing*/
{#argList = #[ELIST,"ELIST"];}
)
;
newArrayDeclarator
: (
// CONFLICT:
// newExpression is a primaryExpression which can be
// followed by an array index reference. This is ok,
// as the generated code will stay in this loop as
// long as it sees an LBRACK (proper behavior)
options {
warnWhenFollowAmbig = false;
}
:
lb:LBRACK^ {#lb.setType(ARRAY_DECLARATOR);}
(expression)?
RBRACK
)+
;
constant
: NUM_INT
| NUM_LONG
| NUM_FLOAT
| NUM_DOUBLE
| CHAR_LITERAL
| STRING_LITERAL
;
//----------------------------------------------------------------------------
// The Java scanner
//----------------------------------------------------------------------------
class GeneratedJavaLexer extends Lexer;
options {
exportVocab=GeneratedJava; // call the vocabulary "Java"
testLiterals=false; // don't automatically test for literals
k=4; // four characters of lookahead
charVocabulary='\u0000'..'\uFFFE';
// without inlining some bitset tests, couldn't do unicode;
// I need to make ANTLR generate smaller bitsets; see
// bottom of JavaLexer.java
codeGenBitsetTestThreshold=20;
}
// JavaLexer verbatim source code
{
// explicitly set tab width to 1 (default in ANTLR 2.7.1)
// in ANTLR 2.7.2a2 the default has changed from 1 to 8
public void tab()
{
setColumn( getColumn() + 1 );
}
private CommentListener mCommentListener = null;
// TODO: Check visibility of this method one parsing is done in central
// utility method
public void setCommentListener(CommentListener aCommentListener)
{
mCommentListener = aCommentListener;
}
private boolean mTreatAssertAsKeyword = true;
public void setTreatAssertAsKeyword(boolean aTreatAsKeyword)
{
mTreatAssertAsKeyword = aTreatAsKeyword;
}
private boolean mTreatEnumAsKeyword = true;
public void setTreatEnumAsKeyword(boolean aTreatAsKeyword)
{
mTreatEnumAsKeyword = aTreatAsKeyword;
}
}
// OPERATORS
QUESTION : '?' ;
LPAREN : '(' ;
RPAREN : ')' ;
LBRACK : '[' ;
RBRACK : ']' ;
LCURLY : '{' ;
RCURLY : '}' ;
COLON : ':' ;
COMMA : ',' ;
//DOT : '.' ;
ASSIGN : '=' ;
EQUAL : "==" ;
LNOT : '!' ;
BNOT : '~' ;
NOT_EQUAL : "!=" ;
DIV : '/' ;
DIV_ASSIGN : "/=" ;
PLUS : '+' ;
PLUS_ASSIGN : "+=" ;
INC : "++" ;
MINUS : '-' ;
MINUS_ASSIGN : "-=" ;
DEC : "--" ;
STAR : '*' ;
STAR_ASSIGN : "*=" ;
MOD : '%' ;
MOD_ASSIGN : "%=" ;
SR : ">>" ;
SR_ASSIGN : ">>=" ;
BSR : ">>>" ;
BSR_ASSIGN : ">>>=" ;
GE : ">=" ;
GT : ">" ;
SL : "<<" ;
SL_ASSIGN : "<<=" ;
LE : "<=" ;
LT : '<' ;
BXOR : '^' ;
BXOR_ASSIGN : "^=" ;
BOR : '|' ;
BOR_ASSIGN : "|=" ;
LOR : "||" ;
BAND : '&' ;
BAND_ASSIGN : "&=" ;
LAND : "&&" ;
SEMI : ';' ;
//token signifying annotations and annotation declaration
AT
: '@'
;
// Whitespace -- ignored
WS : ( ' '
| '\t'
| '\f'
// handle newlines
| ( options {generateAmbigWarnings=false;}
: "\r\n" // Evil DOS
| '\r' // Macintosh
| '\n' // Unix (the right way)
)
{ newline(); }
)+
{ _ttype = Token.SKIP; }
;
// Single-line comments
SL_COMMENT
: "//"
{ mCommentListener.reportSingleLineComment("//", getLine(),
getColumn() - 3); }
(~('\n'|'\r'))* ('\n'|'\r'('\n')?)
{$setType(Token.SKIP); newline();}
;
// multiple-line comments
ML_COMMENT
{
int startLine = -1;
int startCol = -1;
}
: "/*" { startLine = getLine(); startCol = getColumn() - 3; }
( /* '\r' '\n' can be matched in one alternative or by matching
'\r' in one iteration and '\n' in another. I am trying to
handle any flavor of newline that comes in, but the language
that allows both "\r\n" and "\r" and "\n" to all be valid
newline is ambiguous. Consequently, the resulting grammar
must be ambiguous. I'm shutting this warning off.
*/
options {
generateAmbigWarnings=false;
}
:
{ LA(2)!='/' }? '*'
| '\r' '\n' {newline();}
| '\r' {newline();}
| '\n' {newline();}
| ~('*'|'\n'|'\r')
)*
"*/"
{
mCommentListener.reportBlockComment("/*", startLine, startCol,
getLine(), getColumn() - 2);
$setType(Token.SKIP);
}
;
// character literals
CHAR_LITERAL
: '\'' ( ESC | ~'\'' ) '\''
;
// string literals
STRING_LITERAL
: '"' (ESC|~('"'|'\\'))* '"'
;
// escape sequence -- note that this is protected; it can only be called
// from another lexer rule -- it will not ever directly return a token to
// the parser
// There are various ambiguities hushed in this rule. The optional
// '0'...'9' digit matches should be matched here rather than letting
// them go back to STRING_LITERAL to be matched. ANTLR does the
// right thing by matching immediately; hence, it's ok to shut off
// the FOLLOW ambig warnings.
protected
ESC
: '\\'
( 'n'
| 'r'
| 't'
| 'b'
| 'f'
| '"'
| '\''
| '\\'
| ('u')+ HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT
| ('0'..'3')
(
options {
warnWhenFollowAmbig = false;
}
: ('0'..'7')
(
options {
warnWhenFollowAmbig = false;
}
: '0'..'7'
)?
)?
| ('4'..'7')
(
options {
warnWhenFollowAmbig = false;
}
: ('0'..'9')
)?
)
;
// hexadecimal digit (again, note it's protected!)
protected
HEX_DIGIT
: ('0'..'9'|'A'..'F'|'a'..'f')
;
// a dummy rule to force vocabulary to be all characters (except special
// ones that ANTLR uses internally (0 to 2)
protected
VOCAB
: '\3'..'\377'
;
protected ID_START:
'_' | '$' |
(
{Character.isJavaIdentifierStart(LA(1))}?
~(
'_' | '$' | '/' | '*' | '0'..'9' |
'.' | '\'' | '\\' | '"' | '\t' | '\n' |
'\r' | ' ' | '\f' | '(' | ')' |
'{' | '}' | '[' | ']'| ';' | ',' | '=' |
'+' | '~' | '&' | '<' | '>' | '-' | '!' |
'^' | '%' | ':' | '?' | '|'| '@'
)
)
;
exception
catch[SemanticException ex]
{
throw new SemanticException(
MessageFormat.format(
"Unexpected character {0} in identifier",
new Object[] {"0x" + Integer.toHexString(LA(1))}),
getFilename(), getLine(), getColumn());
}
protected ID_PART :
'_' | '$' |
(
{Character.isJavaIdentifierPart(LA(1))}?
~(
'_' | '$' | '/' | '*' |
'.' | '\'' | '\\' | '"' | '\t' | '\n' |
'\r' | ' ' | '\f' | '(' | ')' |
'{' | '}' | '[' | ']'| ';' | ',' | '=' |
'+' | '~' | '&' | '<' | '>' | '-' | '!' |
'^' | '%' | ':' | '?' | '|' | '@'
)
)
;
exception
catch[SemanticException ex]
{
throw new SemanticException(
MessageFormat.format(
"Unexpected character {0} in identifier",
new Object[] {"0x" + Integer.toHexString(LA(1))}),
getFilename(), getLine(), getColumn());
}
// an identifier. Note that testLiterals is set to true! This means
// that after we match the rule, we look in the literals table to see
// if it's a literal or really an identifer. As enum and assert
// are purposefully not part of the literal list, we do manual tests on
// the ident to test whether this should be an ENUM or ASSERT token.
// This behaviour is controlled by the treatAssertAsKeyword and
// treatEnumAsKeyword boolean properties on the lexer
IDENT
options {testLiterals=true;}
: ID_START (ID_PART)*
{
if (mTreatAssertAsKeyword && "assert".equals($getText)) {
$setType(ASSERT);
}
if (mTreatEnumAsKeyword && "enum".equals($getText)) {
$setType(ENUM);
}
}
;
//overriden definition of this lexer rule to recognize the ... token - for
//variable argument length
NUM_INT
: (ELLIPSIS)=>ELLIPSIS {$setType(ELLIPSIS);}
| (DOT)=>DOT {$setType(DOT);}
| (DOUBLE_LITERAL)=>DOUBLE_LITERAL {$setType(NUM_DOUBLE);}
| (FLOAT_LITERAL)=>FLOAT_LITERAL {$setType(NUM_FLOAT);}
| (HEX_DOUBLE_LITERAL)=>HEX_DOUBLE_LITERAL {$setType(NUM_DOUBLE);}
| (HEX_FLOAT_LITERAL)=>HEX_FLOAT_LITERAL {$setType(NUM_FLOAT);}
| (LONG_LITERAL)=>LONG_LITERAL {$setType(NUM_LONG);}
| (INT_LITERAL)=>INT_LITERAL {$setType(NUM_INT);}
;
protected INT_LITERAL
: ( '0'
( ('x'|'X') (HEX_DIGIT)+
| ('0'..'9')*
)
// non-zero decimal
| ('1'..'9') ('0'..'9')*
)
;
protected LONG_LITERAL
: ( '0'
( ('x'|'X') (HEX_DIGIT)+
| ('0'..'9')*
)
// non-zero decimal
| ('1'..'9') ('0'..'9')*
)
// long signifier
('l'|'L')
;
protected FLOAT_LITERAL
: (
(('0'..'9')* '.')=>
( ('0'..'9')+ '.' ('0'..'9')*
| '.' ('0'..'9')+
)
(EXPONENT)? ('f'|'F')?
|
('0'..'9')+ ((EXPONENT ('f'|'F')?) | ('f'|'F'))
)
;
protected DOUBLE_LITERAL
: (
(('0'..'9')* '.')=>
( ('0'..'9')+ '.' ('0'..'9')*
| '.' ('0'..'9')+
)
|
('0'..'9')+
)
(EXPONENT)? ('d'|'D')
;
protected HEX_FLOAT_LITERAL
: '0' ('x'|'X')
(
((HEX_DIGIT)* '.')=>
( (HEX_DIGIT)+ '.' (HEX_DIGIT)*
| '.' (HEX_DIGIT)+
)
|
(HEX_DIGIT)+
)
BINARY_EXPONENT ('f'|'F')?
;
protected HEX_DOUBLE_LITERAL
: '0' ('x'|'X')
(
((HEX_DIGIT)* '.')=>
( (HEX_DIGIT)+ '.' (HEX_DIGIT)*
| '.' (HEX_DIGIT)+
)
|
(HEX_DIGIT)+
)
BINARY_EXPONENT ('d'|'D')
;
protected ELLIPSIS
: "..."
;
protected DOT
: '.'
;
// a couple protected methods to assist in matching floating point numbers
protected
EXPONENT
: ('e'|'E') SIGNED_INTEGER
;
protected
SIGNED_INTEGER
: ('+'|'-')? ('0'..'9')+
;
protected
FLOAT_SUFFIX
: 'f'|'F'|'d'|'D'
;
protected
BINARY_EXPONENT
: ('p'|'P') SIGNED_INTEGER
;