Skip to content
This repository
branch: master
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 1367 lines (1262 sloc) 47.592 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
<!doctype html>
<html>
<head>
<link rel="SHORTCUT ICON" href="favicon.ico">
<link href='http://fonts.googleapis.com/css?family=Lato' rel='stylesheet' type='text/css'>
<link rel="stylesheet" type="text/css" href="resources/style.css">
<style>
table { font-size:14px; }
td { vertical-align:top; }
@media print
{
table { font-size:12px; }
td.navmain { font-size:26px; }
body { margin: 5mm 5mm 5mm 5mm; }
}
</style>
<title>Numeric Javascript: Documentation</title>
</head>
<body>
<!--#include file="resources/header.html" -->
<!--
This allows regression tests to run predictably:
<pre>
IN> numeric.seedrandom.seedrandom('1'); Math.random = numeric.seedrandom.random; Math.random();
OUT> 0.2694
</pre>
-->

<table cellspacing=5 style="border:5px solid black;">
<tr><td colspan=3 align="center" style="font-size:18px;">
    <b>Reference card for the <tt>numeric</tt> module</b>
<tr valign="top"><td valign="top" width="33%">
<table>
<tr><td><b>Function</b><td><b>Description</b>
<tr><td colspan=2><hr>
<tr><td><tt>abs</tt><td>Absolute value
<tr><td><tt>acos</tt><td>Arc-cosine
<tr><td><tt>add</tt><td>Pointwise sum x+y
<tr><td><tt>addeq</tt><td>Pointwise sum x+=y
<tr><td><tt>all</tt><td>All the components of x are true
<tr><td><tt>and</tt><td>Pointwise x &amp;&amp; y
<tr><td><tt>andeq</tt><td>Pointwise x &amp;= y
<tr><td><tt>any</tt><td>One or more of the components of x are true
<tr><td><tt>asin</tt><td>Arc-sine
<tr><td><tt>atan</tt><td>Arc-tangeant
<tr><td><tt>atan2</tt><td>Arc-tangeant (two parameters)
<tr><td><tt>band</tt><td>Pointwise x &amp; y
<tr><td><tt>bench</tt><td>Benchmarking routine
<tr><td><tt>bnot</tt><td>Binary negation ~x
<tr><td><tt>bor</tt><td>Binary or x|y
<tr><td><tt>bxor</tt><td>Binary xor x^y
<tr><td><tt>ccsDim</tt><td>Dimensions of sparse matrix
<tr><td><tt>ccsDot</tt><td>Sparse matrix-matrix product
<tr><td><tt>ccsFull</tt><td>Convert sparse to full
<tr><td><tt>ccsGather</tt><td>Gather entries of sparse matrix
<tr><td><tt>ccsGetBlock</tt><td>Get rows/columns of sparse matrix
<tr><td><tt>ccsLUP</tt><td>Compute LUP decomposition of sparse matrix
<tr><td><tt>ccsLUPSolve</tt><td>Solve Ax=b using LUP decomp
<tr><td><tt>ccsScatter</tt><td>Scatter entries of sparse matrix
<tr><td><tt>ccsSparse</tt><td>Convert from full to sparse
<tr><td><tt>ccsTSolve</tt><td>Solve upper/lower triangular system
<tr><td><tt>ccs&lt;op&gt;</td><td>Supported ops include: add/div/mul/geq/etc...
<tr><td><tt>cLU</tt><td>Coordinate matrix LU decomposition
<tr><td><tt>cLUsolve</tt><td>Coordinate matrix LU solve
<tr><td><tt>cdelsq</tt><td>Coordinate matrix Laplacian
<tr><td><tt>cdotMV</tt><td>Coordinate matrix-vector product
<tr><td><tt>ceil</tt><td>Pointwise Math.ceil(x)
<tr><td><tt>cgrid</tt><td>Coordinate grid for cdelsq
<tr><td><tt>clone</tt><td>Deep copy of Array
<tr><td><tt>cos</tt><td>Pointwise Math.cos(x)
<tr><td><tt>det</tt><td>Determinant
<tr><td><tt>diag</tt><td>Create diagonal matrix
<tr><td><tt>dim</tt><td>Get Array dimensions
<tr><td><tt>div</tt><td>Pointwise x/y
<tr><td><tt>diveq</tt><td>Pointwise x/=y
<tr><td><tt>dopri</tt><td>Numerical integration of ODE using Dormand-Prince RK method. Returns an object Dopri.
<tr><td><tt>Dopri.at</tt><td>Evaluate the ODE solution at a point
</table>
<td valign="top" width="33%">
<table>
<tr><td><b>Function</b><td><b>Description</b>
<tr><td colspan=2><hr>
<tr><td><tt>dot</tt><td>Matrix-Matrix, Matrix-Vector and Vector-Matrix product
<tr><td><tt>eig</tt><td>Eigenvalues and eigenvectors
<tr><td><tt>epsilon</tt><td>2.220446049250313e-16
<tr><td><tt>eq</tt><td>Pointwise comparison x === y
<tr><td><tt>exp</tt><td>Pointwise Math.exp(x)
<tr><td><tt>floor</tt><td>Poinwise Math.floor(x)
<tr><td><tt>geq</tt><td>Pointwise x&gt;=y
<tr><td><tt>getBlock</tt><td>Extract a block from a matrix
<tr><td><tt>getDiag</tt><td>Get the diagonal of a matrix
<tr><td><tt>gt</tt><td>Pointwise x&gt;y
<tr><td><tt>identity</tt><td>Identity matrix
<tr><td><tt>imageURL</tt><td>Encode a matrix as an image URL
<tr><td><tt>inv</tt><td>Matrix inverse
<tr><td><tt>isFinite</tt><td>Pointwise isFinite(x)
<tr><td><tt>isNaN</tt><td>Pointwise isNaN(x)
<tr><td><tt>largeArray</tt><td>Don't prettyPrint Arrays larger than this
<tr><td><tt>leq</tt><td>Pointwise x&lt;=y
<tr><td><tt>linspace</tt><td>Generate evenly spaced values
<tr><td><tt>log</tt><td>Pointwise Math.log(x)
<tr><td><tt>lshift</tt><td>Pointwise x&lt;&lt;y
<tr><td><tt>lshifteq</tt><td>Pointwise x&lt;&lt;=y
<tr><td><tt>lt</tt><td>Pointwise x&lt;y
<tr><td><tt>LU</tt><td>Dense LU decomposition
<tr><td><tt>LUsolve</tt><td>Dense LU solve
<tr><td><tt>mapreduce</tt><td>Make a pointwise map-reduce function
<tr><td><tt>mod</tt><td>Pointwise x%y
<tr><td><tt>modeq</tt><td>Pointwise x%=y
<tr><td><tt>mul</tt><td>Pointwise x*y
<tr><td><tt>neg</tt><td>Pointwise -x
<tr><td><tt>neq</tt><td>Pointwise x!==y
<tr><td><tt>norm2</tt><td>Square root of the sum of the square of the entries of x
<tr><td><tt>norm2Squared</tt><td>Sum of squares of entries of x
<tr><td><tt>norminf</tt><td>Largest modulus entry of x
<tr><td><tt>not</tt><td>Pointwise logical negation !x
<tr><td><tt>or</tt><td>Pointwise logical or x||y
<tr><td><tt>oreq</tt><td>Pointwise x|=y
<tr><td><tt>parseCSV</tt><td>Parse a CSV file into an Array
<tr><td><tt>parseDate</tt><td>Pointwise parseDate(x)
<tr><td><tt>parseFloat</tt><td>Pointwise parseFloat(x)
<tr><td><tt>pointwise</tt><td>Create a pointwise function
<tr><td><tt>pow</tt><td>Pointwise Math.pow(x)
<tr><td><tt>precision</tt><td>Number of digits to prettyPrint
<tr><td><tt>prettyPrint</tt><td>Pretty-prints x
<tr><td><tt>random</tt><td>Create an Array of random numbers
<tr><td><tt>rep</tt><td>Create an Array by duplicating values
</table>
<td valign="top" width="33%">
<table>
<tr><td><b>Function</b><td><b>Description</b>
<tr><td colspan=2><hr>
<tr><td><tt>round</tt><td>Pointwise Math.round(x)
<tr><td><tt>rrshift</tt><td>Pointwise x&gt;&gt;&gt;y
<tr><td><tt>rrshifteq</tt><td>Pointwise x&gt;&gt;&gt;=y
<tr><td><tt>rshift</tt><td>Pointwise x&gt;&gt;y
<tr><td><tt>rshifteq</tt><td>Pointwise x&gt;&gt;=y
<tr><td><tt>same</tt><td>x and y are entrywise identical
<tr><td><tt>seedrandom</tt><td>The seedrandom module
<tr><td><tt>setBlock</tt><td>Set a block of a matrix
<tr><td><tt>sin</tt><td>Pointwise Math.sin(x)
<tr><td><tt>solve</tt><td>Solve Ax=b
<tr><td><tt>solveLP</tt><td>Solve a linear programming problem
<tr><td><tt>solveQP</tt><td>Solve a quadratic programming problem
<tr><td><tt>spline</tt><td>Create a Spline object
<tr><td><tt>Spline.at</tt><td>Evaluate the Spline at a point
<tr><td><tt>Spline.diff</tt><td>Differentiate the Spline
<tr><td><tt>Spline.roots</tt><td>Find all the roots of the Spline
<tr><td><tt>sqrt</tt><td>Pointwise Math.sqrt(x)
<tr><td><tt>sub</tt><td>Pointwise x-y
<tr><td><tt>subeq</tt><td>Pointwise x-=y
<tr><td><tt>sum</tt><td>Sum all the entries of x
<tr><td><tt>svd</tt><td>Singular value decomposition
<tr><td><tt>t</tt><td>Create a tensor type T (may be complex-valued)
<tr><td><tt>T.&lt;numericfun&gt;</tt><td>Supported &lt;numericfun&gt; are: abs, add, cos, diag, div, dot, exp, getBlock, getDiag, inv, log, mul, neg, norm2, setBlock, sin, sub, transpose
<tr><td><tt>T.conj</tt><td>Pointwise complex conjugate
<tr><td><tt>T.fft</tt><td>Fast Fourier transform
<tr><td><tt>T.get</tt><td>Read an entry
<tr><td><tt>T.getRow</tt><td>Get a row
<tr><td><tt>T.getRows</tt><td>Get a range of rows
<tr><td><tt>T.ifft</tt><td>Inverse FFT
<tr><td><tt>T.reciprocal</tt><td>Pointwise 1/z
<tr><td><tt>T.set</tt><td>Set an entry
<tr><td><tt>T.setRow</tt><td>Set a row
<tr><td><tt>T.setRows</tt><td>Set a range of rows
<tr><td><tt>T.transjugate</tt><td>The conjugate-transpose of a matrix
<tr><td><tt>tan</tt><td>Pointwise Math.tan(x)
<tr><td><tt>tensor</tt><td>Tensor product ret[i][j] = x[i]*y[j]
<tr><td><tt>toCSV</tt><td>Make a CSV file
<tr><td><tt>transpose</tt><td>Matrix transpose
<tr><td><tt>uncmin</tt><td>Unconstrained optimization
<tr><td><tt>version</tt><td>Version string for the numeric library
<tr><td><tt>xor</tt><td>Pointwise x^y
<tr><td><tt>xoreq</tt><td>Pointwise x^=y
</table></table>

<br>
<h1>Numerical analysis in Javascript</h1>

<a href="http://www.numericjs.com/">Numeric Javascript</a> is
library that provides many useful functions for numerical
calculations, particularly for linear algebra (vectors and matrices).
You can create vectors and matrices and multiply them:
<pre>
IN> A = [[1,2,3],[4,5,6]];
OUT> [[1,2,3],
      [4,5,6]]
IN> x = [7,8,9]
OUT> [7,8,9]
IN> numeric.dot(A,x);
OUT> [50,122]
</pre>
The example shown above can be executed in the
<a href="http://www.numericjs.com/workshop.php">Javascript Workshop</a> or at any
Javascript prompt. The Workshop provides plotting capabilities:<br>
<img src="resources/workshop.png"><br>
The function <tt>workshop.plot()</tt> is essentially the <a href="http://code.google.com/p/flot/">flot</a>
plotting command.<br><br>

The <tt>numeric</tt> library provides functions that implement most of the usual Javascript
operators for vectors and matrices:
<pre>
IN> x = [7,8,9];
    y = [10,1,2];
    numeric['+'](x,y)
OUT> [17,9,11]
IN> numeric['>'](x,y)
OUT> [false,true,true]
</pre>
These operators can also be called with plain Javascript function names:
<pre>
IN> numeric.add([7,8,9],[10,1,2])
OUT> [17,9,11]
</pre>
You can also use these operators with three or more parameters:
<pre>
IN> numeric.add([1,2],[3,4],[5,6],[7,8])
OUT> [16,20]
</pre>

The function <tt>numeric.inv()</tt> can be used to compute the inverse of an invertible matrix:
<pre>
IN> A = [[1,2,3],[4,5,6],[7,1,9]]
OUT> [[1,2,3],
      [4,5,6],
      [7,1,9]]
IN> Ainv = numeric.inv(A);
OUT> [[-0.9286,0.3571,0.07143],
      [-0.1429,0.2857,-0.1429],
      [0.7381,-0.3095,0.07143]]
</pre>
The function <tt>numeric.prettyPrint()</tt> is used to print most of the examples in this documentation.
It formats objects, arrays and numbers so that they can be understood easily. All output is automatically
formatted using <tt>numeric.prettyPrint()</tt> when in the
<a href="http://www.numericjs.com/workshop.php">Workshop</a>. In order to present the information clearly and
succintly, the function <tt>numeric.prettyPrint()</tt> lays out matrices so that all the numbers align.
Furthermore, numbers are given approximately using the <tt>numeric.precision</tt> variable:
<pre>
IN> numeric.precision = 10; x = 3.141592653589793
OUT> 3.141592654
IN> numeric.precision = 4; x
OUT> 3.142
</pre>
The default precision is 4 digits. In addition to printing approximate numbers,
the function <tt>numeric.prettyPrint()</tt> will replace large arrays with the string <tt>...Large Array...</tt>:
<pre>
IN> numeric.identity(100)
OUT> ...Large Array...
</pre>
By default, this happens with the Array's length is more than 50. This can be controlled by setting the
variable <tt>numeric.largeArray</tt> to an appropriate value:
<pre>
IN> numeric.largeArray = 2; A = numeric.identity(4)
OUT> ...Large Array...
IN> numeric.largeArray = 50; A
OUT> [[1,0,0,0],
      [0,1,0,0],
      [0,0,1,0],
      [0,0,0,1]]
</pre>
In particular, if you want to print all Arrays regardless of size, set <tt>numeric.largeArray = Infinity</tt>.
<br><br>


<h1>Math Object functions</h1>

The <tt>Math</tt> object functions have also been adapted to work on Arrays as follows:
<pre>
IN> numeric.exp([1,2]);
OUT> [2.718,7.389]
IN> numeric.exp([[1,2],[3,4]])
OUT> [[2.718, 7.389],
      [20.09, 54.6]]
IN> numeric.abs([-2,3])
OUT> [2,3]
IN> numeric.acos([0.1,0.2])
OUT> [1.471,1.369]
IN> numeric.asin([0.1,0.2])
OUT> [0.1002,0.2014]
IN> numeric.atan([1,2])
OUT> [0.7854,1.107]
IN> numeric.atan2([1,2],[3,4])
OUT> [0.3218,0.4636]
IN> numeric.ceil([-2.2,3.3])
OUT> [-2,4]
IN> numeric.floor([-2.2,3.3])
OUT> [-3,3]
IN> numeric.log([1,2])
OUT> [0,0.6931]
IN> numeric.pow([2,3],[0.25,7.1])
OUT> [1.189,2441]
IN> numeric.round([-2.2,3.3])
OUT> [-2,3]
IN> numeric.sin([1,2])
OUT> [0.8415,0.9093]
IN> numeric.sqrt([1,2])
OUT> [1,1.414]
IN> numeric.tan([1,2])
OUT> [1.557,-2.185]
</pre>


<h1>Utility functions</h1>

The function <tt>numeric.dim()</tt> allows you to compute the dimensions of an Array.

<pre>
IN> numeric.dim([1,2])
OUT> [2]
IN> numeric.dim([[1,2,3],[4,5,6]])
OUT> [2,3]
</pre>

You can perform a deep comparison of Arrays using <tt>numeric.same()</tt>:
<pre>
IN> numeric.same([1,2],[1,2])
OUT> true
IN> numeric.same([1,2],[1,2,3])
OUT> false
IN> numeric.same([1,2],[[1],[2]])
OUT> false
IN> numeric.same([[1,2],[3,4]],[[1,2],[3,4]])
OUT> true
IN> numeric.same([[1,2],[3,4]],[[1,2],[3,5]])
OUT> false
IN> numeric.same([[1,2],[2,4]],[[1,2],[3,4]])
OUT> false
</pre>

You can create a multidimensional Array from a given value using <tt>numeric.rep()</tt>
<pre>
IN> numeric.rep([3],5)
OUT> [5,5,5]
IN> numeric.rep([2,3],0)
OUT> [[0,0,0],
      [0,0,0]]
</pre>

You can loop over Arrays as you normally would. However, in order to quickly generate optimized
loops, the <tt>numeric</tt> library provides a few efficient loop-generation mechanisms. For example, the
<tt>numeric.mapreduce()</tt> function can be used to make a function that computes the sum of all the
entries of an Array.

<pre>
IN> sum = numeric.mapreduce('accum += xi','0'); sum([1,2,3])
OUT> 6
IN> sum([[1,2,3],[4,5,6]])
OUT> 21
</pre>

The functions <tt>numeric.any()</tt> and <tt>numeric.all()</tt> allow you to check whether any or all entries
of an Array are boolean true values.
<pre>
IN> numeric.any([false,true])
OUT> true
IN> numeric.any([[0,0,3.14],[0,false,0]])
OUT> true
IN> numeric.any([0,0,false])
OUT> false
IN> numeric.all([false,true])
OUT> false
IN> numeric.all([[1,4,3.14],["no",true,-1]])
OUT> true
IN> numeric.all([0,0,false])
OUT> false
</pre>

You can create a diagonal matrix using <tt>numeric.diag()</tt>
<pre>
IN> numeric.diag([1,2,3])
OUT> [[1,0,0],
      [0,2,0],
      [0,0,3]]
</pre>

The function <tt>numeric.identity()</tt> returns the identity matrix.
<pre>
IN> numeric.identity(3)
OUT> [[1,0,0],
      [0,1,0],
      [0,0,1]]
</pre>

Random Arrays can also be created:
<pre >
IN> numeric.random([2,3])
OUT> [[0.05303,0.1537,0.7280],
      [0.3839,0.08818,0.6316]]
</pre>

You can generate a vector of evenly spaced values:

<pre>
IN> numeric.linspace(1,5);
OUT> [1,2,3,4,5]
IN> numeric.linspace(1,3,5);
OUT> [1,1.5,2,2.5,3]
</pre>

<!--
<pre>
IN> numeric.blockMatrix([[[[1,2],[3,4]],[[5,6],[7,8]]],
[[[11,12],[13,14]],[[15,16],[17,18]]]])
OUT> [[ 1, 2, 5, 6],
[ 3, 4, 7, 8],
[11,12,15,16],
[13,14,17,18]]
</pre>
-->


<h1>Arithmetic operations</h1>

The standard arithmetic operations have been vectorized:
<pre>
IN> numeric.addVV([1,2],[3,4])
OUT> [4,6]
IN> numeric.addVS([1,2],3)
OUT> [4,5]
</pre>

There are also polymorphic functions:
<pre>
IN> numeric.add(1,[2,3])
OUT> [3,4]
IN> numeric.add([1,2,3],[4,5,6])
OUT> [5,7,9]
</pre>

The other arithmetic operations are available:
<pre>
IN> numeric.sub([1,2],[3,4])
OUT> [-2,-2]
IN> numeric.mul([1,2],[3,4])
OUT> [3,8]
IN> numeric.div([1,2],[3,4])
OUT> [0.3333,0.5]
</pre>

The in-place operators (such as +=) are also available:
<pre>
IN> v = [1,2,3,4]; numeric.addeq(v,3); v
OUT> [4,5,6,7]
IN> numeric.subeq([1,2,3],[5,3,1])
OUT> [-4,-1,2]
</pre>

Unary operators:
<pre>
IN> numeric.neg([1,-2,3])
OUT> [-1,2,-3]
IN> numeric.isFinite([10,NaN,Infinity])
OUT> [true,false,false]
IN> numeric.isNaN([10,NaN,Infinity])
OUT> [false,true,false]
</pre>


<!--
<pre>
IN> n = 41; A = numeric.random([n,n]); numeric.norm2(numeric.sub(numeric.dotMMsmall(numeric.inv(A),A),numeric.identity(n)))<1e-12
OUT> true
IN> n = 42; A = numeric.random([n,n]); numeric.norm2(numeric.sub(numeric.dotMMsmall(numeric.inv(A),A),numeric.identity(n)))<1e-12
OUT> true
IN> n = 43; A = numeric.random([n,n]); numeric.norm2(numeric.sub(numeric.dotMMsmall(numeric.inv(A),A),numeric.identity(n)))<1e-12
OUT> true
IN> n = 44; A = numeric.random([n,n]); numeric.norm2(numeric.sub(numeric.dotMMbig(numeric.inv(A),A),numeric.identity(n)))<1e-12
OUT> true
IN> n = 45; A = numeric.random([n,n]); numeric.norm2(numeric.sub(numeric.dotMMbig(numeric.inv(A),A),numeric.identity(n)))<1e-12
OUT> true
IN> n = 46; A = numeric.random([n,n]); numeric.norm2(numeric.sub(numeric.dotMMbig(numeric.inv(A),A),numeric.identity(n)))<1e-12
OUT> true
</pre>
-->


<h1>Linear algebra</h1>

Matrix products are implemented in the functions
<tt>numeric.dotVV()</tt>
<tt>numeric.dotVM()</tt>
<tt>numeric.dotMV()</tt>
<tt>numeric.dotMM()</tt>:
<pre>
IN> numeric.dotVV([1,2],[3,4])
OUT> 11
IN> numeric.dotVM([1,2],[[3,4],[5,6]])
OUT> [13,16]
IN> numeric.dotMV([[1,2],[3,4]],[5,6])
OUT> [17,39]
IN> numeric.dotMMbig([[1,2],[3,4]],[[5,6],[7,8]])
OUT> [[19,22],
      [43,50]]
IN> numeric.dotMMsmall([[1,2],[3,4]],[[5,6],[7,8]])
OUT> [[19,22],
      [43,50]]
IN> numeric.dot([1,2,3,4,5,6,7,8,9],[1,2,3,4,5,6,7,8,9])
OUT> 285
</pre>

The function <tt>numeric.dot()</tt> is "polymorphic" and selects the appropriate Matrix product:

<pre>
IN> numeric.dot([1,2,3],[4,5,6])
OUT> 32
IN> numeric.dot([[1,2,3],[4,5,6]],[7,8,9])
OUT> [50,122]
</pre>

Solving the linear problem Ax=b (<a href="https://github.com/yuzeh">Dan Huang</a>):
<pre>
IN> numeric.solve([[1,2],[3,4]],[17,39])
OUT> [5,6]
</pre>
The algorithm is based on the LU decomposition:
<pre>
IN> LU = numeric.LU([[1,2],[3,4]])
OUT> {LU:[[3 ,4 ],
          [0.3333,0.6667]],
       P:[1,1]}
IN> numeric.LUsolve(LU,[17,39])
OUT> [5,6]
</pre>
<!--
Stress testing
<pre>
IN> ns = [5,6,10,16,25,40,41];
for(j=0;j<ns.length;j++) {
n = ns[j];
for(k=0;k<10;++k) {
A = numeric.random([n,n]);
x = numeric.random([n]);
b = numeric.dot(A,x);
y = numeric.solve(A,b);
if(!(numeric.norminf(numeric.sub(x,y))<1e-10)) throw new Error(
"numeric.solve Stress Test:"+numeric.prettyPrint({j:j,k:k,A:A,x:x,b:b,y:y}));
}
}
"numeric.solve Stress Test OK";
OUT> "numeric.solve Stress Test OK"
</pre>
-->

The determinant:
<pre>
IN> numeric.det([[1,2],[3,4]]);
OUT> -2
IN> numeric.det([[6,8,4,2,8,5],[3,5,2,4,9,2],[7,6,8,3,4,5],[5,5,2,8,1,6],[3,2,2,4,2,2],[8,3,2,2,4,1]]);
OUT> -1404
</pre>

The matrix inverse:
<pre>
IN> numeric.inv([[1,2],[3,4]])
OUT> [[ -2, 1],
      [ 1.5, -0.5]]
</pre>

The transpose:
<pre>
IN> numeric.transpose([[1,2,3],[4,5,6]])
OUT> [[1,4],
      [2,5],
      [3,6]]
IN> numeric.transpose([[1,2,3,4,5,6,7,8,9,10,11,12]])
OUT> [[ 1],
      [ 2],
      [ 3],
      [ 4],
      [ 5],
      [ 6],
      [ 7],
      [ 8],
      [ 9],
      [10],
      [11],
      [12]]
</pre>

You can compute the 2-norm of an Array, which is the square root of the sum of the squares of the entries.
<pre>
IN> numeric.norm2([1,2])
OUT> 2.236
</pre>

Computing the tensor product of two vectors:
<pre>
IN> numeric.tensor([1,2],[3,4,5])
OUT> [[3,4,5],
      [6,8,10]]
</pre>


<h1>Data manipulation</h1>
There are also some data manipulation functions. You can parse dates:
<pre>
IN> numeric.parseDate(['1/13/2013','2001-5-9, 9:31']);
OUT> [1.358e12,9.894e11]
</pre>
Parse floating point quantities:
<pre>
IN> numeric.parseFloat(['12','0.1'])
OUT> [12,0.1]
</pre>
Parse CSV files:
<pre>
IN> numeric.parseCSV('a,b,c\n1,2.3,.3\n4e6,-5.3e-8,6.28e+4')
OUT> [[ "a", "b", "c"],
      [ 1, 2.3, 0.3],
      [ 4e6, -5.3e-8, 62800]]
IN> numeric.toCSV([[1.23456789123,2],[3,4]])
OUT> "1.23456789123,2
     3,4
     "
</pre>

You can also fetch a URL (a thin wrapper around XMLHttpRequest):
<pre>
IN> numeric.getURL('tools/helloworld.txt').responseText
OUT> "Hello, world!"
</pre>


<h1>Complex linear algebra</h1>
You can also manipulate complex numbers:
<pre>
IN> z = new numeric.T(3,4);
OUT> {x: 3, y: 4}
IN> z.add(5)
OUT> {x: 8, y: 4}
IN> w = new numeric.T(2,8);
OUT> {x: 2, y: 8}
IN> z.add(w)
OUT> {x: 5, y: 12}
IN> z.mul(w)
OUT> {x: -26, y: 32}
IN> z.div(w)
OUT> {x:0.5588,y:-0.2353}
IN> z.sub(w)
OUT> {x:1, y:-4}
</pre>

Complex vectors and matrices can also be handled:
<pre>
IN> z = new numeric.T([1,2],[3,4]);
OUT> {x: [1,2], y: [3,4]}
IN> z.abs()
OUT> {x:[3.162,4.472],y:}
IN> z.conj()
OUT> {x:[1,2],y:[-3,-4]}
IN> z.norm2()
OUT> 5.477
IN> z.exp()
OUT> {x:[-2.691,-4.83],y:[0.3836,-5.592]}
IN> z.cos()
OUT> {x:[-1.528,-2.459],y:[0.1658,-2.745]}
IN> z.sin()
OUT> {x:[0.2178,-2.847],y:[1.163,2.371]}
IN> z.log()
OUT> {x:[1.151,1.498],y:[1.249,1.107]}
</pre>

Complex matrices:
<pre>
IN> A = new numeric.T([[1,2],[3,4]],[[0,1],[2,-1]]);
OUT> {x:[[1, 2],
         [3, 4]],
      y:[[0, 1],
         [2,-1]]}
IN> A.inv();
OUT> {x:[[0.125,0.125],
         [ 0.25, 0]],
      y:[[ 0.5,-0.25],
         [-0.375,0.125]]}
IN> A.inv().dot(A)
OUT> {x:[[1, 0],
         [0, 1]],
      y:[[0,-2.776e-17],
         [0, 0]]}
IN> A.get([1,1])
OUT> {x: 4, y: -1}
IN> A.transpose()
OUT> { x: [[1, 3],
           [2, 4]],
       y: [[0, 2],
           [1,-1]] }
IN> A.transjugate()
OUT> { x: [[ 1, 3],
           [ 2, 4]],
       y: [[ 0,-2],
           [-1, 1]] }
IN> numeric.T.rep([2,2],new numeric.T(2,3));
OUT> { x: [[2,2],
           [2,2]],
       y: [[3,3],
           [3,3]] }
</pre>


<h1>Eigenvalues</h1>
Eigenvalues:
<pre>
IN> A = [[1,2,5],[3,5,-1],[7,-3,5]];
OUT> [[ 1, 2, 5],
      [ 3, 5, -1],
      [ 7, -3, 5]]
IN> B = numeric.eig(A);
OUT> {lambda:{x:[-4.284,9.027,6.257],y:},
      E:{x:[[ 0.7131,-0.5543,0.4019],
            [-0.2987,-0.2131,0.9139],
            [-0.6342,-0.8046,0.057 ]],
         y:}}
IN> C = B.E.dot(numeric.T.diag(B.lambda)).dot(B.E.inv());
OUT> {x: [[ 1, 2, 5],
          [ 3, 5, -1],
          [ 7, -3, 5]],
      y: }
</pre>
Note that eigenvalues and eigenvectors are returned as complex numbers (type <tt>numeric.T</tt>). This is because
eigenvalues are often complex even when the matrix is real.<br><br>


<h1>Singular value decomposition (Shanti Rao)</h1>

Shanti Rao kindly emailed me an implementation of the Golub and Reisch algorithm:

<pre>
IN> A=[[ 22, 10, 2, 3, 7],
       [ 14, 7, 10, 0, 8],
       [ -1, 13, -1,-11, 3],
       [ -3, -2, 13, -2, 4],
       [ 9, 8, 1, -2, 4],
       [ 9, 1, -7, 5, -1],
       [ 2, -6, 6, 5, 1],
       [ 4, 5, 0, -2, 2]];
    numeric.svd(A);
OUT> {U:
[[ -0.7071, -0.1581, 0.1768, 0.2494, 0.4625],
 [ -0.5303, -0.1581, -0.3536, 0.1556, -0.4984],
 [ -0.1768, 0.7906, -0.1768, -0.1546, 0.3967],
 [ -1.506e-17, -0.1581, -0.7071, -0.3277, 0.1],
 [ -0.3536, 0.1581, 1.954e-15, -0.07265, -0.2084],
 [ -0.1768, -0.1581, 0.5303, -0.5726, -0.05555],
 [ -7.109e-18, -0.4743, -0.1768, -0.3142, 0.4959],
 [ -0.1768, 0.1581, 1.915e-15, -0.592, -0.2791]],
S:
[ 35.33, 20, 19.6, 0, 0],
V:
[[ -0.8006, -0.3162, 0.2887, -0.4191, 0],
 [ -0.4804, 0.6325, 7.768e-15, 0.4405, 0.4185],
 [ -0.1601, -0.3162, -0.866, -0.052, 0.3488],
 [ 4.684e-17, -0.6325, 0.2887, 0.6761, 0.2442],
 [ -0.3203, 3.594e-15, -0.2887, 0.413, -0.8022]]}
</pre>

<!--
Some further tests.
<pre>
IN> n = 31; A = numeric.random([n,n]); B = numeric.eig(A); !(B.E.dot(numeric.T.diag(B.lambda).dot(B.E.inv())).sub(A).norm2()>1e-12)
OUT> true
IN> n = 32; A = numeric.random([n,n]); B = numeric.eig(A); !(B.E.dot(numeric.T.diag(B.lambda).dot(B.E.inv())).sub(A).norm2()>1e-12)
OUT> true
IN> n = 33; A = numeric.random([n,n]); B = numeric.eig(A); !(B.E.dot(numeric.T.diag(B.lambda).dot(B.E.inv())).sub(A).norm2()>1e-12)
OUT> true
IN> n = 34; A = numeric.random([n,n]); B = numeric.eig(A); !(B.E.dot(numeric.T.diag(B.lambda).dot(B.E.inv())).sub(A).norm2()>1e-12)
OUT> true
IN> n = 35; A = numeric.random([n,n]); B = numeric.eig(A); !(B.E.dot(numeric.T.diag(B.lambda).dot(B.E.inv())).sub(A).norm2()>1e-12)
OUT> true
IN> m = 17; n = 12; A = numeric.random([m,n]); B = numeric.svd(A); U = new numeric.T(B.U); V = new numeric.T(B.V); !(U.dot(numeric.T.diag(B.S)).dot(V.transpose()).sub(A).norm2()>1e-12)
OUT> true
IN> m = 21; n = 19; A = numeric.random([m,n]); B = numeric.svd(A); U = new numeric.T(B.U); V = new numeric.T(B.V); !(U.dot(numeric.T.diag(B.S)).dot(V.transpose()).sub(A).norm2()>1e-12)
OUT> true
IN> m = 33; n = 33; A = numeric.random([m,n]); B = numeric.svd(A); U = new numeric.T(B.U); V = new numeric.T(B.V); !(U.dot(numeric.T.diag(B.S)).dot(V.transpose()).sub(A).norm2()>1e-12)
OUT> true
IN> m = 59; n = 42; A = numeric.random([m,n]); B = numeric.svd(A); U = new numeric.T(B.U); V = new numeric.T(B.V); !(U.dot(numeric.T.diag(B.S)).dot(V.transpose()).sub(A).norm2()>1e-12)
OUT> true
IN> numeric.eig([[1, 0, 0], [0, 0.7181, -0.6960], [0, 0.6960, 0.7181]]) // This was a bug found by bdmartin
OUT> {lambda:
{x:
[ 1, 0.7181, 0.7181],
y:
[ 0, 0.696, -0.696]},
E:
{x:
[[ 1, 0, 0],
[ 0, 0, 0.7071],
[ 0, -0.7071, 0]],
y:
[[ 0, 0, 0],
[ 0, -0.7071, 0],
[ 0, 0, 0.7071]]}}
</pre>
-->


<h1>Sparse linear algebra</h1>

Sparse matrices are matrices that have a lot of zeroes. In numeric, sparse matrices are stored in the
"compressed column storage" ordering. Example:
<pre>
IN> A = [[1,2,0],
         [0,3,0],
         [2,0,5]];
    SA = numeric.ccsSparse(A);
OUT> [[0,2,4,5],
      [0,2,0,1,2],
      [1,2,2,3,5]]
</pre>
The relation between A and its sparse representation SA is:
<pre >
    A[i][SA[1][k]] = SA[2][k] with SA[0][i] &le; k &lt; SA[0][i+1]
</pre >
In other words, SA[2] stores the nonzero entries of A; SA[1] stores the row numbers and SA[0] stores the
offsets of the columns. See <i>I. DUFF, R. GRIMES, AND J. LEWIS, Sparse matrix test problems, ACM Trans. Math. Soft., 15 (1989), pp. 1-14.</i>
<pre>
IN> A = numeric.ccsSparse([[ 3, 5, 8,10, 8],
                          [ 7,10, 3, 5, 3],
                          [ 6, 3, 5, 1, 8],
                          [ 2, 6, 7, 1, 2],
                          [ 1, 2, 9, 3, 9]]);
OUT> [[0,5,10,15,20,25],
      [0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4],
      [3,7,6,2,1,5,10,3,6,2,8,3,5,7,9,10,5,1,1,3,8,3,8,2,9]]
IN> numeric.ccsFull(A);
OUT> [[ 3, 5, 8,10, 8],
      [ 7,10, 3, 5, 3],
      [ 6, 3, 5, 1, 8],
      [ 2, 6, 7, 1, 2],
      [ 1, 2, 9, 3, 9]]
IN> numeric.ccsDot(numeric.ccsSparse([[1,2,3],[4,5,6]]),numeric.ccsSparse([[7,8],[9,10],[11,12]]))
OUT> [[0,2,4],
      [0,1,0,1],
      [58,139,64,154]]
IN> M = [[0,1,3,6],[0,0,1,0,1,2],[3,-1,2,3,-2,4]];
    b = [9,3,2];
    x = numeric.ccsTSolve(M,b);
OUT> [3.167,2,0.5]
IN> numeric.ccsDot(M,[[0,3],[0,1,2],x])
OUT> [[0,3],[0,1,2],[9,3,2]]
</pre>
We provide an LU=PA decomposition:
<pre>
IN> A = [[0,5,10,15,20,25],
         [0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4],
         [3,7,6,2,1,5,10,3,6,2,8,3,5,7,9,10,5,1,1,3,8,3,8,2,9]];
    LUP = numeric.ccsLUP(A);
OUT> {L:[[0,5,9,12,14,15],
         [0,2,4,1,3,1,3,4,2,2,4,3,3,4,4],
         [1,0.1429,0.2857,0.8571,0.4286,1,-0.1282,-0.5641,-0.1026,1,0.8517,0.7965,1,-0.67,1]],
      U:[[0,1,3,6,10,15],
         [0,0,1,0,1,2,0,1,2,3,0,1,2,3,4],
         [7,10,-5.571,3,2.429,8.821,5,-3.286,1.949,5.884,3,5.429,9.128,0.1395,-3.476]],
      P:[1,2,4,0,3],
      Pinv:[3,0,1,4,2]}
IN> numeric.ccsFull(numeric.ccsDot(LUP.L,LUP.U))
OUT> [[ 7,10, 3, 5, 3],
      [ 6, 3, 5, 1, 8],
      [ 1, 2, 9, 3, 9],
      [ 3, 5, 8,10, 8],
      [ 2, 6, 7, 1, 2]]
IN> x = numeric.ccsLUPSolve(LUP,[96,63,82,51,89])
OUT> [3,1,4,1,5]
IN> X = numeric.trunc(numeric.ccsFull(numeric.ccsLUPSolve(LUP,A)),1e-15); // Solve LUX = PA
OUT> [[1,0,0,0,0],
      [0,1,0,0,0],
      [0,0,1,0,0],
      [0,0,0,1,0],
      [0,0,0,0,1]]
IN> numeric.ccsLUP(A,0.4).P;
OUT> [0,2,1,3,4]
</pre>
The LUP decomposition uses partial pivoting and has an optional thresholding argument.
With a threshold of 0.4, the pivots are [0,2,1,3,4] (only rows 1 and 2 have been exchanged) instead of the
"full partial pivoting" order above which was [1,2,4,0,3]. Threshold=0 gives no pivoting
and threshold=1 gives normal partial pivoting. Note that a small or zero threshold can result in numerical
instabilities and is normally used when the matrix A is already in some order that minimizes fill-in.
<!-- Stress test:
<pre>
IN> result = "Sparse LUP Stress Test OK";
for(k=0;k<1000;++k) {
A = numeric.ccsSparse(numeric.random([10,10]));
LUP = numeric.ccsLUP(A);
foo = numeric.ccsFull(numeric.ccsDot(LUP.L,LUP.U));
PA = numeric.ccsFull(numeric.ccsGetBlock(A,LUP.P));
res = numeric.norminf(numeric.sub(foo,PA));
if(!isFinite(res) || res>1e-6) {
result = {
code: "Failed during 1000 sparse LUP",
k:k,A:A,LUP:LUP,res:res
};
break;
};
};
result;
OUT> "Sparse LUP Stress Test OK"
</pre>
-->

We also support arithmetic on CCS matrices:
<pre>
IN> A = numeric.ccsSparse([[1,2,0],[0,3,0],[0,0,5]]);
    B = numeric.ccsSparse([[2,9,0],[0,4,0],[-2,0,0]]);
    numeric.ccsadd(A,B);
OUT> [[0,2,4,5],
      [0,2,0,1,2],
      [3,-2,11,7,5]]
</pre>

We also have scatter/gather functions
<pre>
IN> X = [[0,0,1,1,2,2],[0,1,1,2,2,3],[1,2,3,4,5,6]];
    SX = numeric.ccsScatter(X);
OUT> [[0,1,3,5,6],
      [0,0,1,1,2,2],
      [1,2,3,4,5,6]]
IN> numeric.ccsGather(SX)
OUT> [[0,0,1,1,2,2],[0,1,1,2,2,3],[1,2,3,4,5,6]]
</pre>


<h1>Coordinate matrices</h1>

We also provide a banded matrix implementation using the coordinate encoding.<br><br>

LU decomposition:
<pre>
IN> lu = numeric.cLU([[0,0,1,1,1,2,2],[0,1,0,1,2,1,2],[2,-1,-1,2,-1,-1,2]])
OUT> {U:[[ 0, 0, 1, 1, 2 ],
         [ 0, 1, 1, 2, 2 ],
         [ 2, -1, 1.5, -1, 1.333]],
      L:[[ 0, 1, 1, 2, 2 ],
         [ 0, 0, 1, 1, 2 ],
         [ 1, -0.5, 1,-0.6667, 1 ]]}
IN> numeric.cLUsolve(lu,[5,-8,13])
OUT> [3,1,7]
</pre>
Note that <tt>numeric.cLU()</tt> does not have any pivoting.


<h1>Solving PDEs</h1>

The functions <tt>numeric.cgrid()</tt> and <tt>numeric.cdelsq()</tt> can be used to obtain a
numerical Laplacian for a domain.

<pre>
IN> g = numeric.cgrid(5)
OUT>
[[-1,-1,-1,-1,-1],
 [-1, 0, 1, 2,-1],
 [-1, 3, 4, 5,-1],
 [-1, 6, 7, 8,-1],
 [-1,-1,-1,-1,-1]]
IN> coordL = numeric.cdelsq(g)
OUT>
[[ 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8],
 [ 1, 3, 0, 0, 2, 4, 1, 1, 5, 2, 0, 4, 6, 3, 1, 3, 5, 7, 4, 2, 4, 8, 5, 3, 7, 6, 4, 6, 8, 7, 5, 7, 8],
 [-1,-1, 4,-1,-1,-1, 4,-1,-1, 4,-1,-1,-1, 4,-1,-1,-1,-1, 4,-1,-1,-1, 4,-1,-1, 4,-1,-1,-1, 4,-1,-1, 4]]
IN> L = numeric.sscatter(coordL); // Just to see what it looks like
OUT>
[[ 4, -1, , -1],
 [ -1, 4, -1, , -1],
 [ , -1, 4, , , -1],
 [ -1, , , 4, -1, , -1],
 [ , -1, , -1, 4, -1, , -1],
 [ , , -1, , -1, 4, , , -1],
 [ , , , -1, , , 4, -1],
 [ , , , , -1, , -1, 4, -1],
 [ , , , , , -1, , -1, 4]]
IN> lu = numeric.cLU(coordL); x = numeric.cLUsolve(lu,[1,1,1,1,1,1,1,1,1]);
OUT> [0.6875,0.875,0.6875,0.875,1.125,0.875,0.6875,0.875,0.6875]
IN> numeric.cdotMV(coordL,x)
OUT> [1,1,1,1,1,1,1,1,1]
IN> G = numeric.rep([5,5],0); for(i=0;i<5;i++) for(j=0;j<5;j++) if(g[i][j]>=0) G[i][j] = x[g[i][j]]; G
OUT>
[[ 0 , 0 , 0 , 0 , 0 ],
 [ 0 , 0.6875, 0.875 , 0.6875, 0 ],
 [ 0 , 0.875 , 1.125 , 0.875 , 0 ],
 [ 0 , 0.6875, 0.875 , 0.6875, 0 ],
 [ 0 , 0 , 0 , 0 , 0 ]]
IN> workshop.html('&lt;img src="'+numeric.imageURL(numeric.mul([G,G,G],200))+'" width=100 /&gt;');
OUT>
<img src="" width=100 />
</pre>

You can also work on an L-shaped or arbitrary-shape domain:
<pre>
IN> numeric.cgrid(6,'L')
OUT>
[[-1,-1,-1,-1,-1,-1],
 [-1, 0, 1,-1,-1,-1],
 [-1, 2, 3,-1,-1,-1],
 [-1, 4, 5, 6, 7,-1],
 [-1, 8, 9,10,11,-1],
 [-1,-1,-1,-1,-1,-1]]
IN> numeric.cgrid(5,function(i,j) { return i!==2 || j!==2; })
OUT>
[[-1,-1,-1,-1,-1],
 [-1, 0, 1, 2,-1],
 [-1, 3,-1, 4,-1],
 [-1, 5, 6, 7,-1],
 [-1,-1,-1,-1,-1]]
</pre>


<h1>Cubic splines</h1>

You can do some (natural) cubic spline interpolation:
<pre>
IN> numeric.spline([1,2,3,4,5],[1,2,1,3,2]).at(numeric.linspace(1,5,10))
OUT> [ 1, 1.731, 2.039, 1.604, 1.019, 1.294, 2.364, 3.085, 2.82, 2]
</pre>
For clamped splines:
<pre>
IN> numeric.spline([1,2,3,4,5],[1,2,1,3,2],0,0).at(numeric.linspace(1,5,10))
OUT> [ 1, 1.435, 1.98, 1.669, 1.034, 1.316, 2.442, 3.017, 2.482, 2]
</pre>
For periodic splines:
<pre>
IN> numeric.spline([1,2,3,4],[0.8415,0.04718,-0.8887,0.8415],'periodic').at(numeric.linspace(1,4,10))
OUT> [ 0.8415, 0.9024, 0.5788, 0.04718, -0.5106, -0.8919, -0.8887, -0.3918, 0.3131, 0.8415]
</pre>
Vector splines:
<pre>
IN> numeric.spline([1,2,3],[[0,1],[1,0],[0,1]]).at(1.78)
OUT> [0.9327,0.06728]
</pre>
Spline differentiation:
<pre>
IN> xs = [0,1,2,3]; numeric.spline(xs,numeric.sin(xs)).diff().at(1.5)
OUT> 0.07302
</pre>
Find all the roots:
<pre>
IN> xs = numeric.linspace(0,30,31); ys = numeric.sin(xs); s = numeric.spline(xs,ys).roots();
OUT> [0, 3.142, 6.284, 9.425, 12.57, 15.71, 18.85, 21.99, 25.13, 28.27]
</pre>


<h1>Fast Fourier Transforms</h1>
FFT and IFFT on numeric.T objects:
<pre>
IN> z = (new numeric.T([1,2,3,4,5],[6,7,8,9,10])).fft()
OUT> {x:[15,-5.941,-3.312,-1.688, 0.941],
      y:[40, 0.941,-1.688,-3.312,-5.941]}
IN> z.ifft()
OUT> {x:[1,2,3,4,5],
      y:[6,7,8,9,10]}
</pre>


<h1>Quadratic Programming (Alberto Santini)</h1>

The Quadratic Programming function <tt>numeric.solveQP()</tt> is based on <a href="https://github.com/albertosantini/node-quadprog">Alberto Santini's
quadprog</a>, which is itself a port of the corresponding
R routines.

<pre>
IN> numeric.solveQP([[1,0,0],[0,1,0],[0,0,1]],[0,5,0],[[-4,2,0],[-3,1,-2],[0,0,1]],[-8,2,0]);
OUT> { solution: [0.4762,1.048,2.095],
       value: [-2.381],
       unconstrained_solution:[ 0, 5, 0],
       iterations: [ 3, 0],
       iact: [ 3, 2, 0],
       message: "" }
</pre>


<h1>Unconstrained optimization</h1>

To minimize a function f(x) we provide the function <tt>numeric.uncmin(f,x0)</tt> where x0
is a starting point for the optimization.
Here are some demos from from Mor&eacute; et al., 1981:

<pre>
IN> sqr = function(x) { return x*x; };
    numeric.uncmin(function(x) { return sqr(10*(x[1]-x[0]*x[0])) + sqr(1-x[0]); },[-1.2,1]).solution
OUT> [1,1]
IN> f = function(x) { return sqr(-13+x[0]+((5-x[1])*x[1]-2)*x[1])+sqr(-29+x[0]+((x[1]+1)*x[1]-14)*x[1]); };
    x0 = numeric.uncmin(f,[0.5,-2]).solution
OUT> [11.41,-0.8968]
IN> f = function(x) { return sqr(1e4*x[0]*x[1]-1)+sqr(Math.exp(-x[0])+Math.exp(-x[1])-1.0001); };
    x0 = numeric.uncmin(f,[0,1]).solution
OUT> [1.098e-5,9.106]
IN> f = function(x) { return sqr(x[0]-1e6)+sqr(x[1]-2e-6)+sqr(x[0]*x[1]-2)};
    x0 = numeric.uncmin(f,[0,1]).solution
OUT> [1e6,2e-6]
IN> f = function(x) {
       return sqr(1.5-x[0]*(1-x[1]))+sqr(2.25-x[0]*(1-x[1]*x[1]))+sqr(2.625-x[0]*(1-x[1]*x[1]*x[1]));
    };
    x0 = numeric.uncmin(f,[1,1]).solution
OUT> [3,0.5]
IN> f = function(x) {
        var ret = 0,i;
        for(i=1;i<=10;i++) ret+=sqr(2+2*i-Math.exp(i*x[0])-Math.exp(i*x[1]));
         return ret;
    };
    x0 = numeric.uncmin(f,[0.3,0.4]).solution
OUT> [0.2578,0.2578]
IN> y = [0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,0.37,0.58,0.73,0.96,1.34,2.10,4.39];
    f = function(x) {
        var ret = 0,i;
        for(i=1;i<=15;i++) ret+=sqr(y[i-1]-(x[0]+i/((16-i)*x[1]+Math.min(i,16-i)*x[2])));
        return ret;
    };
    x0 = numeric.uncmin(f,[1,1,1]).solution
OUT> [0.08241,1.133,2.344]
IN> y = [0.0009,0.0044,0.0175,0.0540,0.1295,0.2420,0.3521,0.3989,0.3521,0.2420,0.1295,0.0540,0.0175,0.0044,0.0009];
    f = function(x) {
        var ret = 0,i;
        for(i=1;i<=15;i++)
        ret+=sqr(x[0]*Math.exp(-x[1]*sqr((8-i)/2-x[2])/2)-y[i-1]);
        return ret;
    };
    x0 = numeric.div(numeric.round(numeric.mul(numeric.uncmin(f,[1,1,1]).solution,1000)),1000)
OUT> [0.399,1,0]
IN> f = function(x) { return sqr(x[0]+10*x[1])+5*sqr(x[2]-x[3])+sqr(sqr(x[1]-2*x[2]))+10*sqr(x[0]-x[3]); };
    x0 = numeric.div(numeric.round(numeric.mul(numeric.uncmin(f,[3,-1,0,1]).solution,1e5)),1e5)
OUT> [0,0,0,0]
IN> f = function(x) {
        return (sqr(10*(x[1]-x[0]*x[0]))+sqr(1-x[0])+
                90*sqr(x[3]-x[2]*x[2])+sqr(1-x[2])+
                10*sqr(x[1]+x[3]-2)+0.1*sqr(x[1]-x[3])); };
    x0 = numeric.uncmin(f,[-3,-1,-3,-1]).solution
OUT> [1,1,1,1]
IN> y = [0.1957,0.1947,0.1735,0.1600,0.0844,0.0627,0.0456,0.0342,0.0323,0.0235,0.0246];
    u = [4,2,1,0.5,0.25,0.167,0.125,0.1,0.0833,0.0714,0.0625];
    f = function(x) {
        var ret=0, i;
        for(i=0;i<11;++i) ret += sqr(y[i]-x[0]*(u[i]*u[i]+u[i]*x[1])/(u[i]*u[i]+u[i]*x[2]+x[3]));
        return ret;
    };
    x0 = numeric.uncmin(f,[0.25,0.39,0.415,0.39]).solution
OUT> [ 0.1928, 0.1913, 0.1231, 0.1361]
IN> y = [0.844,0.908,0.932,0.936,0.925,0.908,0.881,0.850,0.818,0.784,0.751,0.718,
         0.685,0.658,0.628,0.603,0.580,0.558,0.538,0.522,0.506,0.490,0.478,0.467,
         0.457,0.448,0.438,0.431,0.424,0.420,0.414,0.411,0.406];
    f = function(x) {
        var ret=0, i;
        for(i=0;i<33;++i) ret += sqr(y[i]-(x[0]+x[1]*Math.exp(-10*i*x[3])+x[2]*Math.exp(-10*i*x[4])));
        return ret;
    };
    x0 = numeric.uncmin(f,[0.5,1.5,-1,0.01,0.02]).solution
OUT> [ 0.3754, 1.936, -1.465, 0.01287, 0.02212]
IN> f = function(x) {
        var ret=0, i,ti,yi,exp=Math.exp;
        for(i=1;i<=13;++i) {
            ti = 0.1*i;
            yi = exp(-ti)-5*exp(-10*ti)+3*exp(-4*ti);
            ret += sqr(x[2]*exp(-ti*x[0])-x[3]*exp(-ti*x[1])+x[5]*exp(-ti*x[4])-yi);
        }
        return ret;
    };
    x0 = numeric.uncmin(f,[1,2,1,1,1,1],1e-14).solution;
    f(x0)<1e-20;
OUT> true
</pre>
There are optional parameters to <tt>numeric.uncmin(f,x0,tol,gradient,maxit,callback)</tt>. The iteration stops when
the gradient or step size is less than the optional parameter <tt>tol</tt>. The <tt>gradient()</tt> parameter is a function that computes the
gradient of <tt>f()</tt>. If it is not provided, a numerical gradient is used. The iteration stops when
<tt>maxit</tt> iterations have been performed. The optional <tt>callback()</tt> parameter, if provided, is called at each step:
<pre>
IN> z = [];
    cb = function(i,x,f,g,H) { z.push({i:i, x:x, f:f, g:g, H:H }); };
    x0 = numeric.uncmin(function(x) { return Math.cos(2*x[0]); },
                        [1],1e-10,
                        function(x) { return [-2*Math.sin(2*x[0])]; },
                        100,cb);
OUT> {solution: [1.571],
      f: -1,
      gradient: [2.242e-11],
      invHessian: [[0.25]],
      iterations: 6,
      message: "Newton step smaller than tol"}
IN> z
OUT> [{i:0, x:[1 ], f:-0.4161, g: [-1.819 ] , H:[[1 ]] },
      {i:2, x:[1.909], f:-0.7795, g: [ 1.253 ] , H:[[0.296 ]] },
      {i:3, x:[1.538], f:-0.9979, g: [-0.1296 ] , H:[[0.2683]] },
      {i:4, x:[1.573], f:-1 , g: [ 9.392e-3] , H:[[0.2502]] },
      {i:5, x:[1.571], f:-1 , g: [-6.105e-6] , H:[[0.25 ]] },
      {i:6, x:[1.571], f:-1 , g: [ 2.242e-11] , H:[[0.25 ]] }]
</pre>


<h1>Linear programming</h1>

Linear programming is available:

<pre>
IN> x = numeric.solveLP([1,1], /* minimize [1,1]*x */
                        [[-1,0],[0,-1],[-1,-2]], /* matrix of inequalities */
                        [0,0,-3] /* right-hand-side of inequalities */
                        );
    numeric.trunc(x.solution,1e-12);
OUT> [0,1.5]
</pre>

The function <tt>numeric.solveLP(c,A,b)</tt> minimizes dot(c,x) subject to dot(A,x) <= b.
The algorithm used is very basic. For alpha>0, define the ``barrier function''
f0 = dot(c,x) - alpha*sum(log(b-A*x)). The function numeric.solveLP calls numeric.uncmin
on f0 for smaller and smaller values of alpha. This is a basic ``interior point method''.

We also handle infeasible problems:
<pre>
IN> numeric.solveLP([1,1],[[1,0],[0,1],[-1,-1]],[-1,-1,-1])
OUT> { solution: NaN, message: "Infeasible", iterations: 5 }
</pre>

Unbounded problems:
<pre>
IN> numeric.solveLP([1,1],[[1,0],[0,1]],[0,0]).message;
OUT> "Unbounded"
</pre>

With an equality constraint:
<pre>
IN> numeric.solveLP([1,2,3], /* minimize [1,2,3]*x */
                    [[-1,0,0],[0,-1,0],[0,0,-1]], /* matrix A of inequality constraint */
                    [0,0,0], /* RHS b of inequality constraint */
                    [[1,1,1]], /* matrix Aeq of equality constraint */
                    [3] /* vector beq of equality constraint */
                    );
OUT> { solution:[3,1.685e-16,4.559e-19], message:"", iterations:12 }
</pre>

<!--
<pre>
IN> n = 7; m = 3;
for(k=0;k<10;++k) {
A = numeric.random([n,n]);
x = numeric.rep([m],1).concat(numeric.rep([n-m],0));
b = numeric.dot(A,x);
J = numeric.diag(numeric.rep([n],-1));
B = numeric.blockMatrix([[A , J ],
[numeric.neg(A) , J ],
[numeric.rep([n,n],0), J ]]);
c = b.concat(numeric.neg(b)).concat(numeric.rep([n],0));
d = numeric.rep([n],0).concat(numeric.rep([n],1));
y = numeric.solveLP(d,B,c).solution;
y.length = n;
foo = numeric.norm2(numeric.sub(x,y));
if(foo>1e-10) throw new Error("solveLP test fails: "+numeric.prettyPrint({A:A,x:x}));
}
"solveLP tests pass"
OUT> "solveLP tests pass"
</pre>
-->

<!--
Bug found by Michael J.
<pre>
IN> numeric.solveLP([1,2,3], /* minimize [1,2,3]*x */
[[1, 0, 0], [0, 1, 0], [0, 0, 1],[-1,0,0],[0,-1,0],[0,0,-1]], /* matrix A of inequality constraint */
[1,1,1,0,0,0], /* RHS b of inequality constraint */
[[1,1,1]], /* matrix Aeq of equality constraint */
[3] /* vector beq of equality constraint */
);
OUT> { solution:NaN, message:"Infeasible", iterations:10 }
</pre>
-->

<h1>Solving ODEs</h1>

The function <tt>numeric.dopri()</tt> is an implementation of the Dormand-Prince-Runge-Kutta integrator with
adaptive time-stepping:
<pre>
IN> sol = numeric.dopri(0,1,1,function(t,y) { return y; })
OUT> { x: [ 0, 0.1, 0.1522, 0.361, 0.5792, 0.7843, 0.9813, 1],
       y: [ 1, 1.105, 1.164, 1.435, 1.785, 2.191, 2.668, 2.718],
       f: [ 1, 1.105, 1.164, 1.435, 1.785, 2.191, 2.668, 2.718],
       ymid: [ 1.051, 1.134, 1.293, 1.6, 1.977, 2.418, 2.693],
       iterations:8,
       events:,
       message:""}
IN> sol.at([0.3,0.7])
OUT> [1.35,2.014]
</pre>
The return value <tt>sol</tt> contains the x and y values of the solution.
If you need to know the value of the solution between the given x values, use the function
<tt>sol.at()</tt>, which uses the extra information contained in <tt>sol.ymid</tt> and <tt>sol.f</tt> to
produce approximations between these points.
The integrator is also able to handle vector equations. This is a harmonic oscillator:
<pre>
IN> sol = numeric.dopri(0,10,[3,0],function (x,y) { return [y[1],-y[0]]; });
    sol.at([0,0.5*Math.PI,Math.PI,1.5*Math.PI,2*Math.PI])
OUT> [[ 3, 0],
      [ -9.534e-8, -3],
      [ -3, 2.768e-7],
      [ 3.63e-7, 3],
      [ 3, -3.065e-7]]
</pre>
Van der Pol:
<pre>
IN> numeric.dopri(0,20,[2,0],function(t,y) { return [y[1], (1-y[0]*y[0])*y[1]-y[0]]; }).at([18,19,20])
OUT> [[ -1.208, 0.9916],
      [ 0.4258, 2.535],
      [ 2.008, -0.04251]]
</pre>
You can also specify a tolerance, a maximum number of iterations and an event function. The integration stops if
the event function goes from negative to positive.
<pre>
IN> sol = numeric.dopri(0,2,1,function (x,y) { return y; },1e-8,100,function (x,y) { return y-1.3; });
OUT> { x: [ 0, 0.0181, 0.09051, 0.1822, 0.2624],
       y: [ 1, 1.018, 1.095, 1.2, 1.3],
       f: [ 1, 1.018, 1.095, 1.2, 1.3],
       ymid: [ 1.009, 1.056, 1.146, 1.249],
       iterations: 5,
       events: true,
       message: "" }
</pre>
Note that at <tt>x=0.1822</tt>, the event function value was <tt>-0.1001</tt> while at <tt>x=0.2673</tt>, the event
value was <tt>6.433e-3</tt>. The integrator thus terminated at <tt>x=0.2673</tt> instead of continuing until the end
of the integration interval.<br><br>

Events can also be vector-valued:
<pre>
IN> sol = numeric.dopri(0,2,1,
                        function(x,y) { return y; },
                        undefined,50,
                        function(x,y) { return [y-1.5,Math.sin(y-1.5)]; });
OUT> { x: [ 0, 0.2, 0.4055],
       y: [ 1, 1.221, 1.5],
       f: [ 1, 1.221, 1.5],
       ymid: [1.105, 1.354],
       iterations: 2,
       events: [true,true],
       message: ""}
</pre>

<!--
<pre>
IN> D = numeric.identity(8); d = numeric.rep([8],0); A = [[1, 1, -1, 0, 0, 0, 0, 0, 0, 0],[-1, 1, 0, 1, 0, 0, 0, 0, 0, 0],[1, 1, 0, 0, -1, 0, 0, 0, 0, 0],[-1, 1, 0, 0, 0, 1, 0, 0, 0, 0],[1, 1, 0, 0, 0, 0, -1, 0, 0, 0],[-1, 1, 0, 0, 0, 0, 0, 1, 0, 0],[1, 1, 0, 0, 0, 0, 0, 0, -1, 0],[-1, 1, 0, 0, 0, 0, 0, 0, 0, 1]]; b = [1, 1, -1, 0, -1, 0, -1, 0, -1, 0]; numeric.solveQP(D,d,A,b,undefined,2)
OUT> { solution: [0.25,0,0.25,0,0.25,0,0.25,0],
value: [0.125],
unconstrained_solution:[0,0,0,0,0,0,0,0],
iterations: [3,0],
iact: [1,2,0,0,0,0,0,0,0,0],
message: ""}
IN> numeric.imageURL(numeric.rep([3],[[1,2],[3,4]]));
OUT> ""
IN> numeric.gradient(function(x) { return Math.exp(Math.sin(x[0])*(x[1]+2)); },[1,2]);
OUT> [62.59,24.37]
</pre>
-->


<h1>Seedrandom (David Bau)</h1>

The object <tt>numeric.seedrandom</tt> is based on
<a href="http://davidbau.com/archives/2010/01/30/random_seeds_coded_hints_and_quintillions.html">David Bau's <tt>seedrandom.js</tt></a>.
This small library can be used to create better pseudorandom numbers than <tt>Math.random()</tt> which can
furthermore be "seeded".
<pre>
IN> numeric.seedrandom.seedrandom(3); numeric.seedrandom.random()
OUT> 0.7569
IN> numeric.seedrandom.random()
OUT> 0.6139
IN> numeric.seedrandom.seedrandom(3); numeric.seedrandom.random()
OUT> 0.7569
</pre>
For performance reasons, <tt>numeric.random()</tt> uses the default <tt>Math.random()</tt>. If you want to use
the seedrandom version, just do <tt>Math.random = numeric.seedrandom.random</tt>. Note that this may slightly
decrease the performance of all <tt>Math</tt> operations.


<br><br><br>

Something went wrong with that request. Please try again.