
Intro to
programming

in Go

Vladimir Alekseichenko

Agenda

• History

• What is Go?

• What is not Go?

• Concurrency

• Organizations using Go

• Examples

Get ready

http://talks.golang.org/2013/advconc.slide#3

Introduction

• Go is a concurrent open source programming
language developed at Google.

• Combines native compilation and static types
with a lightweight dynamic feel.

• Fast, fun, and productive.

http://talks.golang.org/2012/go1.slide#2

History

• Design began in late 2007.

• Became open source in November 2009.

Language stable as of Go 1,
early 2012.

Go's mascot is a gopher

designed by Renée French.

What is Go?

Go is a modern, general
purpose language.

http://talks.golang.org/2011/Real_World_Go.pdf

What is Go?

• Native code generation (compiled)

• Statically typed

• Composition via interfaces

• Memory safe

• Garbage collected

• Native concurrency support

• Excellent standard library

• Great tools

http://talks.golang.org/2012/go1.slide#3

What is not Go?

• No type inheritance

• No method* or operator overloading

• No circular dependencies among packages

• No pointer arithmetic

• No assertions

• No generic programming

* like in C# or Java .

http://en.wikipedia.org/wiki/Go_(programming_language)

Big hardware

http://www.dailymail.co.uk/sciencetech/article-2219188/Inside-Google-pictures-gives-look-8-vast-data-centres.html

Big software

• C++ (mostly) for servers, plus lots of Java and
Python

• thousands of engineers

• gazillions of lines of code

• distributed build system

• one tree

http://talks.golang.org/2012/splash.slide

The reason for Go

Goals:

• eliminate slowness

• eliminate clumsiness

• improve effectiveness

• maintain (even improve) scale

http://talks.golang.org/2012/splash.slide

Pain

https://www.simple-talk.com/blogs/2008/01/08/the-pain-of-software-installation/

Pain

• slow builds

• uncontrolled dependencies

• each programmer using a different subset of
the language

• poor program understanding (documentation, etc.)

• duplication of effort

• cross-language builds

• …
http://talks.golang.org/2012/splash.slide

Primary considerations

Must work at scale:

• large programs

• large teams

• large number of dependencies

• Must be familiar, roughly C-like

http://talks.golang.org/2012/splash.slide

Modernize

• The old ways are old.

Go should be:

• suitable for multicore machines

• suitable for networked machines

• suitable for web stuff

http://talks.golang.org/2012/splash.slide

Install Go

golang.org/doc/install

Install from binary distributions or build from
source 32- and 64-bit x86 and ARM processors

Windows, Mac OS X, Linux, and FreeBSD.

Tools

• go build hello.go # Compile

• go run hello.go # Compile-and-go. (Ha!)

• go build package # Build everything in directory (and deps)

• go install # Install everything in dir and (and deps)

• go test archive/zip # Compile and run unit tests for package

http://talks.golang.org/2012/go1.slide#36

The go tool and remote repositories

Go tool downloads and installs all dependencies,
transitively.

• go get code.google.com/p/myrepo/mypack

And to use the package in Go source:

• import "code.google.com/p/myrepo/mypack"

http://talks.golang.org/2012/go1.slide#37

Concurrency

Programming as the
composition of independently

executing processes.

(Processes in the general sense, not Linux
processes. Famously hard to define.)

http://talks.golang.org/2012/waza.slide

Go supports concurrency

Go provides:

• concurrent execution (goroutines)

• synchronization and messaging (channels)

• multi-way concurrent control (select)

http://talks.golang.org/2012/waza.slide

http://talks.golang.org/2012/waza.slide

Our problem

Move a pile of obsolete language manuals to the
incinerator.

With only one gopher this will take too long.

http://talks.golang.org/2012/waza.slide

More gophers!

More gophers are not enough; they need more
carts.

http://talks.golang.org/2012/waza.slide

More gophers and more carts

This will go faster, but there will be bottlenecks
at the pile and incinerator.

Also need to synchronize the gophers.

http://talks.golang.org/2012/waza.slide

Double everything

Remove the bottleneck; make them really
independent.

This will consume input twice as fast.

http://talks.golang.org/2012/waza.slide

Concurrent composition

The concurrent composition of two gopher
procedures.

http://talks.golang.org/2012/waza.slide

Concurrent composition

• This design is not automatically parallel!

• What if only one gopher is moving at a time?
Then it's still concurrent (that's in the design),
just not parallel.

• However, it's automatically parallelizable!

http://talks.golang.org/2012/waza.slide

Another design

Three gophers in action, but with likely delays.
Each gopher is an independently executing

procedure, plus coordination (communication).

http://talks.golang.org/2012/waza.slide

Finer-grained concurrency

Add another gopher procedure to return the
empty carts.

Four gophers in action for better flow, each
doing one simple task.

http://talks.golang.org/2012/waza.slide

Concurrent procedures

Four distinct gopher procedures:

• load books onto cart

• move cart to incinerator

• unload cart into incinerator

• return empty cart

Different concurrent designs enable different
ways to parallelize.

http://talks.golang.org/2012/waza.slide

More parallelization!

http://talks.golang.org/2012/waza.slide

Or maybe no parallelization at all

Keep in mind, even if only one gopher is active
at a time (zero parallelism), it's still a correct and

concurrent solution.

http://talks.golang.org/2012/waza.slide

Another design

Two gopher procedures, plus a staging pile.

http://talks.golang.org/2012/waza.slide

Parallelize the usual way

Run more concurrent procedures to get more
throughput.

http://talks.golang.org/2012/waza.slide

Or a different way

Bring the staging pile to the multi-gopher
concurrent model:

http://talks.golang.org/2012/waza.slide

Full on optimization

Use all our techniques.

Sixteen gophers hard at work!

http://talks.golang.org/2012/waza.slide

Back to computing

In our book transport problem, substitute:

• book pile => web content

• gopher => CPU

• cart => marshaling, rendering, or networking

• incinerator => proxy, browser, or other
consumer

http://talks.golang.org/2012/waza.slide

Goroutines are not threads

• They're a bit like threads, but they're much
cheaper.

• Goroutines are multiplexed onto OS threads
as required.

• When a goroutine blocks, that thread blocks
but no other goroutine blocks.

http://talks.golang.org/2012/waza.slide

Concurrency: philosophy

Think about the concurrency issues that matter:

Don’t communicate by sharing
memory.

Instead, share memory by
communicating.

http://talks.golang.org/2011/Real_World_Go.pdf

Organizations using Go

• Google

• bit.ly

• CloudFlare

• Canonical

• Heroku

• The BBC

• …

http://en.wikipedia.org/wiki/Go_(programming_language)

The first example

Hello world!

Hello world!

Hello world!

The second example

Hello web server

Hello web server

Hello web server

Hello web server

Hello web server

Hello web server

Hello WebSocket

http://talks.golang.org/2012/chat.slide#29

Hello WebSocket

http://talks.golang.org/2012/chat.slide#29

Using the http and
websocket packages

http://talks.golang.org/2012/chat.slide#29

Using the http and
websocket packages

http://talks.golang.org/2012/chat.slide#29

Using the http and
websocket packages

http://talks.golang.org/2012/chat.slide#29

The third example

Goroutines

Goroutines are lightweight
threads that are managed by

the Go runtime.

To run a function in a new goroutine, just put
"go" before the function call.

http://talks.golang.org/2012/chat.slide#14

A boring function

http://talks.golang.org/2012/concurrency.slide

Slightly less boring

http://talks.golang.org/2012/concurrency.slide

Running it

http://talks.golang.org/2012/concurrency.slide

Ignoring it

http://talks.golang.org/2012/concurrency.slide

Ignoring it

http://talks.golang.org/2012/concurrency.slide

Ignoring it a little less

http://talks.golang.org/2012/concurrency.slide

I'm listening.
boring! 0
boring! 1
boring! 2
boring! 3
boring! 4
boring! 5
You're boring; I'm leaving.

The fourth example

Channels

A channel in Go provides a
connection between two

goroutines, allowing them to
communicate.

http://talks.golang.org/2012/concurrency.slide

Simple concurency
(use channel)

out in

Simple concurency
(use channel)

out

Simple concurency
(use channel)

out

Simple concurency
(use channel)

in

Simple concurency
(use channel)

in

Channels

http://talks.golang.org/2012/waza.slide

Select

http://talks.golang.org/2012/waza.slide

Go really supports concurrency

• It's routine to create thousands of goroutines
in one program. (Once debugged a program
after it had created 1.3 million.)

• Stacks start small, but grow and shrink as
required.

Goroutines aren't free, but they're very cheap.

http://talks.golang.org/2012/waza.slide

The fifth example

Flag

http://talks.golang.org/2012/simple.slide

Flag

http://talks.golang.org/2012/simple.slide

Flag

http://talks.golang.org/2012/simple.slide

Flag

http://talks.golang.org/2012/simple.slide

go run flag.go –message Another –delay 10s

Last but not least

http://everydayblues.everydayblues.net/2011/04/27/last-but-not-least/

tour.golang.org

In summary

• Go was designed by and for people who
write—and read and debug and maintain—
large software systems.

• Go's purpose is not research into
programming language design.

• Go's purpose is to make its designers'
programming lives better.

http://talks.golang.org/2012/splash.slide

Examples

All examples of this presentation

(and even more) are available at

https://github.com/slon1024/intro_to_go

Resources

• Effective Go (golang.org/doc/effective_go.html).

• An Introduction to Programming in Go by Caleb
Doxsey (golang-book.com)

• Learning Go by Miek Gieben (miek.nl/files/go)

• Programming in Go: Creating Applications for the 21st Century

(Developer's Library) by Mark Summerfield
• The Way To Go: A Thorough Introduction To The Go

Programming Language by Ivo Balbaert
• The Go Programming Language

(http://www.youtube.com/watch?v=rKnDgT73v8s)

• Concurrency is not Parallelism by Rob Pike

