Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 

README.md

Introduction

This repository is the PyTorch code for the paper Decoupled Parallel Backpropagation with Convergence Guarantee" by Zhouyuan Huo, Bin Gu, Qian Yang and Huang, Heng, ICML 2018.

For any question or suggestions, feel free to contact zhouyuan.huo@pitt.edu

Dependencies

  • Python 3.6.2 (Anaconda)
  • PyTorch 0.3.1
  • CUDA 8.0

Run

Clone and cd into the repo directory, run:

python main.py ./data/cifar.python --dataset cifar10 --arch resnet_ddg --epochs 300 --learning_rate 0.01 --schedule 150 225 --gammas 0.1 0.1 --batch_size 128 --manualSeed 2 --depth 110 --splits 2

Result

Experimental results for optimizing ResNet110 on CIFAR10 using DDG.

Note that to obtain the speedup in the paper, the code should be run in a machine with 4 GPUs.

Citation

@article{huo2018decoupled,
  title={Decoupled Parallel Backpropagation with Convergence Guarantee},
  author={Huo, Zhouyuan and Gu, Bin and Yang, Qian and Huang, Heng},
  journal={arXiv preprint arXiv:1804.10574},
  year={2018}
}

About

A PyTorch implementation of the paper "Decoupled Parallel Backpropagation with Convergence Guarantee"

Resources

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.