
Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 1 of 17 23 March 2015

Modelling Demand in Public Transport in

SimMobility: Implementation

Specifications

Author: Tan Rui

Status: Draft

Version: 0.8

Date: 3/23/2015

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 2 of 17 23 March 2015

TABLE OF CONTENTS

Table of Contents .. 2

0 Document Control .. 3

0.1 Summary ... 3

0.2 Document History .. 3

0.3 References .. 3

0.4 Distribution .. 4

0.5 Quality Assurance ... 4

1 Introduction .. 5

2 Implementation overview ... 5

3 Network Data Model .. 6

3.1 Input Data .. 6

4 Implementing path Choice set generation methods .. 8

4.1 Desired Path format ... 8

4.2 Labelling Approach .. 8

4.2.1 Pseudo code .. 8

4.3 Link Elimination Approach ... 10

4.3.1 Pseudo code .. 10

4.4 K shortest Path Approach .. 11

4.4.1 Pseudo code .. 11

4.5 Simulation Approach ... 12

4.5.1 Pseudo code .. 12

5 Computing path attributes .. 13

5.1 Pseudo code for Computing Total In-Vehicle Time, Total Walking Time. Total Waiting

Time, Total Number of Transfers, total distance .. 13

5.2 Pseudo code for Computing TotalCost .. 14

5.3 Pseudo code for Computing Path-Size .. 15

6 Route Choice Model .. 17

6.1 OD Path selection probability: ... 17

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 3 of 17 23 March 2015

0 DOCUMENT CONTROL

0.1 Summary

This document is the implementation specifications for modelling demand in DynaMIT 2.0

and SimMobility mid-term.

0.2 Document History

Version Date Author Changes since last version

0.1 10 Mar 2014 Rui Tan First Draft

0.2 17 Mar 2014 Rui Tan

Correct description error in Table 5-R_service_lines

Added Filtering criteria in Section 4

Correct error-code in Section 4.1 Desired Path Format

Added weight specification for each Label in terms of edge
attributes in Section 4.2.1 Pseudo code for Labeling
Approach

0.3 24 Mar 2014 Rui Tan Updated Link Elimination approach in Section 4.3

0.4 02 Apr 2014 Rui Tan
Updated K shortest path approach in section 4.4
Updated Simulation Approach in Section 4.5

0.5 02 Jun 2014 Rui Tan
Added Section 5: Computing Path Attributes

Added Section 6: Route Choice Model

0.6
17 Sep
2014

Rui Tan

Added Section 4 : Implementing stop pair choice set
Updated Section 6 to include computing access walk and
egress walk.
Updated Section 7 to include stop-pair utility and stop pair
selection probability.
Updated Introduction and Implementation overview

0.7 27 Jan 2015 Rui Tan

Updated section 1 and Section 2
Updated Section 3: Network Data Model – new data model is
described which contains access and egress links from origin
nodes and destination nodes to public transport stops/stations
Updated Section 4: Implementing choice set generation with
respect to new network data model
Updated Section 5: Computing path Attributes based on new
network data model and new route choice model
Updated Section 6: Route choice Model – multi-mode path
selection.
Removed Stop Pair selection.

0.8 23 Mar 2015 Rui Tan

Updated Section 3 for input data. Corrected table captions
and added unites for edge attributes
Updated Section 4.2 Labeling Approach with better
explanation and cost function
Updated 4.3 Link Elimination approach (The same with
private side)
Added 4.6 Path Feasibility Check

0.3 References

[1]“Tech_Specs_Public_Transport_Demand_DynaMIT_SimMobility”, version 0.4

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 4 of 17 23 March 2015

[2]Yen, J. Y. (1971). Finding the k shortest loopless paths in a network. management
Science, 17(11), 712-716.

[3]Tan, Rui; Robinson, S; Lee, D.H.; Ben-Akiva, M (2014) Evaluation of Choice Set

Generation Algorithms for Modeling Route Choice with Smart Card Data in Large-Scale

Public Transport Network.

0.4 Distribution

Document distributions will be recorded here.

0.5 Quality Assurance

Step Description Undertaken By Date Remarks

1 Quality Review

2 Project Manager

3 Executive
Review

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 5 of 17 23 March 2015

1 INTRODUCTION
The purpose of the Implementation specification is to explain the key data model and

implementation details for the demand models in modelling transport demand to a sufficient

level that:

 A software programmer is able to code in Simmobility framework with reference to this

document.

 The modeller is able to verify that what is being coded is what is required.

This document is arranged as follows. Section 2 provides an overview of this document to.

Section3 specifies the network data model. Section 4 specifies the OD path set generation

methods in detail. Section 5 will describe how to compute path attributes for the OD path

choice sets. Section 6 explains the implementation of route choice model. Section 7 will

describe the departure time choice model, followed by section 8 describing the en-route

choice model and section 9 will explain the day-to-day learning model.

2 IMPLEMENTATION OVERVIEW
Figure 1 illustrates the necessary blocks for implementation of public transport demand

models.

Figure 1: Implementation overview of public transport demand models

1
•Generate Public transport network

2
• Implement multi-mode path Choice set generation methods

3
•Generate path choice sets for pre-day ODs

4
• Implement Route choice model

5
• Implement Departure time Model

6
• Implement en-route choice model

7
• Implement day-to-day learning Model

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 6 of 17 23 March 2015

3 NETWORK DATA MODEL

3.1 Input Data

The Network data used is based on Google Transit Network Data. It consists information on

stops and service line schedules including trains (MRT, LRT) and buses.

All_nodes.csv file contains all Simmobility nodes, bus stops, MRT/LRT stations. They are

having the following format as listed inTable 1.

Variable Description

Stop_id stop id for stops as specified by LTA. Examples: “NS27”,
“CC15/NS17” for train stations; “14429”, for bus stops,
“N_11456” for simmobility nodes.

Note: For SimMobility Nodes, it is having the format of “N_” +
the nodeId assigned to it in pre-day. Such modification is
needed to avoid duplicated stop_id with bus stop_id

Stop_code stop code for stops as specified by LTA. Examples: “NS27”,
“CC15/NS17”

Stop_name Name of stops as specified by LTA. Examples: “Marina Bay”

Stop_desc Description of stops, usually the street where the stop is
located. Example: “Marina Street”

Stop_lat Latitude of stops. Example: 1.2761

Stop_lon Longitude of stops. Example: 103.85467

stopType #---stopType:

#-----------0 Simmobility nodes (origin/dest)

#-----------1 Bus Stops

#-----------2 MRT/LRT Stations
Table 1: Data format for nodes including MRT/LRT stations and bus stops

Train service schedule information and bus services schedule information is extracted from

the following data:

Variable Description

trip_id Service trip id. Example “100_saturday_1-S”

Arrival_time Scheduled arrival time at the specified stop in stop_id.
Example: “05:30:00”

Departure_time Scheduled departure time at the specified stop in stop_id.
Example: “05:30:00”

Stop_id Stop id for the current stop along service line as specified in
trip_id. Example “66009”

Stop_sequence The sequence number for current stop as specified in stop_id
along the service line as specified in trip_id

Table 2: Data format for train service lines and bus service lines

All_links.csv file contains all edges that links up Simmobility nodes, bus stops, and MRT/LRT

stations. They are having the following format as listed in .

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 7 of 17 23 March 2015

The final edges are having the following format:

Variable Description

start_stops Stop id for the starting vertex

end_stops Stop_id for the ending vertex

r_type type of current edge. Example: “Bus”, “LRT”, “Walk”, "Shuttle
bus", "Cycle", and etc

road_Index Index for road type: 0 for Bus, 1 for MRT/LRT, 2 for Walk

road_edge_id Strings of passing road segments by current edge as specified
in edge_id. Example:”4/15/35/43”, each number corresponds to
a road segment between two adjacent stops along service
lines. Road_edge_id containing single “edge_id” are referring to
the road segment between two adjacent stops along service
lines as specified in R_service_lines. Road_edge_id containing
more than 1 “edge_id” are virtual edges representing traversing
the edges sequentially without a transfer in between.

r_service_lines if the edge is a route segement, it contains services
line/direction that travelling on this route segment. If this edge is
a walking leg, it is string “Walk”

edge_id Id for current edge

link_travel_time Estimated travel time on current edge. If it is a transit leg such
as RTS or Bus, it is the estimated in-vehicle travel time on
current route segment. If it is a walking leg, it is the estimated
walking time on current walking leg. The unit is in seconds.

transit_time Estimated travel time on transit legs for bus and MRT/LRT. It is
extracted from google schedule files. The unit is in seconds.

walk_time Estimated walk time for walk legs. It is estimated based on
direct distance and 4km/h walking speed. The unit is in
seconds.

wait_time Estimated waiting time to embark on current edge. Data
obtained from scheduled service line information. The unit is in
seconds.

transfer_penalty Transfer penalty-used to impose penalty on transfers for
shortest path searching which assumes path cost is the addition
of edge attributes. The unit is in seconds.

day_transit_time Estimated transit time for buses and MRT/LRT in day time.

Night bus services will have very large value in this column. The
unit is in seconds.

dist Estimated distance from travel time table. The unit is in km.

Table 3: Edge Data format for SimMobility network

Note that the edge here is corresponding to both the route segments and walking legs as

defined in Reference [1], section 5.2.

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 8 of 17 23 March 2015

4 IMPLEMENTING PATH CHOICE SET GENERATION METHODS
Four choice set generation methods will be implemented, and there are: Labelling approach,

Link Elimination Approach, K shortest Paths Approach and Simulation Approach. The paths

will be generated for each SimMobility OD pairs.

4.1 Desired Path format

As the shortest paths generated at this step will be subsequently sent to supply side for

simulation, the desired path format is a list of transfer points along the path, starting from the

origin point and ends at the destination point.

The desired paths choice set 𝑃𝑆𝑠𝑆𝑡 for OD pair {𝑆𝑠,𝑆𝑡} contains set of paths specified in the

following format:

𝑝𝑖 = {𝑆𝑠 , 𝑆1
𝑖 , 𝑆2

𝑖 , 𝑆3
𝑖 ,… . . 𝑆𝑄𝑘

𝑖 ,𝑆𝑡}

Where 𝑝𝑖 is the ith path in 𝑃𝑆𝑠𝑆𝑡 , 𝑆𝑠 is the starting stop, 𝑆1
𝑖 ,𝑆2

𝑖 ,𝑆3
𝑖 ,… . .𝑆𝑄𝑘

𝑖 are the transfer

nodes in sequence where 𝑄𝑘 denotes the number of the last transfer node before reaching

ending stop 𝑆𝑡.

A necessary conversion from the generated path format by embedded shortest path search

algorithm to the desired format is needed.

4.2 Labelling Approach

Labeling approach searches shortest paths based on different cost functions as defined as

“Labels”. In current implementation, the following labels can be included.

Labels Label Description

1 Minimal total in-vehicle travel time
2 Minimal number of transfers
3 Minimal walking distance
4 Maximized travel on MRT
5 Maximized travel on Bus
6 Minimal waiting time at transfers
7 Minimal total travel time1 (in-vehicle +waiting +walking)
8 Minimal total travel time 2(in-vehilce+10waiting+5walking)
9 Minimal total travel time 3(in-vehilce+10waiting+10walking)

10 Minimal total travel time 4(in-vehilce+10waiting+20walking)
Table 4: Labels for implementation

4.2.1 Pseudo code

Below is an example of pseudo code for labeling approach:

Initialization:

 Searched Paths Q=empty.

 Search Index i=1

Procedure:

Step 1: Generate cost function of label i,

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 9 of 17 23 March 2015

Different cost functions for different labels could be realized by using the

same cost function but varing the edge attributes. Cost = day_transit_time

+ walk_time + wait_time + transfer_penalty. Edge attributes are updated as

follows to find different paths: (Note that, when searching a path for a

different label, always reset the temp_links to origin links: All_links.)

Label 1. Minimal total in-vehicle travel time:

 temp_links[, walk_time:=0L]

 temp_links[,wait_time:=0L]

Label 2. Minimal number of transfers

 temp_links[, day_transit_time:=0L]

 temp_links[, walk_time:=0L]

 temp_links[, transfer_penalty:=1L]

 temp_links[,wait_time:=0L]

Label 3. Minimal walking distance

temp_links[r_type=="Walk", walk_time:=Big_Value]

Label 4. Maximized travel on MRT

temp_links[r_type!="RTS",transfer_penalty:=Big_Value]

Label 5. Maximized travel on Bus

temp_links[r_type!="Bus",transfer_penalty:=Big_Value]

Label 6. Minimal waiting time at transfers

 temp_links[, day_transit_time:=0L]

 temp_links[, walk_time:=0L]

Label 7. Minimal total travel time1 (in-vehicle +waiting +walking)

Label 8. Minimal total travel time2 (in-vehicle +10waiting +5walking)

 temp_links[, wait_time:=10L*wait_time]

 temp_links[, walk_time:=5L*walk_time]

Label 9. Minimal total travel time3 (in-vehicle +5waiting +5walking)

 temp_links[, wait_time:=10L*wait_time]

 temp_links[, walk_time:=10L*walk_time]

Label 10. Minimal total travel time4 (in-vehicle +10waiting +20walking)

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 10 of 17 23 March 2015

 temp_links[, wait_time:=10L*wait_time]

 temp_links[, walk_time:=20L*walk_time]

 Step 2: Search shortest path p_i based on current cost function

 Step 3: If p_i does not exist in Q, Q=Union{Q, p_i)

Step 4: Increment I and check whether stop criteria has been met

Stop Criteria:

 I>10

4.3 Link Elimination Approach

Link Elimination algorithm searches alternative paths by eliminating edges along the found

paths. During the search for the least cost path it is assumed that people will always chose

the current least cost path given the current eliminated network conditions.

edges along the first shortest path i, has been eliminated once.

4.3.1 Pseudo code

Below is an example of pseudo code for Link Elimination approach:

Initialization:

Cost function = day_transit_time+transfer_penalty+wait_time + walk_time

 Searched Paths Q=empty.

 Search Index i=1

Procedure:

Step 1: search shortest path on network,denote it as path p_i, update Q=union(Q,

p_i)

 Step 2: for each edge e along shorest path path p_i, eliminate this edge

Step 3: search shortest path on eliminated network, denote the found path as p_j,

update Q=union(Q, p_j)

Step 4, resume network. and check whether stop criteria has been met. If no, go

back to Step 2

Stop Criteria:

 All edges along the initial shortest path p_i has been eliminated once.

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 11 of 17 23 March 2015

4.4 K shortest Path Approach

The K-shortest path algorithm of reference 2- Yen (1971) is adopted in this paper, with the

following modifications to make it suitable for multimodal PT network: 1) instead of

comparing node sequences, it has been modified to compare link sequences for determining

links to eliminate, as parallel links are existing in our PT network; K could be set to 30 as the

maximum size of observed choice sets is only 15 from the smart card data.

4.4.1 Pseudo code

Initialization:

Cost function = day_transit_time+transfer_penalty+wait_time + walk_time

Search shortest path p_1,

Searched Path Q={p_1}

temp paths list B={empty}

Number of Paths limit K,

 Search Index k=1

Procedure:

 Step 1:Increment k-Search for k-th shortest path:

Identify edge sequences to compare from p_(k-1). Denote edges in p_(k-1) as

edge sequence{e_1, e_2, e_3,….e_q(k-1)} where e_q(k-1) is the SECOND last edge

in p_(k-1) in sequence. q(k-1) is the [number of edges in p_(k-1) -1]

 Initial search

a) Eliminate first edge as in {p_1, p_2,…p_(k-1)} from the network

b) Search for shortest path, denote as p_temp, if p_temp does not exist

in Q, or B, B=union{B, p_temp}. Otherwise, do nothing.

 If q(k-1)>=1, start subsequent search:

For i in 1: q(k-1)

{

a) check whether the sub-path {e_1, e_2,…,e_i} coincides with sub-path

consisting of the first i edges in sequence for j =1 ,2,3, k-1.If coincides,

eliminate edge e_(i+1) along that path.

b) Denote subpath {e_1, e_2, …e_(i-1)} as S_i, Search for shortest path

R_i with origin at Ending Vertex of (edge_i) and destine at the same

destination.

c) concatenate S_i and R_i to obtain A_i_k,

if A_i_k does not exist in B nor exist in Q,

add A_i_k to B

B=union{B, A_i_k}

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 12 of 17 23 March 2015

}

}

 Step 2: Compute path cost for each path in B, record the least cost path A_j as p_k.

 Remove A_j from B

Stop Criteria:

 B is empty, or k=K

4.5 Simulation Approach

In-vehicle travel time and walking time are both randomized following an independent and

identically distributed normal distribution with mean equals to its original value and standard

deviation is set to 5 times the original value. To avoid drawing a negative value, the absolute

value is taken. 50 draws of randomized travel times were performed for each sample OD.

The selection of sampling distribution and number of draws takes into consideration of the

maximum size of observed choice set, coverage, and computational time.

4.5.1 Pseudo code

Initialization:

 Draws = N, assign distribution = f(u, m)

function = Link_Travel_time+transfer_penalty+Waiting_time

Searched Path Q={}

Draw Index n=1

Procedure:

 Step 1: Resume Network

 Step 2: Incremental n and

Step 3: Randomize edge cost (day_transit_time, walk_time, wait_time) by drawing

the new edge cost from distribution f depends on current edge cost.

 For example, new_link_travel_time:=abs(norm(link_travel_time,

5*link_travel_time)) absolute value of a normal distribution with mean =

link_travel_time and standard deviation = 5* link_travel_time

Step 3: Search shortest path p_n based on randomized network

 Step 3: If p_n does not exist in Q, Q=Union{Q, p_n)

Stop Criteria:

 n>=N

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 13 of 17 23 March 2015

4.6 Path Feasibility Check

 All paths need to be checked before putting into a choice set for route choice

modeling. A feasible path should satisfy:

 1) the total number of transfer <=6

 2) No two consecutive walking edges along the path

 3) Does not walk back to any SimMobility nodes from bus stop/stations in the middle

of the path. (note that the access/egress walk transfer penalty is set to be much heavier than

transfer walk to avoid such infeasibility.)

5 COMPUTING PATH ATTRIBUTES
Path attributes is computed based on the path composition and link attributes. Given a path

consisting of a sequence of edges: {r1, r2, r3, r4….}, the following path attributes are to be

computed:

 Total In_vehicle Travel Time

 Total Waiting Time

 Total Walking Time

 Total Number of Transfers

 Total Distance

 Total Cost

 Path-Size

5.1 Pseudo code for Computing Total In-Vehicle Time, Total Walking Time.

Total Waiting Time, Total Number of Transfers, total distance

Initialization:

Total in-vehicle time = 0.0

Total Walking Time = 0.0

Total Waiting Time = 0.0

NumofTransfer=-1,

TotalDistance = 0.0

Get Path edge sequence: P={r_1, r_2, r_3,…, r_K} where K is the maximum number

of edges along path

Compute index i = 1

Procedure:

 Total Waiting Time = Total Waiting Time + Wait_time(r_i)

 Total in-vehicle time = total in-vehicle time + day_transit_time(r_i)

 Total Walk Time = Total Walk Time + walk_time(r_i)

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 14 of 17 23 March 2015

 NumofTransfer = NumofTransfer + 1

TotalDistance = TotalDistance + dist(r_i)

 Increment i

Stop Criteria:

 i>K

Assign total in-vehicle time, total walking time, total waiting time, number of transfer

and total distance to the path.

Note 1:

Besides number of transfers and total distance, the rest attributes should be updated

during each simulation runs in the future.

Note 2:

For more accurate distance computation, summation of segments in road network

should be applied.

5.2 Pseudo code for Computing TotalCost

TotalCost should be computed based on the distance traveled on Bus and MRT/LRTs. For

Example:

Denote effective distance as the distance traveled on Bus service lines along the path:

 paths[effective_dist<=3.2, path_cost:=0.77]

 paths[effective_dist>3.2 & effective_dist<=4.2, path_cost:=0.87]

 paths[effective_dist>4.2 & effective_dist<=5.2, path_cost:=0.98]

 paths[effective_dist>5.2 & effective_dist<=6.2, path_cost:=1.08]

 paths[effective_dist>6.2 & effective_dist<=7.2, path_cost:=1.16]

 paths[effective_dist>7.2 & effective_dist<=8.2, path_cost:=1.23]

 paths[effective_dist>8.2 & effective_dist<=9.2, path_cost:=1.29]

 paths[effective_dist>9.2 & effective_dist<=10.2, path_cost:=1.33]

 paths[effective_dist>10.2 & effective_dist<=11.2, path_cost:=1.37]

 paths[effective_dist>11.2 & effective_dist<=12.2, path_cost:=1.41]

 paths[effective_dist>12.2 & effective_dist<=13.2, path_cost:=1.45]

 paths[effective_dist>13.2 & effective_dist<=14.2, path_cost:=1.49]

 paths[effective_dist>14.2 & effective_dist<=15.2, path_cost:=1.53]

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 15 of 17 23 March 2015

 paths[effective_dist>15.2 & effective_dist<=16.2, path_cost:=1.57]

 paths[effective_dist>16.2 & effective_dist<=17.2, path_cost:=1.61]

 paths[effective_dist>17.2 & effective_dist<=18.2, path_cost:=1.65]

 paths[effective_dist>18.2 & effective_dist<=19.2, path_cost:=1.69]

 paths[effective_dist>19.2 & effective_dist<=20.2, path_cost:=1.72]

 paths[effective_dist>20.2 & effective_dist<=21.2, path_cost:=1.75]

 paths[effective_dist>21.2 & effective_dist<=22.2, path_cost:=1.78]

 paths[effective_dist>22.2 & effective_dist<=23.2, path_cost:=1.81]

 paths[effective_dist>23.2 & effective_dist<=24.2, path_cost:=1.83]

 paths[effective_dist>24.2 & effective_dist<=25.2, path_cost:=1.85]

 paths[effective_dist>25.2 & effective_dist<=26.2, path_cost:=1.87]

 paths[effective_dist>26.2 & effective_dist<=27.2, path_cost:=1.88]

 paths[effective_dist>27.2 & effective_dist<=28.2, path_cost:=1.89]

 paths[effective_dist>28.2 & effective_dist<=29.2, path_cost:=1.90]

 paths[effective_dist>29.2 & effective_dist<=30.2, path_cost:=1.91]

 paths[effective_dist>30.0 & effective_dist<=31.2, path_cost:=1.92]

 paths[effective_dist>31.2 & effective_dist<=32.2, path_cost:=1.93]

 paths[effective_dist>32.2 & effective_dist<=33.2, path_cost:=1.94]

 paths[effective_dist>33.2 & effective_dist<=34.2, path_cost:=1.95]

 paths[effective_dist>34.2 & effective_dist<=35.2, path_cost:=1.96]

 paths[effective_dist>35.2 & effective_dist<=36.2, path_cost:=1.97]

 paths[effective_dist>36.2 & effective_dist<=37.2, path_cost:=1.98]

 paths[effective_dist>37.2 & effective_dist<=38.2, path_cost:=1.99]

 paths[effective_dist>38.2 & effective_dist<=39.2, path_cost:=2.00]

 paths[effective_dist>39.2 & effective_dist<=40.2, path_cost:=2.01]

 paths[effective_dist>40.2, path_cost:=2.02]

5.3 Pseudo code for Computing Path-Size

Computing the path-size involving checking the overlapped edges of current path with

respect to other paths in the same choice set. Given a choice set C_n for OD pair n, it

contains N_n paths with path i having the format of {r_1, r_2,…, r_Ki} where Ki is the

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 16 of 17 23 March 2015

maximum number of edges/route segments along path_i. The mathematical formulation of

the path-size function is:

𝑃𝑆𝑖𝑛 =
𝑡𝑟
𝑇𝑖

1

 𝛿𝑟𝑗𝑗∈𝐶𝑛𝑟∈Γ𝑖

 Eq. (5.1)

Where 𝑃𝑆𝑖𝑛 is the path size of path 𝑖 for OD pair 𝑛; 𝑟 is the indexed route segment, Γ𝑖 is the

set of all route segments along path 𝑖; 𝑡𝑟 is the travel time on route segment 𝑟; 𝑇𝑖 is the total

travel time on path 𝑖; 𝐶𝑛 denotes the set of path alternatives for OD pair 𝑛; 𝛿𝑟𝑗 equals to 1 if

route segment 𝑟is on path 𝑗 and 0 otherwise; 𝑇𝐶𝑛

∗ denotes the total travel time of shortest

path in 𝐶𝑛 .

The pseudo code for computing path-size for each path i in choice set C_n is then:

Initialization:

Get Path edge sequence for each path in C_n: p_i={r_1, r_2, r_3,…, r_Ki} where Ki is

the maximum number of edges along path p_i. i in the path index in choice set C_n ranging

from 1 to N_n

i=1

Procedure:

 Path-size=0

 Path_travel_time=summation of all Link_travel_time(r) along path_i

 Sub-path-size = 0 # used to store the path-size component for each edge

 Sub-N = 0, # used to store the number of overlapped edge in the choice set

 For each edge/route segment r along path p_i

 {

Sub-path-size= Link_travel_time(r)/ Path_travel_time

 For each path j in choice set C_n

{

If r exist in p_j, Sub-N = Sub-N+1

}

Sub-path-size=sub-path-size/sub-N

Path-size=path-size+sub-path-size

Assign Path-Size to path_i

}

Implementation_Public_Transport_Demand_SimMobility_V8_20150323.docx

Page 17 of 17 23 March 2015

 Increment i

Stop Criteria:

 i>N_n

Note: This pseudo code is the most straightforward realization without any optimization. It is

highly suggested to come out with other efficient code based on the used data structure.

6 ROUTE CHOICE MODEL
The pre-trip route choice model for public transportation in Simmobility is a path-size logit

model that selects a multi-mode path from a choice set. Each path alternative in the choice

set contains a path from origin node to destination node.

The utility for OD path 𝑖 in the choice set 𝐶𝑖 is given as follows:

𝑈𝑖 = 𝜷𝑿𝑻 + 휀𝑖 = 𝑉𝑖 + 휀𝑖

Eq. (6.2)

where 𝑿 represents total denotes vector of path attributes including total in-vehicle travel

time, total walking time, total waiting time, total distance, denottotal number of transfer, path

cost, and path size. 𝜷 is the vector of coefficients given by modeler, and 휀𝑖 represents the

unobserved error component in path utility. 𝑉𝑖 is the deterministic part of the utility which will

be used to compute path selection.

In an agent-based simulation environmental, there are two ways to assign the passengers to

each path in the choice set. The first approach is to follow path selection probability and

assign the same portion of passengers to each path. Another way is to simulate each

agent’s path selection.

6.1 OD Path selection probability:

The path selection can be computed by:

𝑃 𝑖 𝐶𝑛 =
exp 𝑉𝑖

 exp(𝑉𝑗)∈𝐶𝑛

Eq. (6.3)

