Technical Report for Intermediate Stop TOD
Model

Siyu LI

June 2016

Model Description

This model will predict the stop arrival time for stops on the first half-tour,
stop departure time for stops on the second half-tour. Dummy variable is used
to distinguish stops on the first half-tour and on the second half-tour. The
intermediate stop tod model is different from tour tod model because it doesn’t
need to predict both stop arrival time and departure time. The departure time
of stops on the first half-tour, and arrival time of stops on the second half-tour
can be derived.

Choice Set

There are 48 alternatives. 3:30-3:30, 3:30-4:00,. .., 26:30-27:00

Model Structure

The mode/destination Model is a MNL model. In the utility function, we use
trigonometric series alone as time-dependent constant and trigonometric series
times dummy variables to reflect a time-depdent effect of that dummy variables.
A trigonometric series is defined as: Zle sin(2imt/24) + cos(2imt/24). Different
from tour tod model, this model will consider the effect of travel time and travel
cost.Since the model structure is similar to tour tod, refer to specification file
for details.



Variables

This section will be dedicated to the calculation of travel time and travel cost
for each of the 48 alternatives.

1. Selection of origin and destination: correct origin and desination must be
selected. For stops on the first half-tour, the origin is the stop location,
the destination is the location of the next (remember for stops on the first
half-tour, the stops are generated in counterclock-wise, the next stop is the
one closer to home) stop. If the stop being model is the last stop (closest to
home), the destination is home. For stops on the second half-tour, selection
of origin and destination is the same.

2. Travel time: with origin and destination selected, getting travel time is
trivial.

for (i in 1:48)
{
print (i)
sql_add_TT=
paste("ALTER TABLE “hits”. stops™ ADD COLUMN “TT_",i,"" double default 999;",sep="")

sql_attach_TT_1=paste("UPDATE “hits”. stops, zone . Tcost’

SET “hits” . stops™. TT_",i," ="zone . Tcost™ . TT_car_arrival_",i,"™",

" where “hits™. stops’. origin ="zone . Tcost . origin” and

“hits™ . stops™. destination™="zone . Tcost™ . destination”

and “hits”. stops’. mode >=4 and “hits . stops’. first_bound =1;",sep="")

sql_attach_TT_2=paste("UPDATE “hits”. stops™, zone . Tcost’

SET “hits” . stops™ . TT_",i," ="zone . Tcost™ . TT_bus_arrival_",i,"™",

" where "hits™ . stops™. origin ="zone . Tcost . origin’ and

“hits™ . stops™. destination ="zone . Tcost™ . destination”

and “hits™. stops’. mode <=3 and “hits’. stops” . first_bound =1;",sep="")

sql_attach_TT_3=paste("UPDATE “hits”. stops™, zone . Tcost”

SET “hits”. stops™ . TT_",i," ="zone . Tcost™ . TT_car_departure_",i," ",

" where "hits™. stops™. origin ="zone . Tcost . origin® and

“hits™ . stops™. destination ="zone . Tcost™ . destination”

and “hits™. stops’. mode >=4 and “hits’. stops’ . first_bound =0;",sep="")

sql_attach_TT_4=paste("UPDATE “hits”. stops™, zone . Tcost”

SET “hits™. stops™ . TT_",i," ="zone . Tcost™ . TT_bus_departure_",i," ™",
" where "hits™. stops”™. origin ="zone . Tcost™ . origin® and

"hits™ . stops™. destination ="zone . Tcost™ . destination”



and “hits®. stops’. mode <=3 and “hits’. stops”. first_bound =0;",sep="")

sql_attach_TT_5=paste("UPDATE “hits™ . stops™, zone . Tcost~

SET “hits. stops™. TT_",i," ="zone . Tcost . distance_min’ /5.0
where "hits™. stops”. origin ="zone . Tcost . origin~

and “hits” . stops”. destination ="zone . Tcost’ . destination”
and ‘hits‘.‘stops‘.‘mode‘=8;”,sep="”)

dbGetQuery(con,sql_add_TT)
dbGetQuery(con,sql_attach_TT_1)
dbGetQuery(con,sql_attach_TT_2)
dbGetQuery(con,sql_attach_TT_3)
dbGetQuery(con,sql_attach_TT_4)
dbGetQuery(con,sql_attach _TT_5)}

3. travel cost (low_tod and high_tod are the lower bound and higher bound
to determine the availibility of 48 alternatives. Introduction in next section)

for row in am:
AM[(int(row['origin']),int(row['destin']))]1=\
{'distance': row['AM2dis'], \
‘car_tvut' : row['AM2Tim']/60,\
'pub_svt': row['AM2ivt']/60, \
'pub_out': (row['AM2aux'Jl+row['AM2wtt'])/60, \
'car_cost_erp': row['AM2ERP']/100, \
'pub_cost’': row['AM2cos']/100}

for row in pm:
PM[(int(row['origin']),int(row['destin']))]=\
{'distance': row['PM2dis'], \

"car_ivut': row['PM2Tim']/60,\
'pub_tvt’': row['PM2ivt']/60, \
'pub_out': (row['PM2aux']l+row['PM2wtt'])/60, \

'car_cost_erp': row['PM2ERP']/100, \
'pub_cost': row['PM2cos']/100}

for row in op:
OP[(int(row['origin']),int(row['destin']))]1=\
{'distance': row['OPdis'], \
"car_ivt': row['0OPTim']/60,\
'pub_tvt': row['OPivt']l/60, \
'pub_out': (row['OPaux']+row['OPwtt'])/60, \
'car_cost_erp': row['OPERP']/100, \



'pub_cost': row['OPcos']/100}

am_alternative=range(10,14)
pn_alternative=range(30,34)
op_alternative=range(1,10)+range(14,30)+range(34,49)

for i in range(1,49):
if mode in [4,5,6,7,9]:
duration=int (row['first_bound'])*(int(row['high_tod'])-i+1)+
int (row['second_bound'])*(i-int (row['low_tod'])+1)
duration=0.25+(duration-1)*0.5
parking_rate=ZONE[origin_tod] ['parking rate']
cost_car_parking=(8*(duration>8)+duration*(duration<=8))*parking_rate
if i in am_alternative:
cost_car_ERP=AM[(origin_tod,destination_tod)]['car_cost_erp']
cost_car_0P=AM[(origin_tod,destination_tod)] ['distance']*0.147
walk_distance=AM[(origin_tod,destination_tod)] ['distance']
elif i in pm_alternative:
cost_car_ERP=PM[(origin_tod,destination_tod)] ['car_cost_erp']
cost_car_0P=PM[(origin_tod,destination_tod)] ['distance']*0.147
walk_distance=PM[(origin_tod,destination_tod)] ['distance']
else:
cost_car_ERP=0P[(origin_tod,destination_tod)]['car_cost_erp']
cost_car_0P=0P[(origin_tod,destination_tod)] ['distance']*0.147
walk_distance=0P[(origin_tod,destination_tod)] ['distance']
if mode in [4,5,6]:#drivel shared2 shared3
cost[i-1]=(cost_car_parking+cost_car_0P+cost_car_ERP)/(mode-3.0)
elif mode==7:#motor
cost[i-1]=0.5%cost_car_ERP+0.5%*cost_car_0P+0.65%cost_car_parking
else: #taxt
cost_taxi=3.4+cost_car_ERP+3*central_dummy+\
((walk_distancex*(walk_distance>10)-10*(walk_distance>10))/0.35+\
(walk_distance*(walk_distance<=10)+10*(walk_distance>10))/0.4)*0.22
cost[i-1]=cost_taxi
elif mode in [1,2,3]:
if i in am_alternative:
cost[i-1]=AM[(origin_tod,destination_tod)] ['pub_cost']
elif i in pm_alternative:
cost[i-1]=PM[(origin_tod,destination_tod)] ['pub_cost']
else:
cost[i-1]=0P[(origin_tod,destination_tod)] ['pub_cost']
else:
cost[i-1]1=0
if i in range(low,high+1):
availl[i-1]=1
else:



avail[i-1]=0
for i in range(0,48):
fout.write('%s\t' % (cost[i]))

Availability of Alternatives

The availability of all 48 alternatives is determined by low_tod and high_tod.
any alternative n satisfying low_tod<=n<=high_tod is available for a given stop.

o For stops on the first half-tour, the high_tod is the departure time of the
stop, which can be derived. low_tod for first half-tour is bounded by time
of arrival at home of previous tour, or 3 am.

e For stops on the second half-tour, the low_tod is the arrival time of the
stop, which can be derived. high_tod for second half-tour is bouned by
the minimum of tour primary activity arrival time of other tours.



	Model Description
	Choice Set
	Model Structure
	Variables
	Availability of Alternatives

