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Background
The primary goal of the current analyses is to answer the following question:

How is stream channel width influenced by watershed area and other factors?

Data Preparation

The data were provided by New Graph Environment in the form an csv file and prepared for analysis using
R version 4.0.4 (R Core Team 2020).

Key assumptions of the data preparation included:

• Data points with a channel width of 0 m, a channel width greater than 300 m, a watershed area less
than 0.1 ha or a gradient less than 0 are unreliable and were excluded.

Statistical Analysis

Model parameters were estimated using Bayesian methods. The estimates were produced using JAGS
(Plummer 2003) and STAN (Carpenter et al. 2017). For additional information on Bayesian estimation
the reader is referred to McElreath (2016).

Unless stated otherwise, the Bayesian analyses used weakly informative normal and half-normal prior dis-
tributions (Gelman, Simpson, and Betancourt 2017). The posterior distributions were estimated from 1500
Markov Chain Monte Carlo (MCMC) samples thinned from the second halves of 3 chains (Kery and Schaub
2011, 38–40). Model convergence was confirmed by ensuring that the potential scale reduction factor
�̂� ≤ 1.05 (Kery and Schaub 2011, 40) and the effective sample size (Brooks et al. 2011) ESS ≥ 150
for each of the monitored parameters (Kery and Schaub 2011, 61).

The parameters are summarised in terms of the point estimate, lower and upper 95% credible limits (CLs)
and 95% prediction limits (PLs) and the surprisal s-value (Greenland 2019). The estimate is the median
(50th percentile) of the MCMC samples while the 95% CLs are the 2.5th and 97.5th percentiles. The 95%
PLs are the 2.5th and 97.5th percentiles of individual channel widths based on the residual variation. The
s-value can be considered a test of directionality. More specifically it indicates how surprising (in bits) it
would be to discover that the true value of the parameter is in the opposite direction to the estimate. An
s-value of 4.3 bits, which is equivalent to a p-value (Kery and Schaub 2011; Greenland and Poole 2013) of
0.05, indicates that the surprise would be equivalent to throwing 4.3 heads in a row. The condition that
non-essential explanatory variables have s-values ≥ 4.3 bits provides a useful model selection heuristic (Kery
and Schaub 2011).

Model adequacy was assessed via posterior predictive checks (Kery and Schaub 2011). More specifically, the
number of zeros and the first four central moments (mean, variance, skewness and kurtosis) for the deviance
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residuals were compared to the expected values by simulating new residuals. In this context the s-value
indicates how surprising each metric is given the estimated posterior probability distribution for the residual
variation.

Where computationally practical, the sensitivity of the parameters to the choice of prior distributions was
evaluated by increasing the standard deviations of all normal, half-normal and log-normal priors by an order
of magnitude and then using �̂� to test whether the samples where drawn from the same posterior distribution
(Thorley and Andrusak 2017).

The results are displayed graphically by plotting the modeled relationships between particular variables
and the response(s) with the remaining variables held constant. In general, continuous and discrete fixed
variables are held constant at their mean and first level values, respectively, while random variables are held
constant at their typical values (expected values of the underlying hyperdistributions) (Kery and Schaub
2011, 77–82). When informative the influence of particular variables is expressed in terms of the effect size
(i.e., percent or n-fold change in the response variable) with 95% credible intervals (CIs, Bradford, Korman,
and Higgins 2005).

The analyses were implemented using R version 4.0.4 (R Core Team 2020) and the mbr family of packages.

Model Descriptions

Channel Width The data were analysed using a power model. Key assumptions of the model include:

• The channel width varies with the upstream watershed area and mean annual precipitation.
• The channel width varies randomly by biogeoclimatic zone.
• The residual variation in channel width is log-normally distributed.

Model Templates

Channel Width

.data {
int nObs;
int nbgz;

real width[nObs];
real area[nObs];
real precipitation[nObs];
int bgz[nObs];

}
parameters {
real b0;
real bArea;
real bPrecipitation;

vector[nbgz] bbgz;
real<lower=0> sbgz;

real<lower=0> sWidth;
}
model {
vector[nObs] eWidth;

b0 ~ normal(0, 2);
bArea ~ normal(0, 2);
bPrecipitation ~ normal(0, 2);
sbgz ~ normal(0, 2);
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bbgz ~ normal(0, sbgz);

sWidth ~ normal(0, 2);

for (i in 1:nObs) {
eWidth[i] = exp(b0 + bArea * log(area[i]) + bPrecipitation * log(precipitation[i]) + bbgz[bgz[i]]);
width[i] ~ lognormal(log(eWidth[i]), sWidth);

}
}

\end{lstlisting}

Block 1. Model description.

Results
Tables

Channel Width Table 1. Parameter descriptions.

Parameter Description
area[i] The upstream watershed area for the ith width (km2)
b0 Intercept for log(eWidth)
bArea Effect of log(area) on b0
bbgz[i] Effect of ith biogeoclimatic zone on b0
bgz[i] The biogeoclimatic zone for the ith width
bPrecipitation Effect of log(precipitation) on b0
eWidth[i] Expected value of width[i]
precipitation[i] The mean annual precipitation for the ith width (m)
sbgz SD of bbgz
sWidth SD of residual variation in width
width[i] The ith stream channel width (m)

Table 2. Model coefficients.

term estimate lower upper svalue
b0 -2.2383120 -2.4060742 -2.0546859 10.55171
bArea 0.3121556 0.3074218 0.3169608 10.55171
bPrecipitation 0.6546995 0.6322231 0.6775185 10.55171
sbgz 0.2194675 0.1359695 0.3898028 10.55171
sWidth 0.4907025 0.4863916 0.4952048 10.55171

Table 3. Model convergence.

n K nchains niters nthin ess rhat converged
22990 5 3 500 1 172 1.033 TRUE

Table 4. Model posterior predictive checks.
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moment observed median lower upper svalue
zeros 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
mean 0.0000171 0.0002078 -0.0168776 0.0178864 0.0154610
variance 1.9990386 2.0010356 1.9650757 2.0369153 0.1391384
skewness -0.3575806 -0.0001134 -0.0306088 0.0309393 10.5517083
kurtosis 1.3995289 -0.0007405 -0.0638227 0.0607513 10.5517083

Table 5. Model sensitivity.

n K nchains niters rhat_1 rhat_2 rhat_all converged
22990 5 3 500 1.033 1.028 1.032 TRUE

Figures

Channel Width

Figure 1. The predicted channel width by upstream water shed area on a log scale (with 95% CIs as dotted
lines and 95% PI as dashed lines).

4



Figure 2. The predicted channel width by precipitation on a log scale (with 95% CIs as dotted lines and
95% PI as dashed lines).

Figure 3. The predicted channel width by biogeoclimatic zone (with 95% CIs).
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