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A model predictive control approach for Quadrotor
collision avoidance

Moji Shi (5456320), Benjamin Piet(5614988)

Abstract—We study a model predictive control (MPC) ap-
proach for obstacle avoidance for a 3D quadrotor. We consider
the case with an unknown wind disturbance, and noisy sen-
sors.Our main work can be summarized as following: 1)We lin-
earize the quadrotor system using Jacobian Linearization. 2)We
convexify the obstacle constraints. 3) We split the MPC problem
into two stages and prove the stability in the second stage. 4)We
design an observer to estimate an unknown disturbance.

I. INTRODUCTION

The use of drones in the world is growing, and whether it
be for entertainment, deliveries or even military purposes, an
automated drone will always need to be able to reach a goal
while avoiding obstacles. One could simply have the problem
divided in two parts : a planner that compute a trajectory for
the drone to follow and a controller (for instance a simple
PD controller could work) to follow this trajectory. We have
an example of trajectory planning in [1] for a quadrotor for
instance. But with MPC, we can do both part at the same time.

We take the case of a simple quadrotor that has to reach a
goal, with a number of static obstacles between him and its
goal. It is worth noting that we have a 3D workspace, but we
focus on the movement in the horizontal plane. Because of this
we model the obstacles like cylinder, which could correspond
to a real life scenario of a drone that has to avoid trees while
crossing a forest for example1.

II. MODEL DEFINITION AND LINEARIZATION

The systems dynamics are nonlinear. The dynamics of
quadrotor can be described as:
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ẍÿ
z̈

 = R

 0
0

F1 + F2 + F3 + F4

+

 0
0

−mg


I

ϕ̈θ̈
ψ̈

 =

 L(F2 − F4)
L(F3 − F1)

M1 −M2 +M3 −M4

−

ϕ̇θ̇
ψ̇

× I

ϕ̇θ̇
ψ̇


where m is the mass of the quadrotor, x, y and z are global
position of the quadrotor, ϕ, θ and ψ are roll, pitch and yaw
angle of the quadrotor, F1, F2, F3 and F4 are force provided
by each rotor, I is the inertia matrix, L is the lever arm of
rotor force, M1, M2, M3 and M4 are moments provided by
each rotor along z axis of the quadrotor, R is the rotation
matrix generated from euler angle ϕ, θ and ψ.
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Fig. 1. Example of our method to avoid obstacles

For our obstacle avoidance problem, the yaw angle will be
ignored in our case (we consider the orientation of the drone
on the horizontal plane to be constant). We consider a 10-
dimensional state space and a 4-dimensional input space:
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ż
ϕ
θ

ϕ̇

θ̇


u =


F1

F2

F3

F4



With the state and input we can define the nonlinear system
as ẋ = f(x,u). For the design of our MPC controller, we
are going to linearize the model for higher computational
efficiency and stability analysis. Here we are going to use
Jacobian linearization for nonlinear systems[2]. For lineariza-
tion, we first need to define the equilibrium point of the system
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where the system remains static around this point:
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 s.t. f(x̄, ū) = 0

We then further assume that the state and input deviate only
a bit away from the equilibrium point(i.e. ϕ, θ ∼ 0 and F1 +
F2+F3+F4 ∼ mg) and define the deviation from equilibrium
point as δx and δu. In this case, the linearization of state space
can be formulated as:

δ̇x = f(x̄ + δx, ū + δu)

≈ f(x̄, ū) +
∂f

∂x
|x̄,ūδx +

∂f

∂u
|x̄,ūδu

= Acδx +Bcδu

where the state space matrix can be formulated as:
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After that we can discretize the state space with time step

as dt:

A = In +Ac · dt
B = Bc · dt

where n = 10 is the size of state space and we have discretized
state space:

δ+x = Aδx +Bδu

Considering the equilibrium point is all zero, it can also be
written as:

x(k + 1) = Ax(k) +Bδu

where x(k) denotes state at k time step and for convenience
we would directly use u to denote control deviation δu in the
rest of the paper.

III. MODEL PREDICTIVE CONTROL DESIGN

In this part, we will explain how we designed our MPC
model. We will first present a general state-based MPC, and
then see how we modified it by adding state disturbances and
noisy sensors.

A. State-based MPC

The general model of our MPC can be defined as follows :

J(x0, u) =

N−1∑
k=0

ℓ(x(k), u(k)) + Vf(x(N))

s.t. x(k + 1) = Ax(k) +Bu(k)

u ∈ U,x ∈ X
x(N) ∈ Xf

We consider the MPC problem in two different stages. The
first stage would be time-variant MPC where the obstacle
constraints would change with the current state at every time
step. After some time the obstacle constraints would not
change(which means the convex zone already contains the
target point), we compute the convex workspace once and
don’t modify it. In this case, the second stage would be time-
invariant MPC where the constraints remain the same and we
are able to add terminal cost and terminal set and have stability
analysis.

1) Obstacle Constraint: Because we want to do convex
optimisation, we need to design our constraints such that :

• the resulting workspace is convex;
• this workspace excludes the obstacles

To do this, we define a hyperplan for each of the obstacles
that is tangent to the obstacle, and ”facing” the drone. The
convex workspace is then the intersection of the halfplanes
defined by the previously mentioned hyperplan . It can thus be
translated in the form of a linear constraint Aobs(x(k))x(k) ≤
bobs(x(k)), with the two matrix Aobs and bobs that depends on
the current position of the drone (see figure 2). This constraints
is only applied on the x and y position of the drone.

It is also worth noting that it is in this convex workspace
that we search for an intermediate goal, which is the target that
the drone tries to reach at each time step. This intermediate
goal is simply the closest point in the convex workspace to
the final goal .

The major problem with this approach is that we can have
the drone getting stuck when the goal, an obstacle and the
drone are perfectly aligned. To solve this issue, we simply
add a small random value to the ”slope” of the hyperplan, so
the intermediate goal is not in the alignment between goal,
obstacle and drone.

2) State Constraint: Based on the assumption we made for
linearizing the model, roll and pitch angle should be small.
We assume that they are small than 0.5 rad. To be sure to stay
linearisable, we thus impose the state constraints that can be
represented in compact form as Astatex(k) ≤ bstate, where
Astate and bstate are defined as:
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Fig. 2. Illustration of convexification for obstacle constraints

Astate =

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0

 bstate =

0.50.5
0.5
0.5


3) Input Constraint: The input constraints are set based on

maximum force that can be provided by rotors and can be
formulated as Auu(k) ≤ cu where:

Au =



1 0 0 0
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0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
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4) Stage Cost: We design the stage cost function:

ℓ(x, u) = (x− xref )
TQ(x− xref ) + uTRu

with Q = In and R = 0.02 · I4. We chose these weight
matrix because we want to prioritize state regulation over input
minimization. The values comes from iterative tuning to find
a reasonable MPC cost.

5) Terminal Cost and Terminal Set: We define the terminal
cost function by

Vf(x) = xTPx

with P the solution of the discrete algebraic Riccati equation
(DARE) used to solve the unconstrained infinite-horizon LQR
problem. The terminal set can thus be defined by:

Xf = {x | xTPx <= c}

with c a constant that we choose. We took c = 0.01, a choice
that would be further explained in part III. As mentioned
previously, we only use the terminal cost and set after that
the intermediate goal is the same as the final goal, because
until then we have time varying constraints.

6) Time Horizon: For the first part, we took a small N = 10
for better computing speed. This value is enough because the
intermediate state is usually quite close to the drone position.
For the second part we took a larger N = 30 because the final
goal can be far away, and thus requires more time step to
reach. Like for the value of the weight matrix Q and R, the
value for dt and N were found through iterative tuning and
testing.

B. Disturbances and noisy sensor

1) Disturbance and noise modeling: For this part and
onward, we keep the same MPC design, but we change the
dynamical model. Here we are going to add an unknown
disturbance d on the state, and use an output y with sensory
noise. The resulting model is as follows

x+ = Ax+Bu+Bdd

y = Cx+ Cdd+ v

with d = [dx, dy, dz]
T a 3-dimensional disturbance that is

going to represent a wind disturbance in three directions.
Because of this, it will affect only the speed of the drone
which means the Bd and Cd can be formulated as:

Bd =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0


Cd =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


For the output, we will consider that we can measure the

entire state (GPS for position, IMU for the rest or the Optitrack
system which can measure the full state easily). In this case,
we could formulate the output matrix: C = In.

Finally, v is a sensor noise with:

σ[v] =



0.05
0.05
0.05
0.001
0.001
0.001
0.001
0.001
0.001
0.001


E[v] = 0

For the MPC loop, we are doing the same thing that was
presented in lecture 5, that is summed up in figure 3

2) Observer Design: Lets first explain how we designed
the observer. We are going to use a Luenberger observer[3]
on the augmented dynamics which would be efficient given
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Fig. 3. MPC loop for output feedback from lecture 5

that the model is linearized. The augmented state space can
be formulated as:[

x+

d+

]
=

[
A Bd

I 0

] [
x
d

]
+

[
B
0

]
u

y =
[
C Cd

] [x
d

]
+ v

With this Luenberger observer, we use linear feedback from
the output to adjust our estimation at each time step :[
x̂+

d̂+

]
=

[
A Bd
I 0

] [
x̂

d̂

]
+

[
B
0

]
u+

[
L1
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]
(y −

[
C Cd

] [x̂
d̂

]
)

= Ã

[
x̂

d̂

]
+

[
B
0

]
u+ L̃(y − C̃

[
x̂

d̂

]
)

where x̂ and d̂ are estimated states in observer and Ã, C̃
and L̃ are compact expression of the state space matrix. In
order to make the system observable and to get the observer
to converge, two requirements need to be satisfied:

• The augmented system is observable.
• Matrix Ã−L̃C̃ is stable.(i.e. all of the eigenvalues should

have norm less than 1.)

For the first condition we can easily check that (A,C) is
observable and that

rank

[
I −A −Bd
C Cd

]
= n+ nd = 10 + 3

So according to Hautus Lemma for observability in lecture 5,
the augmented system is observable.

For the second condition, we defined the 13 eigenvalues that
Ã− L̃C̃ should have, and we used the function place from the
”control” python library. The eigenvalue of Ã− L̃C̃ should be
the same as that of its transpose:

det|λI − (Ã− L̃C̃)| = det|λI − (Ã− L̃C̃)T |
= det|λI − (ÃT − C̃T L̃T )|

With this transfer we can directly apply ”place” function in
control package to find proper L̃. Like for the rest we found
the final eigenvalues through iterative testing to get at the end
the following values [-0.1, -0.1, -0.1, -0.03, -0.03, -0.03, 0.3,
0.3, 0.6, 0.6, -0.05, -0.05, -0.05].

3) Optimal Target Selector Design: Finally, we should
present the target selector. We take the same one that was
presented in lecture 5, meaning we search the reference state
and input xr and ur that minimize

J(xr, ur) = uTu+ (yref − Cxr)
T (yref − Cxr)

s.t.

[
I −A −B
C 0

] [
xr
ur

]
=

[
Bdd̂

yref − Cdd̂

]
ur ∈ U,xr ∈ X

with yref = [xg, yg, zg, 0, 0, 0, 0, 0, 0, 0]
T the reference

output, [xg, yg, zg]T being the 3D position of the current goal
(either final goal, or intermediate goal depending on where
the drone is). U and X are the feasible input and state space,
meaning the space delimited by the input constraint and state
constraint that are defined above.

IV. ASYMPTOTIC STABILITY

In this section, we show that the designed MPC asymptot-
ically stabilized the closed-loop system. To do this we will
look only at the stability of the regulator MPC (so without the
noise and disturbances), because according to the book [4], if
the estimation of the disturbance converges, then the disturbed
MPC will also be stable if the regulator MPC is stable.

Lets then first prove the stability of our regulator MPC. It
is worth noting that, because until the intermediate goal is the
same as the final goal our constraints are changing at each
time step, we can’t prove the stability of our MPC for this
first part. We will only look at the case where we have the
fixed linear constraints, the intermediate goal equal to the final
goal, and where we added a terminal cost and a terminal set.

To prove the asymptotic stability, we will use the theorem
2.19 from [4] and the results from lecture 4. We will simply
list the assumptions and justify why they hold in our case.

- linear dynamical model and quadratic stage cost and
terminal cost : see previous section for the form of these
functions

- X,U,Xf ⊂ X compact and 0 ∈ int(Xf ) : also quite
clear with the form we gave them. The only not trivial part
may be that Xf is included in X, mainly converning the
constriants with the obstacle. To deal with this part, we can
simply suppose that the final goal is far away enough from
the obstacles for the terminal set to be fully included in the
constraints set.

- (Weak) Controllability : we can easily check that (A,B) is
controllable after looking at the rank of the matrix

rank
[
B AB ... A9B

]
= n

- Terminal cost as a control Lyapunov function in terminal
set : because we used the solution of the discrete algebraic
Riccati equation (DARE) for our terminal cost, we simply
need to check that:

∀x ∈ Xf ,Kx ∈ U

where K is calculated from DARE. With this proven, we can
use the results from the lecture to confirm that the terminal
cost is a control Lyapunov function in the terminal set. With
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the chosen form of the terminal set Xf = {x | xTPx ≤ c} , we
simply need to find the largest constant c that allows Kx ∈ U.
To do this, we took the outer approximation of the ellipsoid
which is a 10-dimensional ”box” Pout so that Xf ∈ Pout and
check for every corners4. Some iterative testing got us the
value of c = 0.01.

Fig. 4. Projection of Pout in 3D world(the cuboid with the points as the
vertices)

With these assumptions, we can use theorem 2.19 of [4], and
state that our MPC regulator is asymptotically stable. Finally,
as mentioned previously, our disturbed system will also be
stable if the estimation of the disturbances converges. This
however will simply be checked with numerical simulation in
the next section.

V. NUMERICAL SIMULATIONS

In this section, we run several numerical simulations where
we test the function of MPC controller and compare some
MPC controllers with different settings.

A. MPC with different time horizon

We first test our MPC controller with different time horizon
when there is no disturbance and noise. We test the MPC
controller with a time horizon of 5, 10 and 15 respectively5.
As illustrated from the figure, the MPC controller with higher
time horizon are able to converge quicker. However, when the
horizon is more than 10, the improvement can be very small
and there should be a trade-off between computational effort
and the controller performance. We also record and compare
the computational time for each MPC controller.

TABLE I
THE COMPUTATIONAL TIME FOR THE MPC CONTROLLER WITH

DIFFERENT TIME HORIZON

Time Horizon N=5 N=10 N=15
Computation Time(s) 15.3 12.7 13.4
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Fig. 5. MPC controller with different time horizon

According to the tableV-A, we have some counterintuitive
findings where the controller with least time horizon takes the
most time. This can be explained by the fact that the controller
with less time horizon takes more time steps to reach the target.
So even though for each step it takes less time to compute,
the greater number of steps makes it more time-consuming
overall.

B. MPC with different cost

In this problem, the major task is to arrive at the target
position. In this case, we also want to test how the cost on
x and y position would affect the performance of controller.
In the following figure6 we have tried with different cost for
x and y position.(The cost for rest of the state remains 1 for
all the cases.) Through the figure it is easy to conclude that
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Fig. 6. MPC controller with different cost for xy

more weight on x and y would result in faster convergence for
these two state variables. However if we set them as a very
large value(e.g. cost of x and y is set to 100) then the solver
would fail to find solution at some point. It may be because
with such a high cost, going slightly away from the goal to
avoid an obstacle is in the end not worth it, and the optimizer
simply decides to stay on the same position.
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C. MPC for disturbance estimation

In the experiment we consider sensor noise and unknown
random disturbances for the speed of the drone in three
directions.7 Given the experimental results, although there are
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Fig. 7. Disturbance estimator for velocity at xyz directions

still some fluctuations caused by sensor noise(with scale of
0.001 in each direction), we can conclude that the estimation of
the disturbance successfully converge to the real disturbances
very fast. Even if the noise is relatively very large(e.g. for
that in y direction) the observer is still able to identify the
disturbance.

Additionally, since we are using estimated state as the input
of our controller, we also want to test if the estimated state
is close to real state. The following figure8 shows how the
real state, the estimated state and the output state differ with
each other. From the plot we can observe that through our
estimator, the estimated state is very close to real state. In
comparison with output state(with sensor noise), the estimated
state is almost the same besides some delays.

VI. CONCLUSION

In this paper, we designed an MPC controller to solve the
problem of obstacle avoidance for a quadrotor. We linearized
the quadrotor dynamic model around the equilibrium point
for better computational efficiency and stability analysis. We
also convexified the obstacle constraint and formulate the state
and input constraint to simplify the problem into a convex
optimization problem. Additionally, we split the MPC problem
into two stages, first with time-varying constraints and the
second one is with time-invariant constraint. By doing that,
we were able to design the terminal cost and terminal set
for the second stage and prove the stability. Besides, we
designed an observer so that the MPC controller is able to
reject disturbances and noise.

With the designed model, we also did some numerical ex-
periments with different settings of MPC controller. With these
results, we discuss the performances of the MPC controller
with different time horizon, different cost and we verify that
our observer does indeed succeed in estimating the unknown
disturbances.
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Fig. 8. Comparison between real state, estimated state and output state for
xyz position
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