Permalink
Switch branches/tags
Nothing to show
Find file
Fetching contributors…
Cannot retrieve contributors at this time
3195 lines (2994 sloc) 136 KB
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_
/*
** These #defines should enable >2GB file support on POSIX if the
** underlying operating system supports it. If the OS lacks
** large file support, or if the OS is windows, these should be no-ops.
**
** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
** system #includes. Hence, this block of code must be the very first
** code in all source files.
**
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
** on the compiler command line. This is necessary if you are compiling
** on a recent machine (ex: Red Hat 7.2) but you want your code to work
** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2
** without this option, LFS is enable. But LFS does not exist in the kernel
** in Red Hat 6.0, so the code won't work. Hence, for maximum binary
** portability you should omit LFS.
**
** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later.
*/
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE 1
# ifndef _FILE_OFFSET_BITS
# define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif
/*
** Include the configuration header output by 'configure' if we're using the
** autoconf-based build
*/
#ifdef _HAVE_SQLITE_CONFIG_H
#include "config.h"
#endif
#include "sqliteLimit.h"
/* Disable nuisance warnings on Borland compilers */
#if defined(__BORLANDC__)
#pragma warn -rch /* unreachable code */
#pragma warn -ccc /* Condition is always true or false */
#pragma warn -aus /* Assigned value is never used */
#pragma warn -csu /* Comparing signed and unsigned */
#pragma warn -spa /* Suspicious pointer arithmetic */
#endif
/* Needed for various definitions... */
#ifndef _GNU_SOURCE
# define _GNU_SOURCE
#endif
/*
** Include standard header files as necessary
*/
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>
#endif
/*
** The number of samples of an index that SQLite takes in order to
** construct a histogram of the table content when running ANALYZE
** and with SQLITE_ENABLE_STAT2
*/
#define SQLITE_INDEX_SAMPLES 10
/*
** The following macros are used to cast pointers to integers and
** integers to pointers. The way you do this varies from one compiler
** to the next, so we have developed the following set of #if statements
** to generate appropriate macros for a wide range of compilers.
**
** The correct "ANSI" way to do this is to use the intptr_t type.
** Unfortunately, that typedef is not available on all compilers, or
** if it is available, it requires an #include of specific headers
** that vary from one machine to the next.
**
** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on
** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)).
** So we have to define the macros in different ways depending on the
** compiler.
*/
#if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */
# define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X))
# define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X))
#elif !defined(__GNUC__) /* Works for compilers other than LLVM */
# define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X])
# define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0))
#elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */
# define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X))
# define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X))
#else /* Generates a warning - but it always works */
# define SQLITE_INT_TO_PTR(X) ((void*)(X))
# define SQLITE_PTR_TO_INT(X) ((int)(X))
#endif
/*
** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
** 0 means mutexes are permanently disable and the library is never
** threadsafe. 1 means the library is serialized which is the highest
** level of threadsafety. 2 means the libary is multithreaded - multiple
** threads can use SQLite as long as no two threads try to use the same
** database connection at the same time.
**
** Older versions of SQLite used an optional THREADSAFE macro.
** We support that for legacy.
*/
#if !defined(SQLITE_THREADSAFE)
#if defined(THREADSAFE)
# define SQLITE_THREADSAFE THREADSAFE
#else
# define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
#endif
#endif
/*
** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
** It determines whether or not the features related to
** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
** be overridden at runtime using the sqlite3_config() API.
*/
#if !defined(SQLITE_DEFAULT_MEMSTATUS)
# define SQLITE_DEFAULT_MEMSTATUS 1
#endif
/*
** Exactly one of the following macros must be defined in order to
** specify which memory allocation subsystem to use.
**
** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
** SQLITE_MEMDEBUG // Debugging version of system malloc()
**
** (Historical note: There used to be several other options, but we've
** pared it down to just these two.)
**
** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
** the default.
*/
#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)>1
# error "At most one of the following compile-time configuration options\
is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG"
#endif
#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)==0
# define SQLITE_SYSTEM_MALLOC 1
#endif
/*
** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
** sizes of memory allocations below this value where possible.
*/
#if !defined(SQLITE_MALLOC_SOFT_LIMIT)
# define SQLITE_MALLOC_SOFT_LIMIT 1024
#endif
/*
** We need to define _XOPEN_SOURCE as follows in order to enable
** recursive mutexes on most Unix systems. But Mac OS X is different.
** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
** so it is omitted there. See ticket #2673.
**
** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
** implemented on some systems. So we avoid defining it at all
** if it is already defined or if it is unneeded because we are
** not doing a threadsafe build. Ticket #2681.
**
** See also ticket #2741.
*/
#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
# define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */
#endif
/*
** The TCL headers are only needed when compiling the TCL bindings.
*/
#if defined(SQLITE_TCL) || defined(TCLSH)
# include <tcl.h>
#endif
/*
** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
** Setting NDEBUG makes the code smaller and run faster. So the following
** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out
** feature.
*/
#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
# define NDEBUG 1
#endif
/*
** The testcase() macro is used to aid in coverage testing. When
** doing coverage testing, the condition inside the argument to
** testcase() must be evaluated both true and false in order to
** get full branch coverage. The testcase() macro is inserted
** to help ensure adequate test coverage in places where simple
** condition/decision coverage is inadequate. For example, testcase()
** can be used to make sure boundary values are tested. For
** bitmask tests, testcase() can be used to make sure each bit
** is significant and used at least once. On switch statements
** where multiple cases go to the same block of code, testcase()
** can insure that all cases are evaluated.
**
*/
#ifdef SQLITE_COVERAGE_TEST
void sqlite3Coverage(int);
# define testcase(X) if( X ){ sqlite3Coverage(__LINE__); }
#else
# define testcase(X)
#endif
/*
** The TESTONLY macro is used to enclose variable declarations or
** other bits of code that are needed to support the arguments
** within testcase() and assert() macros.
*/
#if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
# define TESTONLY(X) X
#else
# define TESTONLY(X)
#endif
/*
** Sometimes we need a small amount of code such as a variable initialization
** to setup for a later assert() statement. We do not want this code to
** appear when assert() is disabled. The following macro is therefore
** used to contain that setup code. The "VVA" acronym stands for
** "Verification, Validation, and Accreditation". In other words, the
** code within VVA_ONLY() will only run during verification processes.
*/
#ifndef NDEBUG
# define VVA_ONLY(X) X
#else
# define VVA_ONLY(X)
#endif
/*
** The ALWAYS and NEVER macros surround boolean expressions which
** are intended to always be true or false, respectively. Such
** expressions could be omitted from the code completely. But they
** are included in a few cases in order to enhance the resilience
** of SQLite to unexpected behavior - to make the code "self-healing"
** or "ductile" rather than being "brittle" and crashing at the first
** hint of unplanned behavior.
**
** In other words, ALWAYS and NEVER are added for defensive code.
**
** When doing coverage testing ALWAYS and NEVER are hard-coded to
** be true and false so that the unreachable code then specify will
** not be counted as untested code.
*/
#if defined(SQLITE_COVERAGE_TEST)
# define ALWAYS(X) (1)
# define NEVER(X) (0)
#elif !defined(NDEBUG)
# define ALWAYS(X) ((X)?1:(assert(0),0))
# define NEVER(X) ((X)?(assert(0),1):0)
#else
# define ALWAYS(X) (X)
# define NEVER(X) (X)
#endif
/*
** Return true (non-zero) if the input is a integer that is too large
** to fit in 32-bits. This macro is used inside of various testcase()
** macros to verify that we have tested SQLite for large-file support.
*/
#define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0)
/*
** The macro unlikely() is a hint that surrounds a boolean
** expression that is usually false. Macro likely() surrounds
** a boolean expression that is usually true. GCC is able to
** use these hints to generate better code, sometimes.
*/
#if defined(__GNUC__) && 0
# define likely(X) __builtin_expect((X),1)
# define unlikely(X) __builtin_expect((X),0)
#else
# define likely(X) !!(X)
# define unlikely(X) !!(X)
#endif
#include "sqlite3.h"
#include "hash.h"
#include "parse.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <stddef.h>
/*
** If compiling for a processor that lacks floating point support,
** substitute integer for floating-point
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite_int64
# define float sqlite_int64
# define LONGDOUBLE_TYPE sqlite_int64
# ifndef SQLITE_BIG_DBL
# define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
# endif
# define SQLITE_OMIT_DATETIME_FUNCS 1
# define SQLITE_OMIT_TRACE 1
# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
# undef SQLITE_HAVE_ISNAN
#endif
#ifndef SQLITE_BIG_DBL
# define SQLITE_BIG_DBL (1e99)
#endif
/*
** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
** afterward. Having this macro allows us to cause the C compiler
** to omit code used by TEMP tables without messy #ifndef statements.
*/
#ifdef SQLITE_OMIT_TEMPDB
#define OMIT_TEMPDB 1
#else
#define OMIT_TEMPDB 0
#endif
/*
** The "file format" number is an integer that is incremented whenever
** the VDBE-level file format changes. The following macros define the
** the default file format for new databases and the maximum file format
** that the library can read.
*/
#define SQLITE_MAX_FILE_FORMAT 4
#ifndef SQLITE_DEFAULT_FILE_FORMAT
# define SQLITE_DEFAULT_FILE_FORMAT 1
#endif
/*
** Determine whether triggers are recursive by default. This can be
** changed at run-time using a pragma.
*/
#ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
# define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
#endif
/*
** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
** on the command-line
*/
#ifndef SQLITE_TEMP_STORE
# define SQLITE_TEMP_STORE 1
#endif
/*
** GCC does not define the offsetof() macro so we'll have to do it
** ourselves.
*/
#ifndef offsetof
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
#endif
/*
** Check to see if this machine uses EBCDIC. (Yes, believe it or
** not, there are still machines out there that use EBCDIC.)
*/
#if 'A' == '\301'
# define SQLITE_EBCDIC 1
#else
# define SQLITE_ASCII 1
#endif
/*
** Integers of known sizes. These typedefs might change for architectures
** where the sizes very. Preprocessor macros are available so that the
** types can be conveniently redefined at compile-type. Like this:
**
** cc '-DUINTPTR_TYPE=long long int' ...
*/
#ifndef UINT32_TYPE
# ifdef HAVE_UINT32_T
# define UINT32_TYPE uint32_t
# else
# define UINT32_TYPE unsigned int
# endif
#endif
#ifndef UINT16_TYPE
# ifdef HAVE_UINT16_T
# define UINT16_TYPE uint16_t
# else
# define UINT16_TYPE unsigned short int
# endif
#endif
#ifndef INT16_TYPE
# ifdef HAVE_INT16_T
# define INT16_TYPE int16_t
# else
# define INT16_TYPE short int
# endif
#endif
#ifndef UINT8_TYPE
# ifdef HAVE_UINT8_T
# define UINT8_TYPE uint8_t
# else
# define UINT8_TYPE unsigned char
# endif
#endif
#ifndef INT8_TYPE
# ifdef HAVE_INT8_T
# define INT8_TYPE int8_t
# else
# define INT8_TYPE signed char
# endif
#endif
#ifndef LONGDOUBLE_TYPE
# define LONGDOUBLE_TYPE long double
#endif
typedef sqlite_int64 i64; /* 8-byte signed integer */
typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
typedef INT16_TYPE i16; /* 2-byte signed integer */
typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
typedef INT8_TYPE i8; /* 1-byte signed integer */
/*
** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
** that can be stored in a u32 without loss of data. The value
** is 0x00000000ffffffff. But because of quirks of some compilers, we
** have to specify the value in the less intuitive manner shown:
*/
#define SQLITE_MAX_U32 ((((u64)1)<<32)-1)
/*
** Macros to determine whether the machine is big or little endian,
** evaluated at runtime.
*/
#ifdef SQLITE_AMALGAMATION
const int sqlite3one = 1;
#else
extern const int sqlite3one;
#endif
#if defined(i386) || defined(__i386__) || defined(_M_IX86)\
|| defined(__x86_64) || defined(__x86_64__)
# define SQLITE_BIGENDIAN 0
# define SQLITE_LITTLEENDIAN 1
# define SQLITE_UTF16NATIVE SQLITE_UTF16LE
#else
# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0)
# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
#endif
/*
** Constants for the largest and smallest possible 64-bit signed integers.
** These macros are designed to work correctly on both 32-bit and 64-bit
** compilers.
*/
#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
/*
** Round up a number to the next larger multiple of 8. This is used
** to force 8-byte alignment on 64-bit architectures.
*/
#define ROUND8(x) (((x)+7)&~7)
/*
** Round down to the nearest multiple of 8
*/
#define ROUNDDOWN8(x) ((x)&~7)
/*
** Assert that the pointer X is aligned to an 8-byte boundary. This
** macro is used only within assert() to verify that the code gets
** all alignment restrictions correct.
**
** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
** underlying malloc() implemention might return us 4-byte aligned
** pointers. In that case, only verify 4-byte alignment.
*/
#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0)
#else
# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0)
#endif
/*
** An instance of the following structure is used to store the busy-handler
** callback for a given sqlite handle.
**
** The sqlite.busyHandler member of the sqlite struct contains the busy
** callback for the database handle. Each pager opened via the sqlite
** handle is passed a pointer to sqlite.busyHandler. The busy-handler
** callback is currently invoked only from within pager.c.
*/
typedef struct BusyHandler BusyHandler;
struct BusyHandler {
int (*xFunc)(void *,int); /* The busy callback */
void *pArg; /* First arg to busy callback */
int nBusy; /* Incremented with each busy call */
};
/*
** Name of the master database table. The master database table
** is a special table that holds the names and attributes of all
** user tables and indices.
*/
#define MASTER_NAME "sqlite_master"
#define TEMP_MASTER_NAME "sqlite_temp_master"
/*
** The root-page of the master database table.
*/
#define MASTER_ROOT 1
/*
** The name of the schema table.
*/
#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
/*
** A convenience macro that returns the number of elements in
** an array.
*/
#define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0])))
/*
** The following value as a destructor means to use sqlite3DbFree().
** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
*/
#define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree)
/*
** When SQLITE_OMIT_WSD is defined, it means that the target platform does
** not support Writable Static Data (WSD) such as global and static variables.
** All variables must either be on the stack or dynamically allocated from
** the heap. When WSD is unsupported, the variable declarations scattered
** throughout the SQLite code must become constants instead. The SQLITE_WSD
** macro is used for this purpose. And instead of referencing the variable
** directly, we use its constant as a key to lookup the run-time allocated
** buffer that holds real variable. The constant is also the initializer
** for the run-time allocated buffer.
**
** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
** macros become no-ops and have zero performance impact.
*/
#ifdef SQLITE_OMIT_WSD
#define SQLITE_WSD const
#define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
#define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
int sqlite3_wsd_init(int N, int J);
void *sqlite3_wsd_find(void *K, int L);
#else
#define SQLITE_WSD
#define GLOBAL(t,v) v
#define sqlite3GlobalConfig sqlite3Config
#endif
/*
** The following macros are used to suppress compiler warnings and to
** make it clear to human readers when a function parameter is deliberately
** left unused within the body of a function. This usually happens when
** a function is called via a function pointer. For example the
** implementation of an SQL aggregate step callback may not use the
** parameter indicating the number of arguments passed to the aggregate,
** if it knows that this is enforced elsewhere.
**
** When a function parameter is not used at all within the body of a function,
** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
** However, these macros may also be used to suppress warnings related to
** parameters that may or may not be used depending on compilation options.
** For example those parameters only used in assert() statements. In these
** cases the parameters are named as per the usual conventions.
*/
#define UNUSED_PARAMETER(x) (void)(x)
#define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
/*
** Forward references to structures
*/
typedef struct AggInfo AggInfo;
typedef struct AuthContext AuthContext;
typedef struct AutoincInfo AutoincInfo;
typedef struct Bitvec Bitvec;
typedef struct CollSeq CollSeq;
typedef struct Column Column;
typedef struct Db Db;
typedef struct Schema Schema;
typedef struct Expr Expr;
typedef struct ExprList ExprList;
typedef struct ExprSpan ExprSpan;
typedef struct FKey FKey;
typedef struct FuncDestructor FuncDestructor;
typedef struct FuncDef FuncDef;
typedef struct FuncDefHash FuncDefHash;
typedef struct IdList IdList;
typedef struct Index Index;
typedef struct IndexSample IndexSample;
typedef struct KeyClass KeyClass;
typedef struct KeyInfo KeyInfo;
typedef struct Lookaside Lookaside;
typedef struct LookasideSlot LookasideSlot;
typedef struct Module Module;
typedef struct NameContext NameContext;
typedef struct Parse Parse;
typedef struct RowSet RowSet;
typedef struct Savepoint Savepoint;
typedef struct Select Select;
typedef struct SrcList SrcList;
typedef struct StrAccum StrAccum;
typedef struct Table Table;
typedef struct TableLock TableLock;
typedef struct Token Token;
typedef struct Trigger Trigger;
typedef struct TriggerPrg TriggerPrg;
typedef struct TriggerStep TriggerStep;
typedef struct UnpackedRecord UnpackedRecord;
typedef struct VTable VTable;
typedef struct Walker Walker;
typedef struct WherePlan WherePlan;
typedef struct WhereInfo WhereInfo;
typedef struct WhereLevel WhereLevel;
/*
** Defer sourcing vdbe.h and btree.h until after the "u8" and
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
** pointer types (i.e. FuncDef) defined above.
*/
#include "btree.h"
#include "vdbe.h"
#include "pager.h"
#include "pcache.h"
#include "os.h"
#include "mutex.h"
/*
** Each database file to be accessed by the system is an instance
** of the following structure. There are normally two of these structures
** in the sqlite.aDb[] array. aDb[0] is the main database file and
** aDb[1] is the database file used to hold temporary tables. Additional
** databases may be attached.
*/
struct Db {
char *zName; /* Name of this database */
Btree *pBt; /* The B*Tree structure for this database file */
u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */
u8 safety_level; /* How aggressive at syncing data to disk */
Schema *pSchema; /* Pointer to database schema (possibly shared) */
};
/*
** An instance of the following structure stores a database schema.
*/
struct Schema {
int schema_cookie; /* Database schema version number for this file */
Hash tblHash; /* All tables indexed by name */
Hash idxHash; /* All (named) indices indexed by name */
Hash trigHash; /* All triggers indexed by name */
Hash fkeyHash; /* All foreign keys by referenced table name */
Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */
u8 file_format; /* Schema format version for this file */
u8 enc; /* Text encoding used by this database */
u16 flags; /* Flags associated with this schema */
int cache_size; /* Number of pages to use in the cache */
};
/*
** These macros can be used to test, set, or clear bits in the
** Db.pSchema->flags field.
*/
#define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P))
#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0)
#define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P)
#define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P)
/*
** Allowed values for the DB.pSchema->flags field.
**
** The DB_SchemaLoaded flag is set after the database schema has been
** read into internal hash tables.
**
** DB_UnresetViews means that one or more views have column names that
** have been filled out. If the schema changes, these column names might
** changes and so the view will need to be reset.
*/
#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */
#define DB_UnresetViews 0x0002 /* Some views have defined column names */
#define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */
/*
** The number of different kinds of things that can be limited
** using the sqlite3_limit() interface.
*/
#define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1)
/*
** Lookaside malloc is a set of fixed-size buffers that can be used
** to satisfy small transient memory allocation requests for objects
** associated with a particular database connection. The use of
** lookaside malloc provides a significant performance enhancement
** (approx 10%) by avoiding numerous malloc/free requests while parsing
** SQL statements.
**
** The Lookaside structure holds configuration information about the
** lookaside malloc subsystem. Each available memory allocation in
** the lookaside subsystem is stored on a linked list of LookasideSlot
** objects.
**
** Lookaside allocations are only allowed for objects that are associated
** with a particular database connection. Hence, schema information cannot
** be stored in lookaside because in shared cache mode the schema information
** is shared by multiple database connections. Therefore, while parsing
** schema information, the Lookaside.bEnabled flag is cleared so that
** lookaside allocations are not used to construct the schema objects.
*/
struct Lookaside {
u16 sz; /* Size of each buffer in bytes */
u8 bEnabled; /* False to disable new lookaside allocations */
u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */
int nOut; /* Number of buffers currently checked out */
int mxOut; /* Highwater mark for nOut */
int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */
LookasideSlot *pFree; /* List of available buffers */
void *pStart; /* First byte of available memory space */
void *pEnd; /* First byte past end of available space */
};
struct LookasideSlot {
LookasideSlot *pNext; /* Next buffer in the list of free buffers */
};
/*
** A hash table for function definitions.
**
** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
** Collisions are on the FuncDef.pHash chain.
*/
struct FuncDefHash {
FuncDef *a[23]; /* Hash table for functions */
};
/*
** Each database connection is an instance of the following structure.
**
** The sqlite.lastRowid records the last insert rowid generated by an
** insert statement. Inserts on views do not affect its value. Each
** trigger has its own context, so that lastRowid can be updated inside
** triggers as usual. The previous value will be restored once the trigger
** exits. Upon entering a before or instead of trigger, lastRowid is no
** longer (since after version 2.8.12) reset to -1.
**
** The sqlite.nChange does not count changes within triggers and keeps no
** context. It is reset at start of sqlite3_exec.
** The sqlite.lsChange represents the number of changes made by the last
** insert, update, or delete statement. It remains constant throughout the
** length of a statement and is then updated by OP_SetCounts. It keeps a
** context stack just like lastRowid so that the count of changes
** within a trigger is not seen outside the trigger. Changes to views do not
** affect the value of lsChange.
** The sqlite.csChange keeps track of the number of current changes (since
** the last statement) and is used to update sqlite_lsChange.
**
** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
** store the most recent error code and, if applicable, string. The
** internal function sqlite3Error() is used to set these variables
** consistently.
*/
struct sqlite3 {
sqlite3_vfs *pVfs; /* OS Interface */
int nDb; /* Number of backends currently in use */
Db *aDb; /* All backends */
int flags; /* Miscellaneous flags. See below */
int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */
int errCode; /* Most recent error code (SQLITE_*) */
int errMask; /* & result codes with this before returning */
u8 autoCommit; /* The auto-commit flag. */
u8 temp_store; /* 1: file 2: memory 0: default */
u8 mallocFailed; /* True if we have seen a malloc failure */
u8 dfltLockMode; /* Default locking-mode for attached dbs */
signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */
u8 suppressErr; /* Do not issue error messages if true */
int nextPagesize; /* Pagesize after VACUUM if >0 */
int nTable; /* Number of tables in the database */
CollSeq *pDfltColl; /* The default collating sequence (BINARY) */
i64 lastRowid; /* ROWID of most recent insert (see above) */
u32 magic; /* Magic number for detect library misuse */
int nChange; /* Value returned by sqlite3_changes() */
int nTotalChange; /* Value returned by sqlite3_total_changes() */
sqlite3_mutex *mutex; /* Connection mutex */
int aLimit[SQLITE_N_LIMIT]; /* Limits */
struct sqlite3InitInfo { /* Information used during initialization */
int iDb; /* When back is being initialized */
int newTnum; /* Rootpage of table being initialized */
u8 busy; /* TRUE if currently initializing */
u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */
} init;
int nExtension; /* Number of loaded extensions */
void **aExtension; /* Array of shared library handles */
struct Vdbe *pVdbe; /* List of active virtual machines */
int activeVdbeCnt; /* Number of VDBEs currently executing */
int writeVdbeCnt; /* Number of active VDBEs that are writing */
void (*xTrace)(void*,const char*); /* Trace function */
void *pTraceArg; /* Argument to the trace function */
void (*xProfile)(void*,const char*,u64); /* Profiling function */
void *pProfileArg; /* Argument to profile function */
void *pCommitArg; /* Argument to xCommitCallback() */
int (*xCommitCallback)(void*); /* Invoked at every commit. */
void *pRollbackArg; /* Argument to xRollbackCallback() */
void (*xRollbackCallback)(void*); /* Invoked at every commit. */
void *pUpdateArg;
void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
#ifndef SQLITE_OMIT_WAL
int (*xWalCallback)(void *, sqlite3 *, const char *, int);
void *pWalArg;
#endif
void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
void *pCollNeededArg;
sqlite3_value *pErr; /* Most recent error message */
char *zErrMsg; /* Most recent error message (UTF-8 encoded) */
char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */
union {
volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
double notUsed1; /* Spacer */
} u1;
Lookaside lookaside; /* Lookaside malloc configuration */
#ifndef SQLITE_OMIT_AUTHORIZATION
int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
/* Access authorization function */
void *pAuthArg; /* 1st argument to the access auth function */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
int (*xProgress)(void *); /* The progress callback */
void *pProgressArg; /* Argument to the progress callback */
int nProgressOps; /* Number of opcodes for progress callback */
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
Hash aModule; /* populated by sqlite3_create_module() */
Table *pVTab; /* vtab with active Connect/Create method */
VTable **aVTrans; /* Virtual tables with open transactions */
int nVTrans; /* Allocated size of aVTrans */
VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */
#endif
FuncDefHash aFunc; /* Hash table of connection functions */
Hash aCollSeq; /* All collating sequences */
BusyHandler busyHandler; /* Busy callback */
int busyTimeout; /* Busy handler timeout, in msec */
Db aDbStatic[2]; /* Static space for the 2 default backends */
Savepoint *pSavepoint; /* List of active savepoints */
int nSavepoint; /* Number of non-transaction savepoints */
int nStatement; /* Number of nested statement-transactions */
u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */
i64 nDeferredCons; /* Net deferred constraints this transaction. */
int *pnBytesFreed; /* If not NULL, increment this in DbFree() */
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
/* The following variables are all protected by the STATIC_MASTER
** mutex, not by sqlite3.mutex. They are used by code in notify.c.
**
** When X.pUnlockConnection==Y, that means that X is waiting for Y to
** unlock so that it can proceed.
**
** When X.pBlockingConnection==Y, that means that something that X tried
** tried to do recently failed with an SQLITE_LOCKED error due to locks
** held by Y.
*/
sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
sqlite3 *pUnlockConnection; /* Connection to watch for unlock */
void *pUnlockArg; /* Argument to xUnlockNotify */
void (*xUnlockNotify)(void **, int); /* Unlock notify callback */
sqlite3 *pNextBlocked; /* Next in list of all blocked connections */
#endif
};
/*
** A macro to discover the encoding of a database.
*/
#define ENC(db) ((db)->aDb[0].pSchema->enc)
/*
** Possible values for the sqlite3.flags.
*/
#define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */
#define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */
#define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */
#define SQLITE_ShortColNames 0x00000800 /* Show short columns names */
#define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */
/* DELETE, or UPDATE and return */
/* the count using a callback. */
#define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */
/* result set is empty */
#define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */
#define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */
#define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */
#define SQLITE_NoReadlock 0x00020000 /* Readlocks are omitted when
** accessing read-only databases */
#define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */
#define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */
#define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */
#define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */
#define SQLITE_CkptFullFSync 0x00400000 /* Use full fsync for checkpoint */
#define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */
#define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */
#define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */
#define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */
#define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */
#define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */
#define SQLITE_LoadExtension 0x20000000 /* Enable load_extension */
/*
** Bits of the sqlite3.flags field that are used by the
** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface.
** These must be the low-order bits of the flags field.
*/
#define SQLITE_QueryFlattener 0x01 /* Disable query flattening */
#define SQLITE_ColumnCache 0x02 /* Disable the column cache */
#define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */
#define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */
#define SQLITE_IndexCover 0x10 /* Disable index covering table */
#define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */
#define SQLITE_FactorOutConst 0x40 /* Disable factoring out constants */
#define SQLITE_OptMask 0xff /* Mask of all disablable opts */
/*
** Possible values for the sqlite.magic field.
** The numbers are obtained at random and have no special meaning, other
** than being distinct from one another.
*/
#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
#define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */
#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
/*
** Each SQL function is defined by an instance of the following
** structure. A pointer to this structure is stored in the sqlite.aFunc
** hash table. When multiple functions have the same name, the hash table
** points to a linked list of these structures.
*/
struct FuncDef {
i16 nArg; /* Number of arguments. -1 means unlimited */
u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
u8 flags; /* Some combination of SQLITE_FUNC_* */
void *pUserData; /* User data parameter */
FuncDef *pNext; /* Next function with same name */
void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */
char *zName; /* SQL name of the function. */
FuncDef *pHash; /* Next with a different name but the same hash */
FuncDestructor *pDestructor; /* Reference counted destructor function */
};
/*
** This structure encapsulates a user-function destructor callback (as
** configured using create_function_v2()) and a reference counter. When
** create_function_v2() is called to create a function with a destructor,
** a single object of this type is allocated. FuncDestructor.nRef is set to
** the number of FuncDef objects created (either 1 or 3, depending on whether
** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
** member of each of the new FuncDef objects is set to point to the allocated
** FuncDestructor.
**
** Thereafter, when one of the FuncDef objects is deleted, the reference
** count on this object is decremented. When it reaches 0, the destructor
** is invoked and the FuncDestructor structure freed.
*/
struct FuncDestructor {
int nRef;
void (*xDestroy)(void *);
void *pUserData;
};
/*
** Possible values for FuncDef.flags
*/
#define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */
#define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */
#define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */
#define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */
#define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */
#define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */
#define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */
/*
** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
** used to create the initializers for the FuncDef structures.
**
** FUNCTION(zName, nArg, iArg, bNC, xFunc)
** Used to create a scalar function definition of a function zName
** implemented by C function xFunc that accepts nArg arguments. The
** value passed as iArg is cast to a (void*) and made available
** as the user-data (sqlite3_user_data()) for the function. If
** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
**
** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
** Used to create an aggregate function definition implemented by
** the C functions xStep and xFinal. The first four parameters
** are interpreted in the same way as the first 4 parameters to
** FUNCTION().
**
** LIKEFUNC(zName, nArg, pArg, flags)
** Used to create a scalar function definition of a function zName
** that accepts nArg arguments and is implemented by a call to C
** function likeFunc. Argument pArg is cast to a (void *) and made
** available as the function user-data (sqlite3_user_data()). The
** FuncDef.flags variable is set to the value passed as the flags
** parameter.
*/
#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
{nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
{nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \
pArg, 0, xFunc, 0, 0, #zName, 0, 0}
#define LIKEFUNC(zName, nArg, arg, flags) \
{nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
{nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \
SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
/*
** All current savepoints are stored in a linked list starting at
** sqlite3.pSavepoint. The first element in the list is the most recently
** opened savepoint. Savepoints are added to the list by the vdbe
** OP_Savepoint instruction.
*/
struct Savepoint {
char *zName; /* Savepoint name (nul-terminated) */
i64 nDeferredCons; /* Number of deferred fk violations */
Savepoint *pNext; /* Parent savepoint (if any) */
};
/*
** The following are used as the second parameter to sqlite3Savepoint(),
** and as the P1 argument to the OP_Savepoint instruction.
*/
#define SAVEPOINT_BEGIN 0
#define SAVEPOINT_RELEASE 1
#define SAVEPOINT_ROLLBACK 2
/*
** Each SQLite module (virtual table definition) is defined by an
** instance of the following structure, stored in the sqlite3.aModule
** hash table.
*/
struct Module {
const sqlite3_module *pModule; /* Callback pointers */
const char *zName; /* Name passed to create_module() */
void *pAux; /* pAux passed to create_module() */
void (*xDestroy)(void *); /* Module destructor function */
};
/*
** information about each column of an SQL table is held in an instance
** of this structure.
*/
struct Column {
char *zName; /* Name of this column */
Expr *pDflt; /* Default value of this column */
char *zDflt; /* Original text of the default value */
char *zType; /* Data type for this column */
char *zColl; /* Collating sequence. If NULL, use the default */
u8 notNull; /* True if there is a NOT NULL constraint */
u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */
char affinity; /* One of the SQLITE_AFF_... values */
#ifndef SQLITE_OMIT_VIRTUALTABLE
u8 isHidden; /* True if this column is 'hidden' */
#endif
};
/*
** A "Collating Sequence" is defined by an instance of the following
** structure. Conceptually, a collating sequence consists of a name and
** a comparison routine that defines the order of that sequence.
**
** There may two separate implementations of the collation function, one
** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
** native byte order. When a collation sequence is invoked, SQLite selects
** the version that will require the least expensive encoding
** translations, if any.
**
** The CollSeq.pUser member variable is an extra parameter that passed in
** as the first argument to the UTF-8 comparison function, xCmp.
** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
** xCmp16.
**
** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
** collating sequence is undefined. Indices built on an undefined
** collating sequence may not be read or written.
*/
struct CollSeq {
char *zName; /* Name of the collating sequence, UTF-8 encoded */
u8 enc; /* Text encoding handled by xCmp() */
u8 type; /* One of the SQLITE_COLL_... values below */
void *pUser; /* First argument to xCmp() */
int (*xCmp)(void*,int, const void*, int, const void*);
void (*xDel)(void*); /* Destructor for pUser */
};
/*
** Allowed values of CollSeq.type:
*/
#define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */
#define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */
#define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */
#define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */
/*
** A sort order can be either ASC or DESC.
*/
#define SQLITE_SO_ASC 0 /* Sort in ascending order */
#define SQLITE_SO_DESC 1 /* Sort in ascending order */
/*
** Column affinity types.
**
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve
** the speed a little by numbering the values consecutively.
**
** But rather than start with 0 or 1, we begin with 'a'. That way,
** when multiple affinity types are concatenated into a string and
** used as the P4 operand, they will be more readable.
**
** Note also that the numeric types are grouped together so that testing
** for a numeric type is a single comparison.
*/
#define SQLITE_AFF_TEXT 'a'
#define SQLITE_AFF_NONE 'b'
#define SQLITE_AFF_NUMERIC 'c'
#define SQLITE_AFF_INTEGER 'd'
#define SQLITE_AFF_REAL 'e'
#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC)
/*
** The SQLITE_AFF_MASK values masks off the significant bits of an
** affinity value.
*/
#define SQLITE_AFF_MASK 0x67
/*
** Additional bit values that can be ORed with an affinity without
** changing the affinity.
*/
#define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */
#define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */
#define SQLITE_NULLEQ 0x80 /* NULL=NULL */
/*
** An object of this type is created for each virtual table present in
** the database schema.
**
** If the database schema is shared, then there is one instance of this
** structure for each database connection (sqlite3*) that uses the shared
** schema. This is because each database connection requires its own unique
** instance of the sqlite3_vtab* handle used to access the virtual table
** implementation. sqlite3_vtab* handles can not be shared between
** database connections, even when the rest of the in-memory database
** schema is shared, as the implementation often stores the database
** connection handle passed to it via the xConnect() or xCreate() method
** during initialization internally. This database connection handle may
** then used by the virtual table implementation to access real tables
** within the database. So that they appear as part of the callers
** transaction, these accesses need to be made via the same database
** connection as that used to execute SQL operations on the virtual table.
**
** All VTable objects that correspond to a single table in a shared
** database schema are initially stored in a linked-list pointed to by
** the Table.pVTable member variable of the corresponding Table object.
** When an sqlite3_prepare() operation is required to access the virtual
** table, it searches the list for the VTable that corresponds to the
** database connection doing the preparing so as to use the correct
** sqlite3_vtab* handle in the compiled query.
**
** When an in-memory Table object is deleted (for example when the
** schema is being reloaded for some reason), the VTable objects are not
** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
** immediately. Instead, they are moved from the Table.pVTable list to
** another linked list headed by the sqlite3.pDisconnect member of the
** corresponding sqlite3 structure. They are then deleted/xDisconnected
** next time a statement is prepared using said sqlite3*. This is done
** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
** Refer to comments above function sqlite3VtabUnlockList() for an
** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
** list without holding the corresponding sqlite3.mutex mutex.
**
** The memory for objects of this type is always allocated by
** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
** the first argument.
*/
struct VTable {
sqlite3 *db; /* Database connection associated with this table */
Module *pMod; /* Pointer to module implementation */
sqlite3_vtab *pVtab; /* Pointer to vtab instance */
int nRef; /* Number of pointers to this structure */
VTable *pNext; /* Next in linked list (see above) */
};
/*
** Each SQL table is represented in memory by an instance of the
** following structure.
**
** Table.zName is the name of the table. The case of the original
** CREATE TABLE statement is stored, but case is not significant for
** comparisons.
**
** Table.nCol is the number of columns in this table. Table.aCol is a
** pointer to an array of Column structures, one for each column.
**
** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
** the column that is that key. Otherwise Table.iPKey is negative. Note
** that the datatype of the PRIMARY KEY must be INTEGER for this field to
** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
** is generated for each row of the table. TF_HasPrimaryKey is set if
** the table has any PRIMARY KEY, INTEGER or otherwise.
**
** Table.tnum is the page number for the root BTree page of the table in the
** database file. If Table.iDb is the index of the database table backend
** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
** holds temporary tables and indices. If TF_Ephemeral is set
** then the table is stored in a file that is automatically deleted
** when the VDBE cursor to the table is closed. In this case Table.tnum
** refers VDBE cursor number that holds the table open, not to the root
** page number. Transient tables are used to hold the results of a
** sub-query that appears instead of a real table name in the FROM clause
** of a SELECT statement.
*/
struct Table {
char *zName; /* Name of the table or view */
int iPKey; /* If not negative, use aCol[iPKey] as the primary key */
int nCol; /* Number of columns in this table */
Column *aCol; /* Information about each column */
Index *pIndex; /* List of SQL indexes on this table. */
int tnum; /* Root BTree node for this table (see note above) */
unsigned nRowEst; /* Estimated rows in table - from sqlite_stat1 table */
Select *pSelect; /* NULL for tables. Points to definition if a view. */
u16 nRef; /* Number of pointers to this Table */
u8 tabFlags; /* Mask of TF_* values */
u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
FKey *pFKey; /* Linked list of all foreign keys in this table */
char *zColAff; /* String defining the affinity of each column */
#ifndef SQLITE_OMIT_CHECK
Expr *pCheck; /* The AND of all CHECK constraints */
#endif
#ifndef SQLITE_OMIT_ALTERTABLE
int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
VTable *pVTable; /* List of VTable objects. */
int nModuleArg; /* Number of arguments to the module */
char **azModuleArg; /* Text of all module args. [0] is module name */
#endif
Trigger *pTrigger; /* List of triggers stored in pSchema */
Schema *pSchema; /* Schema that contains this table */
Table *pNextZombie; /* Next on the Parse.pZombieTab list */
};
/*
** Allowed values for Tabe.tabFlags.
*/
#define TF_Readonly 0x01 /* Read-only system table */
#define TF_Ephemeral 0x02 /* An ephemeral table */
#define TF_HasPrimaryKey 0x04 /* Table has a primary key */
#define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */
#define TF_Virtual 0x10 /* Is a virtual table */
#define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */
/*
** Test to see whether or not a table is a virtual table. This is
** done as a macro so that it will be optimized out when virtual
** table support is omitted from the build.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
# define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0)
# define IsHiddenColumn(X) ((X)->isHidden)
#else
# define IsVirtual(X) 0
# define IsHiddenColumn(X) 0
#endif
/*
** Each foreign key constraint is an instance of the following structure.
**
** A foreign key is associated with two tables. The "from" table is
** the table that contains the REFERENCES clause that creates the foreign
** key. The "to" table is the table that is named in the REFERENCES clause.
** Consider this example:
**
** CREATE TABLE ex1(
** a INTEGER PRIMARY KEY,
** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
** );
**
** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
**
** Each REFERENCES clause generates an instance of the following structure
** which is attached to the from-table. The to-table need not exist when
** the from-table is created. The existence of the to-table is not checked.
*/
struct FKey {
Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */
FKey *pNextFrom; /* Next foreign key in pFrom */
char *zTo; /* Name of table that the key points to (aka: Parent) */
FKey *pNextTo; /* Next foreign key on table named zTo */
FKey *pPrevTo; /* Previous foreign key on table named zTo */
int nCol; /* Number of columns in this key */
/* EV: R-30323-21917 */
u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */
Trigger *apTrigger[2]; /* Triggers for aAction[] actions */
struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
int iFrom; /* Index of column in pFrom */
char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
} aCol[1]; /* One entry for each of nCol column s */
};
/*
** SQLite supports many different ways to resolve a constraint
** error. ROLLBACK processing means that a constraint violation
** causes the operation in process to fail and for the current transaction
** to be rolled back. ABORT processing means the operation in process
** fails and any prior changes from that one operation are backed out,
** but the transaction is not rolled back. FAIL processing means that
** the operation in progress stops and returns an error code. But prior
** changes due to the same operation are not backed out and no rollback
** occurs. IGNORE means that the particular row that caused the constraint
** error is not inserted or updated. Processing continues and no error
** is returned. REPLACE means that preexisting database rows that caused
** a UNIQUE constraint violation are removed so that the new insert or
** update can proceed. Processing continues and no error is reported.
**
** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
** referenced table row is propagated into the row that holds the
** foreign key.
**
** The following symbolic values are used to record which type
** of action to take.
*/
#define OE_None 0 /* There is no constraint to check */
#define OE_Rollback 1 /* Fail the operation and rollback the transaction */
#define OE_Abort 2 /* Back out changes but do no rollback transaction */
#define OE_Fail 3 /* Stop the operation but leave all prior changes */
#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
#define OE_SetNull 7 /* Set the foreign key value to NULL */
#define OE_SetDflt 8 /* Set the foreign key value to its default */
#define OE_Cascade 9 /* Cascade the changes */
#define OE_Default 99 /* Do whatever the default action is */
/*
** An instance of the following structure is passed as the first
** argument to sqlite3VdbeKeyCompare and is used to control the
** comparison of the two index keys.
*/
struct KeyInfo {
sqlite3 *db; /* The database connection */
u8 enc; /* Text encoding - one of the SQLITE_UTF* values */
u16 nField; /* Number of entries in aColl[] */
u8 *aSortOrder; /* Sort order for each column. May be NULL */
CollSeq *aColl[1]; /* Collating sequence for each term of the key */
};
/*
** An instance of the following structure holds information about a
** single index record that has already been parsed out into individual
** values.
**
** A record is an object that contains one or more fields of data.
** Records are used to store the content of a table row and to store
** the key of an index. A blob encoding of a record is created by
** the OP_MakeRecord opcode of the VDBE and is disassembled by the
** OP_Column opcode.
**
** This structure holds a record that has already been disassembled
** into its constituent fields.
*/
struct UnpackedRecord {
KeyInfo *pKeyInfo; /* Collation and sort-order information */
u16 nField; /* Number of entries in apMem[] */
u16 flags; /* Boolean settings. UNPACKED_... below */
i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */
Mem *aMem; /* Values */
};
/*
** Allowed values of UnpackedRecord.flags
*/
#define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */
#define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */
#define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */
#define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */
#define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */
#define UNPACKED_PREFIX_SEARCH 0x0020 /* A prefix match is considered OK */
/*
** Each SQL index is represented in memory by an
** instance of the following structure.
**
** The columns of the table that are to be indexed are described
** by the aiColumn[] field of this structure. For example, suppose
** we have the following table and index:
**
** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
** CREATE INDEX Ex2 ON Ex1(c3,c1);
**
** In the Table structure describing Ex1, nCol==3 because there are
** three columns in the table. In the Index structure describing
** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
** The second column to be indexed (c1) has an index of 0 in
** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
**
** The Index.onError field determines whether or not the indexed columns
** must be unique and what to do if they are not. When Index.onError=OE_None,
** it means this is not a unique index. Otherwise it is a unique index
** and the value of Index.onError indicate the which conflict resolution
** algorithm to employ whenever an attempt is made to insert a non-unique
** element.
*/
struct Index {
char *zName; /* Name of this index */
int nColumn; /* Number of columns in the table used by this index */
int *aiColumn; /* Which columns are used by this index. 1st is 0 */
unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
Table *pTable; /* The SQL table being indexed */
int tnum; /* Page containing root of this index in database file */
u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */
char *zColAff; /* String defining the affinity of each column */
Index *pNext; /* The next index associated with the same table */
Schema *pSchema; /* Schema containing this index */
u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */
char **azColl; /* Array of collation sequence names for index */
IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */
};
/*
** Each sample stored in the sqlite_stat2 table is represented in memory
** using a structure of this type.
*/
struct IndexSample {
union {
char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */
double r; /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */
} u;
u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */
u8 nByte; /* Size in byte of text or blob. */
};
/*
** Each token coming out of the lexer is an instance of
** this structure. Tokens are also used as part of an expression.
**
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
** may contain random values. Do not make any assumptions about Token.dyn
** and Token.n when Token.z==0.
*/
struct Token {
const char *z; /* Text of the token. Not NULL-terminated! */
unsigned int n; /* Number of characters in this token */
};
/*
** An instance of this structure contains information needed to generate
** code for a SELECT that contains aggregate functions.
**
** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
** pointer to this structure. The Expr.iColumn field is the index in
** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
** code for that node.
**
** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
** original Select structure that describes the SELECT statement. These
** fields do not need to be freed when deallocating the AggInfo structure.
*/
struct AggInfo {
u8 directMode; /* Direct rendering mode means take data directly
** from source tables rather than from accumulators */
u8 useSortingIdx; /* In direct mode, reference the sorting index rather
** than the source table */
int sortingIdx; /* Cursor number of the sorting index */
ExprList *pGroupBy; /* The group by clause */
int nSortingColumn; /* Number of columns in the sorting index */
struct AggInfo_col { /* For each column used in source tables */
Table *pTab; /* Source table */
int iTable; /* Cursor number of the source table */
int iColumn; /* Column number within the source table */
int iSorterColumn; /* Column number in the sorting index */
int iMem; /* Memory location that acts as accumulator */
Expr *pExpr; /* The original expression */
} *aCol;
int nColumn; /* Number of used entries in aCol[] */
int nColumnAlloc; /* Number of slots allocated for aCol[] */
int nAccumulator; /* Number of columns that show through to the output.
** Additional columns are used only as parameters to
** aggregate functions */
struct AggInfo_func { /* For each aggregate function */
Expr *pExpr; /* Expression encoding the function */
FuncDef *pFunc; /* The aggregate function implementation */
int iMem; /* Memory location that acts as accumulator */
int iDistinct; /* Ephemeral table used to enforce DISTINCT */
} *aFunc;
int nFunc; /* Number of entries in aFunc[] */
int nFuncAlloc; /* Number of slots allocated for aFunc[] */
};
/*
** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater
** than 32767 we have to make it 32-bit. 16-bit is preferred because
** it uses less memory in the Expr object, which is a big memory user
** in systems with lots of prepared statements. And few applications
** need more than about 10 or 20 variables. But some extreme users want
** to have prepared statements with over 32767 variables, and for them
** the option is available (at compile-time).
*/
#if SQLITE_MAX_VARIABLE_NUMBER<=32767
typedef i16 ynVar;
#else
typedef int ynVar;
#endif
/*
** Each node of an expression in the parse tree is an instance
** of this structure.
**
** Expr.op is the opcode. The integer parser token codes are reused
** as opcodes here. For example, the parser defines TK_GE to be an integer
** code representing the ">=" operator. This same integer code is reused
** to represent the greater-than-or-equal-to operator in the expression
** tree.
**
** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
** or TK_STRING), then Expr.token contains the text of the SQL literal. If
** the expression is a variable (TK_VARIABLE), then Expr.token contains the
** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
** then Expr.token contains the name of the function.
**
** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
** binary operator. Either or both may be NULL.
**
** Expr.x.pList is a list of arguments if the expression is an SQL function,
** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
** Expr.x.pSelect is used if the expression is a sub-select or an expression of
** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
** valid.
**
** An expression of the form ID or ID.ID refers to a column in a table.
** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
** the integer cursor number of a VDBE cursor pointing to that table and
** Expr.iColumn is the column number for the specific column. If the
** expression is used as a result in an aggregate SELECT, then the
** value is also stored in the Expr.iAgg column in the aggregate so that
** it can be accessed after all aggregates are computed.
**
** If the expression is an unbound variable marker (a question mark
** character '?' in the original SQL) then the Expr.iTable holds the index
** number for that variable.
**
** If the expression is a subquery then Expr.iColumn holds an integer
** register number containing the result of the subquery. If the
** subquery gives a constant result, then iTable is -1. If the subquery
** gives a different answer at different times during statement processing
** then iTable is the address of a subroutine that computes the subquery.
**
** If the Expr is of type OP_Column, and the table it is selecting from
** is a disk table or the "old.*" pseudo-table, then pTab points to the
** corresponding table definition.
**
** ALLOCATION NOTES:
**
** Expr objects can use a lot of memory space in database schema. To
** help reduce memory requirements, sometimes an Expr object will be
** truncated. And to reduce the number of memory allocations, sometimes
** two or more Expr objects will be stored in a single memory allocation,
** together with Expr.zToken strings.
**
** If the EP_Reduced and EP_TokenOnly flags are set when
** an Expr object is truncated. When EP_Reduced is set, then all
** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
** are contained within the same memory allocation. Note, however, that
** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
** allocated, regardless of whether or not EP_Reduced is set.
*/
struct Expr {
u8 op; /* Operation performed by this node */
char affinity; /* The affinity of the column or 0 if not a column */
u16 flags; /* Various flags. EP_* See below */
union {
char *zToken; /* Token value. Zero terminated and dequoted */
int iValue; /* Integer value if EP_IntValue */
} u;
/* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
** space is allocated for the fields below this point. An attempt to
** access them will result in a segfault or malfunction.
*********************************************************************/
Expr *pLeft; /* Left subnode */
Expr *pRight; /* Right subnode */
union {
ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */
Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */
} x;
CollSeq *pColl; /* The collation type of the column or 0 */
/* If the EP_Reduced flag is set in the Expr.flags mask, then no
** space is allocated for the fields below this point. An attempt to
** access them will result in a segfault or malfunction.
*********************************************************************/
int iTable; /* TK_COLUMN: cursor number of table holding column
** TK_REGISTER: register number
** TK_TRIGGER: 1 -> new, 0 -> old */
ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid.
** TK_VARIABLE: variable number (always >= 1). */
i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */
u8 flags2; /* Second set of flags. EP2_... */
u8 op2; /* If a TK_REGISTER, the original value of Expr.op */
AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
Table *pTab; /* Table for TK_COLUMN expressions. */
#if SQLITE_MAX_EXPR_DEPTH>0
int nHeight; /* Height of the tree headed by this node */
#endif
};
/*
** The following are the meanings of bits in the Expr.flags field.
*/
#define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */
#define EP_Agg 0x0002 /* Contains one or more aggregate functions */
#define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */
#define EP_Error 0x0008 /* Expression contains one or more errors */
#define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */
#define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */
#define EP_DblQuoted 0x0040 /* token.z was originally in "..." */
#define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */
#define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */
#define EP_FixedDest 0x0200 /* Result needed in a specific register */
#define EP_IntValue 0x0400 /* Integer value contained in u.iValue */
#define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */
#define EP_Reduced 0x1000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */
#define EP_TokenOnly 0x2000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */
#define EP_Static 0x4000 /* Held in memory not obtained from malloc() */
/*
** The following are the meanings of bits in the Expr.flags2 field.
*/
#define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */
#define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */
/*
** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible
** flag on an expression structure. This flag is used for VV&A only. The
** routine is implemented as a macro that only works when in debugging mode,
** so as not to burden production code.
*/
#ifdef SQLITE_DEBUG
# define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible
#else
# define ExprSetIrreducible(X)
#endif
/*
** These macros can be used to test, set, or clear bits in the
** Expr.flags field.
*/
#define ExprHasProperty(E,P) (((E)->flags&(P))==(P))
#define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0)
#define ExprSetProperty(E,P) (E)->flags|=(P)
#define ExprClearProperty(E,P) (E)->flags&=~(P)
/*
** Macros to determine the number of bytes required by a normal Expr
** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
** and an Expr struct with the EP_TokenOnly flag set.
*/
#define EXPR_FULLSIZE sizeof(Expr) /* Full size */
#define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */
#define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */
/*
** Flags passed to the sqlite3ExprDup() function. See the header comment
** above sqlite3ExprDup() for details.
*/
#define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */
/*
** A list of expressions. Each expression may optionally have a
** name. An expr/name combination can be used in several ways, such
** as the list of "expr AS ID" fields following a "SELECT" or in the
** list of "ID = expr" items in an UPDATE. A list of expressions can
** also be used as the argument to a function, in which case the a.zName
** field is not used.
*/
struct ExprList {
int nExpr; /* Number of expressions on the list */
int nAlloc; /* Number of entries allocated below */
int iECursor; /* VDBE Cursor associated with this ExprList */
struct ExprList_item {
Expr *pExpr; /* The list of expressions */
char *zName; /* Token associated with this expression */
char *zSpan; /* Original text of the expression */
u8 sortOrder; /* 1 for DESC or 0 for ASC */
u8 done; /* A flag to indicate when processing is finished */
u16 iCol; /* For ORDER BY, column number in result set */
u16 iAlias; /* Index into Parse.aAlias[] for zName */
} *a; /* One entry for each expression */
};
/*
** An instance of this structure is used by the parser to record both
** the parse tree for an expression and the span of input text for an
** expression.
*/
struct ExprSpan {
Expr *pExpr; /* The expression parse tree */
const char *zStart; /* First character of input text */
const char *zEnd; /* One character past the end of input text */
};
/*
** An instance of this structure can hold a simple list of identifiers,
** such as the list "a,b,c" in the following statements:
**
** INSERT INTO t(a,b,c) VALUES ...;
** CREATE INDEX idx ON t(a,b,c);
** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
**
** The IdList.a.idx field is used when the IdList represents the list of
** column names after a table name in an INSERT statement. In the statement
**
** INSERT INTO t(a,b,c) ...
**
** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
*/
struct IdList {
struct IdList_item {
char *zName; /* Name of the identifier */
int idx; /* Index in some Table.aCol[] of a column named zName */
} *a;
int nId; /* Number of identifiers on the list */
int nAlloc; /* Number of entries allocated for a[] below */
};
/*
** The bitmask datatype defined below is used for various optimizations.
**
** Changing this from a 64-bit to a 32-bit type limits the number of
** tables in a join to 32 instead of 64. But it also reduces the size
** of the library by 738 bytes on ix86.
*/
typedef u64 Bitmask;
/*
** The number of bits in a Bitmask. "BMS" means "BitMask Size".
*/
#define BMS ((int)(sizeof(Bitmask)*8))
/*
** The following structure describes the FROM clause of a SELECT statement.
** Each table or subquery in the FROM clause is a separate element of
** the SrcList.a[] array.
**
** With the addition of multiple database support, the following structure
** can also be used to describe a particular table such as the table that
** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
** such a table must be a simple name: ID. But in SQLite, the table can
** now be identified by a database name, a dot, then the table name: ID.ID.
**
** The jointype starts out showing the join type between the current table
** and the next table on the list. The parser builds the list this way.
** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
** jointype expresses the join between the table and the previous table.
**
** In the colUsed field, the high-order bit (bit 63) is set if the table
** contains more than 63 columns and the 64-th or later column is used.
*/
struct SrcList {
i16 nSrc; /* Number of tables or subqueries in the FROM clause */
i16 nAlloc; /* Number of entries allocated in a[] below */
struct SrcList_item {
char *zDatabase; /* Name of database holding this table */
char *zName; /* Name of the table */
char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
Table *pTab; /* An SQL table corresponding to zName */
Select *pSelect; /* A SELECT statement used in place of a table name */
u8 isPopulated; /* Temporary table associated with SELECT is populated */
u8 jointype; /* Type of join between this able and the previous */
u8 notIndexed; /* True if there is a NOT INDEXED clause */
#ifndef SQLITE_OMIT_EXPLAIN
u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */
#endif
int iCursor; /* The VDBE cursor number used to access this table */
Expr *pOn; /* The ON clause of a join */
IdList *pUsing; /* The USING clause of a join */
Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */
char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */
Index *pIndex; /* Index structure corresponding to zIndex, if any */
} a[1]; /* One entry for each identifier on the list */
};
/*
** Permitted values of the SrcList.a.jointype field
*/
#define JT_INNER 0x0001 /* Any kind of inner or cross join */
#define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */
#define JT_NATURAL 0x0004 /* True for a "natural" join */
#define JT_LEFT 0x0008 /* Left outer join */
#define JT_RIGHT 0x0010 /* Right outer join */
#define JT_OUTER 0x0020 /* The "OUTER" keyword is present */
#define JT_ERROR 0x0040 /* unknown or unsupported join type */
/*
** A WherePlan object holds information that describes a lookup
** strategy.
**
** This object is intended to be opaque outside of the where.c module.
** It is included here only so that that compiler will know how big it
** is. None of the fields in this object should be used outside of
** the where.c module.
**
** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true.
** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx
** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the
** case that more than one of these conditions is true.
*/
struct WherePlan {
u32 wsFlags; /* WHERE_* flags that describe the strategy */
u32 nEq; /* Number of == constraints */
double nRow; /* Estimated number of rows (for EQP) */
union {
Index *pIdx; /* Index when WHERE_INDEXED is true */
struct WhereTerm *pTerm; /* WHERE clause term for OR-search */
sqlite3_index_info *pVtabIdx; /* Virtual table index to use */
} u;
};
/*
** For each nested loop in a WHERE clause implementation, the WhereInfo
** structure contains a single instance of this structure. This structure
** is intended to be private the the where.c module and should not be
** access or modified by other modules.
**
** The pIdxInfo field is used to help pick the best index on a
** virtual table. The pIdxInfo pointer contains indexing
** information for the i-th table in the FROM clause before reordering.
** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
** All other information in the i-th WhereLevel object for the i-th table
** after FROM clause ordering.
*/
struct WhereLevel {
WherePlan plan; /* query plan for this element of the FROM clause */
int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
int iTabCur; /* The VDBE cursor used to access the table */
int iIdxCur; /* The VDBE cursor used to access pIdx */
int addrBrk; /* Jump here to break out of the loop */
int addrNxt; /* Jump here to start the next IN combination */
int addrCont; /* Jump here to continue with the next loop cycle */
int addrFirst; /* First instruction of interior of the loop */
u8 iFrom; /* Which entry in the FROM clause */
u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */
int p1, p2; /* Operands of the opcode used to ends the loop */
union { /* Information that depends on plan.wsFlags */
struct {
int nIn; /* Number of entries in aInLoop[] */
struct InLoop {
int iCur; /* The VDBE cursor used by this IN operator */
int addrInTop; /* Top of the IN loop */
} *aInLoop; /* Information about each nested IN operator */
} in; /* Used when plan.wsFlags&WHERE_IN_ABLE */
} u;
/* The following field is really not part of the current level. But
** we need a place to cache virtual table index information for each
** virtual table in the FROM clause and the WhereLevel structure is
** a convenient place since there is one WhereLevel for each FROM clause
** element.
*/
sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */
};
/*
** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
** and the WhereInfo.wctrlFlags member.
*/
#define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */
#define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */
#define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */
#define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */
#define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */
#define WHERE_OMIT_OPEN 0x0010 /* Table cursors are already open */
#define WHERE_OMIT_CLOSE 0x0020 /* Omit close of table & index cursors */
#define WHERE_FORCE_TABLE 0x0040 /* Do not use an index-only search */
#define WHERE_ONETABLE_ONLY 0x0080 /* Only code the 1st table in pTabList */
/*
** The WHERE clause processing routine has two halves. The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop. An instance of
** this structure is returned by the first half and passed
** into the second half to give some continuity.
*/
struct WhereInfo {
Parse *pParse; /* Parsing and code generating context */
u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */
u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */
u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */
SrcList *pTabList; /* List of tables in the join */
int iTop; /* The very beginning of the WHERE loop */
int iContinue; /* Jump here to continue with next record */
int iBreak; /* Jump here to break out of the loop */
int nLevel; /* Number of nested loop */
struct WhereClause *pWC; /* Decomposition of the WHERE clause */
double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */
double nRowOut; /* Estimated number of output rows */
WhereLevel a[1]; /* Information about each nest loop in WHERE */
};
/*
** A NameContext defines a context in which to resolve table and column
** names. The context consists of a list of tables (the pSrcList) field and
** a list of named expression (pEList). The named expression list may
** be NULL. The pSrc corresponds to the FROM clause of a SELECT or
** to the table being operated on by INSERT, UPDATE, or DELETE. The
** pEList corresponds to the result set of a SELECT and is NULL for
** other statements.
**
** NameContexts can be nested. When resolving names, the inner-most
** context is searched first. If no match is found, the next outer
** context is checked. If there is still no match, the next context
** is checked. This process continues until either a match is found
** or all contexts are check. When a match is found, the nRef member of
** the context containing the match is incremented.
**
** Each subquery gets a new NameContext. The pNext field points to the
** NameContext in the parent query. Thus the process of scanning the
** NameContext list corresponds to searching through successively outer
** subqueries looking for a match.
*/
struct NameContext {
Parse *pParse; /* The parser */
SrcList *pSrcList; /* One or more tables used to resolve names */
ExprList *pEList; /* Optional list of named expressions */
int nRef; /* Number of names resolved by this context */
int nErr; /* Number of errors encountered while resolving names */
u8 allowAgg; /* Aggregate functions allowed here */
u8 hasAgg; /* True if aggregates are seen */
u8 isCheck; /* True if resolving names in a CHECK constraint */
int nDepth; /* Depth of subquery recursion. 1 for no recursion */
AggInfo *pAggInfo; /* Information about aggregates at this level */
NameContext *pNext; /* Next outer name context. NULL for outermost */
};
/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
**
** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
** If there is a LIMIT clause, the parser sets nLimit to the value of the
** limit and nOffset to the value of the offset (or 0 if there is not
** offset). But later on, nLimit and nOffset become the memory locations
** in the VDBE that record the limit and offset counters.
**
** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
** These addresses must be stored so that we can go back and fill in
** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor
** the number of columns in P2 can be computed at the same time
** as the OP_OpenEphm instruction is coded because not
** enough information about the compound query is known at that point.
** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
** for the result set. The KeyInfo for addrOpenTran[2] contains collating
** sequences for the ORDER BY clause.
*/
struct Select {
ExprList *pEList; /* The fields of the result */
u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
char affinity; /* MakeRecord with this affinity for SRT_Set */
u16 selFlags; /* Various SF_* values */
SrcList *pSrc; /* The FROM clause */
Expr *pWhere; /* The WHERE clause */
ExprList *pGroupBy; /* The GROUP BY clause */
Expr *pHaving; /* The HAVING clause */
ExprList *pOrderBy; /* The ORDER BY clause */
Select *pPrior; /* Prior select in a compound select statement */
Select *pNext; /* Next select to the left in a compound */
Select *pRightmost; /* Right-most select in a compound select statement */
Expr *pLimit; /* LIMIT expression. NULL means not used. */
Expr *pOffset; /* OFFSET expression. NULL means not used. */
int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */
double nSelectRow; /* Estimated number of result rows */
};
/*
** Allowed values for Select.selFlags. The "SF" prefix stands for
** "Select Flag".
*/
#define SF_Distinct 0x0001 /* Output should be DISTINCT */
#define SF_Resolved 0x0002 /* Identifiers have been resolved */
#define SF_Aggregate 0x0004 /* Contains aggregate functions */
#define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */
#define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */
/*
** The results of a select can be distributed in several ways. The
** "SRT" prefix means "SELECT Result Type".
*/
#define SRT_Union 1 /* Store result as keys in an index */
#define SRT_Except 2 /* Remove result from a UNION index */
#define SRT_Exists 3 /* Store 1 if the result is not empty */
#define SRT_Discard 4 /* Do not save the results anywhere */
/* The ORDER BY clause is ignored for all of the above */
#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
#define SRT_Output 5 /* Output each row of result */
#define SRT_Mem 6 /* Store result in a memory cell */
#define SRT_Set 7 /* Store results as keys in an index */
#define SRT_Table 8 /* Store result as data with an automatic rowid */
#define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */
#define SRT_Coroutine 10 /* Generate a single row of result */
/*
** A structure used to customize the behavior of sqlite3Select(). See
** comments above sqlite3Select() for details.
*/
typedef struct SelectDest SelectDest;
struct SelectDest {
u8 eDest; /* How to dispose of the results */
u8 affinity; /* Affinity used when eDest==SRT_Set */
int iParm; /* A parameter used by the eDest disposal method */
int iMem; /* Base register where results are written */
int nMem; /* Number of registers allocated */
};
/*
** During code generation of statements that do inserts into AUTOINCREMENT
** tables, the following information is attached to the Table.u.autoInc.p
** pointer of each autoincrement table to record some side information that
** the code generator needs. We have to keep per-table autoincrement
** information in case inserts are down within triggers. Triggers do not
** normally coordinate their activities, but we do need to coordinate the
** loading and saving of autoincrement information.
*/
struct AutoincInfo {
AutoincInfo *pNext; /* Next info block in a list of them all */
Table *pTab; /* Table this info block refers to */
int iDb; /* Index in sqlite3.aDb[] of database holding pTab */
int regCtr; /* Memory register holding the rowid counter */
};
/*
** Size of the column cache
*/
#ifndef SQLITE_N_COLCACHE
# define SQLITE_N_COLCACHE 10
#endif
/*
** At least one instance of the following structure is created for each
** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
** statement. All such objects are stored in the linked list headed at
** Parse.pTriggerPrg and deleted once statement compilation has been
** completed.
**
** A Vdbe sub-program that implements the body and WHEN clause of trigger
** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
** The Parse.pTriggerPrg list never contains two entries with the same
** values for both pTrigger and orconf.
**
** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
** accessed (or set to 0 for triggers fired as a result of INSERT
** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
** a mask of new.* columns used by the program.
*/
struct TriggerPrg {
Trigger *pTrigger; /* Trigger this program was coded from */
int orconf; /* Default ON CONFLICT policy */
SubProgram *pProgram; /* Program implementing pTrigger/orconf */
u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */
TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */
};
/*
** An SQL parser context. A copy of this structure is passed through
** the parser and down into all the parser action routine in order to
** carry around information that is global to the entire parse.
**
** The structure is divided into two parts. When the parser and code
** generate call themselves recursively, the first part of the structure
** is constant but the second part is reset at the beginning and end of
** each recursion.
**
** The nTableLock and aTableLock variables are only used if the shared-cache
** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
** used to store the set of table-locks required by the statement being
** compiled. Function sqlite3TableLock() is used to add entries to the
** list.
*/
struct Parse {
sqlite3 *db; /* The main database structure */
int rc; /* Return code from execution */
char *zErrMsg; /* An error message */
Vdbe *pVdbe; /* An engine for executing database bytecode */
u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
u8 nameClash; /* A permanent table name clashes with temp table name */
u8 checkSchema; /* Causes schema cookie check after an error */
u8 nested; /* Number of nested calls to the parser/code generator */
u8 parseError; /* True after a parsing error. Ticket #1794 */
u8 nTempReg; /* Number of temporary registers in aTempReg[] */
u8 nTempInUse; /* Number of aTempReg[] currently checked out */
int aTempReg[8]; /* Holding area for temporary registers */
int nRangeReg; /* Size of the temporary register block */
int iRangeReg; /* First register in temporary register block */
int nErr; /* Number of errors seen */
int nTab; /* Number of previously allocated VDBE cursors */
int nMem; /* Number of memory cells used so far */
int nSet; /* Number of sets used so far */
int ckBase; /* Base register of data during check constraints */
int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
int iCacheCnt; /* Counter used to generate aColCache[].lru values */
u8 nColCache; /* Number of entries in the column cache */
u8 iColCache; /* Next entry of the cache to replace */
struct yColCache {
int iTable; /* Table cursor number */
int iColumn; /* Table column number */
u8 tempReg; /* iReg is a temp register that needs to be freed */
int iLevel; /* Nesting level */
int iReg; /* Reg with value of this column. 0 means none. */
int lru; /* Least recently used entry has the smallest value */
} aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */
u32 writeMask; /* Start a write transaction on these databases */
u32 cookieMask; /* Bitmask of schema verified databases */
u8 isMultiWrite; /* True if statement may affect/insert multiple rows */
u8 mayAbort; /* True if statement may throw an ABORT exception */
int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */
int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */
#ifndef SQLITE_OMIT_SHARED_CACHE
int nTableLock; /* Number of locks in aTableLock */
TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
int regRowid; /* Register holding rowid of CREATE TABLE entry */
int regRoot; /* Register holding root page number for new objects */
AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */
int nMaxArg; /* Max args passed to user function by sub-program */
/* Information used while coding trigger programs. */
Parse *pToplevel; /* Parse structure for main program (or NULL) */
Table *pTriggerTab; /* Table triggers are being coded for */
u32 oldmask; /* Mask of old.* columns referenced */
u32 newmask; /* Mask of new.* columns referenced */
u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */
u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */
u8 disableTriggers; /* True to disable triggers */
double nQueryLoop; /* Estimated number of iterations of a query */
/* Above is constant between recursions. Below is reset before and after
** each recursion */
int nVar; /* Number of '?' variables seen in the SQL so far */
int nVarExpr; /* Number of used slots in apVarExpr[] */
int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */
Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */
Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */
int nAlias; /* Number of aliased result set columns */
int nAliasAlloc; /* Number of allocated slots for aAlias[] */
int *aAlias; /* Register used to hold aliased result */
u8 explain; /* True if the EXPLAIN flag is found on the query */
Token sNameToken; /* Token with unqualified schema object name */
Token sLastToken; /* The last token parsed */
const char *zTail; /* All SQL text past the last semicolon parsed */
Table *pNewTable; /* A table being constructed by CREATE TABLE */
Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
#ifndef SQLITE_OMIT_VIRTUALTABLE
Token sArg; /* Complete text of a module argument */
u8 declareVtab; /* True if inside sqlite3_declare_vtab() */
int nVtabLock; /* Number of virtual tables to lock */
Table **apVtabLock; /* Pointer to virtual tables needing locking */
#endif
int nHeight; /* Expression tree height of current sub-select */
Table *pZombieTab; /* List of Table objects to delete after code gen */
TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */
#ifndef SQLITE_OMIT_EXPLAIN
int iSelectId;
int iNextSelectId;
#endif
};
#ifdef SQLITE_OMIT_VIRTUALTABLE
#define IN_DECLARE_VTAB 0
#else
#define IN_DECLARE_VTAB (pParse->declareVtab)
#endif
/*
** An instance of the following structure can be declared on a stack and used
** to save the Parse.zAuthContext value so that it can be restored later.
*/
struct AuthContext {
const char *zAuthContext; /* Put saved Parse.zAuthContext here */
Parse *pParse; /* The Parse structure */
};
/*
** Bitfield flags for P5 value in OP_Insert and OP_Delete
*/
#define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */
#define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND 0x08 /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */
/*
* Each trigger present in the database schema is stored as an instance of
* struct Trigger.
*
* Pointers to instances of struct Trigger are stored in two ways.
* 1. In the "trigHash" hash table (part of the sqlite3* that represents the
* database). This allows Trigger structures to be retrieved by name.
* 2. All triggers associated with a single table form a linked list, using the
* pNext member of struct Trigger. A pointer to the first element of the
* linked list is stored as the "pTrigger" member of the associated
* struct Table.
*
* The "step_list" member points to the first element of a linked list
* containing the SQL statements specified as the trigger program.
*/
struct Trigger {
char *zName; /* The name of the trigger */
char *table; /* The table or view to which the trigger applies */
u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */
IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
the <column-list> is stored here */
Schema *pSchema; /* Schema containing the trigger */
Schema *pTabSchema; /* Schema containing the table */
TriggerStep *step_list; /* Link list of trigger program steps */
Trigger *pNext; /* Next trigger associated with the table */
};
/*
** A trigger is either a BEFORE or an AFTER trigger. The following constants
** determine which.
**
** If there are multiple triggers, you might of some BEFORE and some AFTER.
** In that cases, the constants below can be ORed together.
*/
#define TRIGGER_BEFORE 1
#define TRIGGER_AFTER 2
/*
* An instance of struct TriggerStep is used to store a single SQL statement
* that is a part of a trigger-program.
*
* Instances of struct TriggerStep are stored in a singly linked list (linked
* using the "pNext" member) referenced by the "step_list" member of the
* associated struct Trigger instance. The first element of the linked list is
* the first step of the trigger-program.
*
* The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
* "SELECT" statement. The meanings of the other members is determined by the
* value of "op" as follows:
*
* (op == TK_INSERT)
* orconf -> stores the ON CONFLICT algorithm
* pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
* this stores a pointer to the SELECT statement. Otherwise NULL.
* target -> A token holding the quoted name of the table to insert into.
* pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
* this stores values to be inserted. Otherwise NULL.
* pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
* statement, then this stores the column-names to be
* inserted into.
*
* (op == TK_DELETE)
* target -> A token holding the quoted name of the table to delete from.
* pWhere -> The WHERE clause of the DELETE statement if one is specified.
* Otherwise NULL.
*
* (op == TK_UPDATE)
* target -> A token holding the quoted name of the table to update rows of.
* pWhere -> The WHERE clause of the UPDATE statement if one is specified.
* Otherwise NULL.
* pExprList -> A list of the columns to update and the expressions to update
* them to. See sqlite3Update() documentation of "pChanges"
* argument.
*
*/
struct TriggerStep {
u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
u8 orconf; /* OE_Rollback etc. */
Trigger *pTrig; /* The trigger that this step is a part of */
Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
Token target; /* Target table for DELETE, UPDATE, INSERT */
Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */
ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */
IdList *pIdList; /* Column names for INSERT */
TriggerStep *pNext; /* Next in the link-list */
TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */
};
/*
** The following structure contains information used by the sqliteFix...
** routines as they walk the parse tree to make database references
** explicit.
*/
typedef struct DbFixer DbFixer;
struct DbFixer {
Parse *pParse; /* The parsing context. Error messages written here */
const char *zDb; /* Make sure all objects are contained in this database */
const char *zType; /* Type of the container - used for error messages */
const Token *pName; /* Name of the container - used for error messages */
};
/*
** An objected used to accumulate the text of a string where we
** do not necessarily know how big the string will be in the end.
*/
struct StrAccum {
sqlite3 *db; /* Optional database for lookaside. Can be NULL */
char *zBase; /* A base allocation. Not from malloc. */
char *zText; /* The string collected so far */
int nChar; /* Length of the string so far */
int nAlloc; /* Amount of space allocated in zText */
int mxAlloc; /* Maximum allowed string length */
u8 mallocFailed; /* Becomes true if any memory allocation fails */
u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */
u8 tooBig; /* Becomes true if string size exceeds limits */
};
/*
** A pointer to this structure is used to communicate information
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
*/
typedef struct {
sqlite3 *db; /* The database being initialized */
int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */
char **pzErrMsg; /* Error message stored here */
int rc; /* Result code stored here */
} InitData;
/*
** Structure containing global configuration data for the SQLite library.
**
** This structure also contains some state information.
*/
struct Sqlite3Config {
int bMemstat; /* True to enable memory status */
int bCoreMutex; /* True to enable core mutexing */
int bFullMutex; /* True to enable full mutexing */
int mxStrlen; /* Maximum string length */
int szLookaside; /* Default lookaside buffer size */
int nLookaside; /* Default lookaside buffer count */
sqlite3_mem_methods m; /* Low-level memory allocation interface */
sqlite3_mutex_methods mutex; /* Low-level mutex interface */
sqlite3_pcache_methods pcache; /* Low-level page-cache interface */
void *pHeap; /* Heap storage space */
int nHeap; /* Size of pHeap[] */
int mnReq, mxReq; /* Min and max heap requests sizes */
void *pScratch; /* Scratch memory */
int szScratch; /* Size of each scratch buffer */
int nScratch; /* Number of scratch buffers */
void *pPage; /* Page cache memory */
int szPage; /* Size of each page in pPage[] */
int nPage; /* Number of pages in pPage[] */
int mxParserStack; /* maximum depth of the parser stack */
int sharedCacheEnabled; /* true if shared-cache mode enabled */
/* The above might be initialized to non-zero. The following need to always
** initially be zero, however. */
int isInit; /* True after initialization has finished */
int inProgress; /* True while initialization in progress */
int isMutexInit; /* True after mutexes are initialized */
int isMallocInit; /* True after malloc is initialized */
int isPCacheInit; /* True after malloc is initialized */
sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */
int nRefInitMutex; /* Number of users of pInitMutex */
void (*xLog)(void*,int,const char*); /* Function for logging */
void *pLogArg; /* First argument to xLog() */
};
/*
** Context pointer passed down through the tree-walk.
*/
struct Walker {
int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */
int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */
Parse *pParse; /* Parser context. */
union { /* Extra data for callback */
NameContext *pNC; /* Naming context */
int i; /* Integer value */
} u;
};
/* Forward declarations */
int sqlite3WalkExpr(Walker*, Expr*);
int sqlite3WalkExprList(Walker*, ExprList*);
int sqlite3WalkSelect(Walker*, Select*);
int sqlite3WalkSelectExpr(Walker*, Select*);
int sqlite3WalkSelectFrom(Walker*, Select*);
/*
** Return code from the parse-tree walking primitives and their
** callbacks.
*/
#define WRC_Continue 0 /* Continue down into children */
#define WRC_Prune 1 /* Omit children but continue walking siblings */
#define WRC_Abort 2 /* Abandon the tree walk */
/*
** Assuming zIn points to the first byte of a UTF-8 character,
** advance zIn to point to the first byte of the next UTF-8 character.
*/
#define SQLITE_SKIP_UTF8(zIn) { \
if( (*(zIn++))>=0xc0 ){ \
while( (*zIn & 0xc0)==0x80 ){ zIn++; } \
} \
}
/*
** The SQLITE_*_BKPT macros are substitutes for the error codes with
** the same name but without the _BKPT suffix. These macros invoke
** routines that report the line-number on which the error originated
** using sqlite3_log(). The routines also provide a convenient place
** to set a debugger breakpoint.
*/
int sqlite3CorruptError(int);
int sqlite3MisuseError(int);
int sqlite3CantopenError(int);
#define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
#define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
#define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
/*
** FTS4 is really an extension for FTS3. It is enabled using the
** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all
** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
*/
#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
# define SQLITE_ENABLE_FTS3
#endif
/*
** The ctype.h header is needed for non-ASCII systems. It is also
** needed by FTS3 when FTS3 is included in the amalgamation.
*/
#if !defined(SQLITE_ASCII) || \
(defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
# include <ctype.h>
#endif
/*
** The following macros mimic the standard library functions toupper(),
** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
** sqlite versions only work for ASCII characters, regardless of locale.
*/
#ifdef SQLITE_ASCII
# define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
# define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
# define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
# define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
# define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
# define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
# define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)])
#else
# define sqlite3Toupper(x) toupper((unsigned char)(x))
# define sqlite3Isspace(x) isspace((unsigned char)(x))
# define sqlite3Isalnum(x) isalnum((unsigned char)(x))
# define sqlite3Isalpha(x) isalpha((unsigned char)(x))
# define sqlite3Isdigit(x) isdigit((unsigned char)(x))
# define sqlite3Isxdigit(x) isxdigit((unsigned char)(x))
# define sqlite3Tolower(x) tolower((unsigned char)(x))
#endif
/*
** Internal function prototypes
*/
int sqlite3StrICmp(const char *, const char *);
int sqlite3Strlen30(const char*);
#define sqlite3StrNICmp sqlite3_strnicmp
int sqlite3MallocInit(void);
void sqlite3MallocEnd(void);
void *sqlite3Malloc(int);
void *sqlite3MallocZero(int);
void *sqlite3DbMallocZero(sqlite3*, int);
void *sqlite3DbMallocRaw(sqlite3*, int);
char *sqlite3DbStrDup(sqlite3*,const char*);
char *sqlite3DbStrNDup(sqlite3*,const char*, int);
void *sqlite3Realloc(void*, int);
void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
void *sqlite3DbRealloc(sqlite3 *, void *, int);
void sqlite3DbFree(sqlite3*, void*);
int sqlite3MallocSize(void*);
int sqlite3DbMallocSize(sqlite3*, void*);
void *sqlite3ScratchMalloc(int);
void sqlite3ScratchFree(void*);
void *sqlite3PageMalloc(int);
void sqlite3PageFree(void*);
void sqlite3MemSetDefault(void);
void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
int sqlite3HeapNearlyFull(void);
/*
** On systems with ample stack space and that support alloca(), make
** use of alloca() to obtain space for large automatic objects. By default,
** obtain space from malloc().
**
** The alloca() routine never returns NULL. This will cause code paths
** that deal with sqlite3StackAlloc() failures to be unreachable.
*/
#ifdef SQLITE_USE_ALLOCA
# define sqlite3StackAllocRaw(D,N) alloca(N)
# define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N)
# define sqlite3StackFree(D,P)
#else
# define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N)
# define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N)
# define sqlite3StackFree(D,P) sqlite3DbFree(D,P)
#endif
#ifdef SQLITE_ENABLE_MEMSYS3
const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
#endif
#ifdef SQLITE_ENABLE_MEMSYS5
const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
#endif
#ifndef SQLITE_MUTEX_OMIT
sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
sqlite3_mutex_methods const *sqlite3NoopMutex(void);
sqlite3_mutex *sqlite3MutexAlloc(int);
int sqlite3MutexInit(void);
int sqlite3MutexEnd(void);
#endif
int sqlite3StatusValue(int);
void sqlite3StatusAdd(int, int);
void sqlite3StatusSet(int, int);
#ifndef SQLITE_OMIT_FLOATING_POINT
int sqlite3IsNaN(double);
#else
# define sqlite3IsNaN(X) 0
#endif
void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
#ifndef SQLITE_OMIT_TRACE
void sqlite3XPrintf(StrAccum*, const char*, ...);
#endif
char *sqlite3MPrintf(sqlite3*,const char*, ...);
char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
void sqlite3DebugPrintf(const char*, ...);
#endif
#if defined(SQLITE_TEST)
void *sqlite3TestTextToPtr(const char*);
#endif
void sqlite3SetString(char **, sqlite3*, const char*, ...);
void sqlite3ErrorMsg(Parse*, const char*, ...);
int sqlite3Dequote(char*);
int sqlite3KeywordCode(const unsigned char*, int);
int sqlite3RunParser(Parse*, const char*, char **);
void sqlite3FinishCoding(Parse*);
int sqlite3GetTempReg(Parse*);
void sqlite3ReleaseTempReg(Parse*,int);
int sqlite3GetTempRange(Parse*,int);
void sqlite3ReleaseTempRange(Parse*,int,int);
Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
Expr *sqlite3Expr(sqlite3*,int,const char*);
void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
void sqlite3ExprAssignVarNumber(Parse*, Expr*);
void sqlite3ExprDelete(sqlite3*, Expr*);
ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
void sqlite3ExprListDelete(sqlite3*, ExprList*);
int sqlite3Init(sqlite3*, char**);
int sqlite3InitCallback(void*, int, char**, char**);
void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
void sqlite3ResetInternalSchema(sqlite3*, int);
void sqlite3BeginParse(Parse*,int);
void sqlite3CommitInternalChanges(sqlite3*);
Table *sqlite3ResultSetOfSelect(Parse*,Select*);
void sqlite3OpenMasterTable(Parse *, int);
void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
void sqlite3AddColumn(Parse*,Token*);
void sqlite3AddNotNull(Parse*, int);
void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
void sqlite3AddCheckConstraint(Parse*, Expr*);
void sqlite3AddColumnType(Parse*,Token*);
void sqlite3AddDefaultValue(Parse*,ExprSpan*);
void sqlite3AddCollateType(Parse*, Token*);
void sqlite3EndTable(Parse*,Token*,Token*,Select*);
Bitvec *sqlite3BitvecCreate(u32);
int sqlite3BitvecTest(Bitvec*, u32);
int sqlite3BitvecSet(Bitvec*, u32);
void sqlite3BitvecClear(Bitvec*, u32, void*);
void sqlite3BitvecDestroy(Bitvec*);
u32 sqlite3BitvecSize(Bitvec*);
int sqlite3BitvecBuiltinTest(int,int*);
RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
void sqlite3RowSetClear(RowSet*);
void sqlite3RowSetInsert(RowSet*, i64);
int sqlite3RowSetTest(RowSet*, u8 iBatch, i64);
int sqlite3RowSetNext(RowSet*, i64*);
void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
int sqlite3ViewGetColumnNames(Parse*,Table*);
#else
# define sqlite3ViewGetColumnNames(A,B) 0
#endif
void sqlite3DropTable(Parse*, SrcList*, int, int);
void sqlite3DeleteTable(sqlite3*, Table*);
#ifndef SQLITE_OMIT_AUTOINCREMENT
void sqlite3AutoincrementBegin(Parse *pParse);
void sqlite3AutoincrementEnd(Parse *pParse);
#else
# define sqlite3AutoincrementBegin(X)
# define sqlite3AutoincrementEnd(X)
#endif
void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
int sqlite3IdListIndex(IdList*,const char*);
SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
Token*, Select*, Expr*, IdList*);
void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
void sqlite3SrcListShiftJoinType(SrcList*);
void sqlite3SrcListAssignCursors(Parse*, SrcList*);
void sqlite3IdListDelete(sqlite3*, IdList*);
void sqlite3SrcListDelete(sqlite3*, SrcList*);
Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
Token*, int, int);
void sqlite3DropIndex(Parse*, SrcList*, int);
int sqlite3Select(Parse*, Select*, SelectDest*);
Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
Expr*,ExprList*,int,Expr*,Expr*);
void sqlite3SelectDelete(sqlite3*, Select*);
Table *sqlite3SrcListLookup(Parse*, SrcList*);
int sqlite3IsReadOnly(Parse*, Table*, int);
void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
#endif
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16);
void sqlite3WhereEnd(WhereInfo*);
int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int);
void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
void sqlite3ExprCodeMove(Parse*, int, int, int);
void sqlite3ExprCodeCopy(Parse*, int, int, int);
void sqlite3ExprCacheStore(Parse*, int, int, int);
void sqlite3ExprCachePush(Parse*);
void sqlite3ExprCachePop(Parse*, int);
void sqlite3ExprCacheRemove(Parse*, int, int);
void sqlite3ExprCacheClear(Parse*);
void sqlite3ExprCacheAffinityChange(Parse*, int, int);
int sqlite3ExprCode(Parse*, Expr*, int);
int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
int sqlite3ExprCodeTarget(Parse*, Expr*, int);
int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
void sqlite3ExprCodeConstants(Parse*, Expr*);
int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
Table *sqlite3FindTable(sqlite3*,const char*, const char*);
Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
void sqlite3Vacuum(Parse*);
int sqlite3RunVacuum(char**, sqlite3*);
char *sqlite3NameFromToken(sqlite3*, Token*);
int sqlite3ExprCompare(Expr*, Expr*);
int sqlite3ExprListCompare(ExprList*, ExprList*);
void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
Vdbe *sqlite3GetVdbe(Parse*);
void sqlite3PrngSaveState(void);
void sqlite3PrngRestoreState(void);
void sqlite3PrngResetState(void);
void sqlite3RollbackAll(sqlite3*);
void sqlite3CodeVerifySchema(Parse*, int);
void sqlite3BeginTransaction(Parse*, int);
void sqlite3CommitTransaction(Parse*);
void sqlite3RollbackTransaction(Parse*);
void sqlite3Savepoint(Parse*, int, Token*);
void sqlite3CloseSavepoints(sqlite3 *);
int sqlite3ExprIsConstant(Expr*);
int sqlite3ExprIsConstantNotJoin(Expr*);
int sqlite3ExprIsConstantOrFunction(Expr*);
int sqlite3ExprIsInteger(Expr*, int*);
int sqlite3ExprCanBeNull(const Expr*);
void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int);
int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
int sqlite3IsRowid(const char*);
void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int);
void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
int*,int,int,int,int,int*);
void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int);
int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
void sqlite3BeginWriteOperation(Parse*, int, int);
void sqlite3MultiWrite(Parse*);
void sqlite3MayAbort(Parse*);
void sqlite3HaltConstraint(Parse*, int, char*, int);
Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
IdList *sqlite3IdListDup(sqlite3*,IdList*);
Select *sqlite3SelectDup(sqlite3*,Select*,int);
void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
void sqlite3RegisterBuiltinFunctions(sqlite3*);
void sqlite3RegisterDateTimeFunctions(void);
void sqlite3RegisterGlobalFunctions(void);
int sqlite3SafetyCheckOk(sqlite3*);
int sqlite3SafetyCheckSickOrOk(sqlite3*);
void sqlite3ChangeCookie(Parse*, int);
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
#endif
#ifndef SQLITE_OMIT_TRIGGER
void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
Expr*,int, int);
void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
void sqlite3DropTrigger(Parse*, SrcList*, int);
void sqlite3DropTriggerPtr(Parse*, Trigger*);
Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
Trigger *sqlite3TriggerList(Parse *, Table *);
void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
int, int, int);
void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
ExprList*,Select*,u8);
TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
void sqlite3DeleteTrigger(sqlite3*, Trigger*);
void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
# define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
#else
# define sqlite3TriggersExist(B,C,D,E,F) 0
# define sqlite3DeleteTrigger(A,B)
# define sqlite3DropTriggerPtr(A,B)
# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
# define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
# define sqlite3TriggerList(X, Y) 0
# define sqlite3ParseToplevel(p) p
# define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
#endif
int sqlite3JoinType(Parse*, Token*, Token*, Token*);
void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
void sqlite3DeferForeignKey(Parse*, int);
#ifndef SQLITE_OMIT_AUTHORIZATION
void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
void sqlite3AuthContextPop(AuthContext*);
int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
#else
# define sqlite3AuthRead(a,b,c,d)
# define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK
# define sqlite3AuthContextPush(a,b,c)
# define sqlite3AuthContextPop(a) ((void)(a))
#endif
void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
void sqlite3Detach(Parse*, Expr*);
int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
int sqlite3FixSrcList(DbFixer*, SrcList*);
int sqlite3FixSelect(DbFixer*, Select*);
int sqlite3FixExpr(DbFixer*, Expr*);
int sqlite3FixExprList(DbFixer*, ExprList*);
int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
int sqlite3AtoF(const char *z, double*, int, u8);
int sqlite3GetInt32(const char *, int*);
int sqlite3Atoi(const char*);
int sqlite3Utf16ByteLen(const void *pData, int nChar);
int sqlite3Utf8CharLen(const char *pData, int nByte);
int sqlite3Utf8Read(const u8*, const u8**);
/*
** Routines to read and write variable-length integers. These used to
** be defined locally, but now we use the varint routines in the util.c
** file. Code should use the MACRO forms below, as the Varint32 versions
** are coded to assume the single byte case is already handled (which
** the MACRO form does).
*/
int sqlite3PutVarint(unsigned char*, u64);
int sqlite3PutVarint32(unsigned char*, u32);
u8 sqlite3GetVarint(const unsigned char *, u64 *);
u8 sqlite3GetVarint32(const unsigned char *, u32 *);
int sqlite3VarintLen(u64 v);
/*
** The header of a record consists of a sequence variable-length integers.
** These integers are almost always small and are encoded as a single byte.
** The following macros take advantage this fact to provide a fast encode
** and decode of the integers in a record header. It is faster for the common
** case where the integer is a single byte. It is a little slower when the
** integer is two or more bytes. But overall it is faster.
**
** The following expressions are equivalent:
**
** x = sqlite3GetVarint32( A, &B );
** x = sqlite3PutVarint32( A, B );
**
** x = getVarint32( A, B );
** x = putVarint32( A, B );
**
*/
#define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B)))
#define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
#define getVarint sqlite3GetVarint
#define putVarint sqlite3PutVarint
const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
void sqlite3TableAffinityStr(Vdbe *, Table *);
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
char sqlite3ExprAffinity(Expr *pExpr);
int sqlite3Atoi64(const char*, i64*, int, u8);
void sqlite3Error(sqlite3*, int, const char*,...);
void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
const char *sqlite3ErrStr(int);
int sqlite3ReadSchema(Parse *pParse);
CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
Expr *sqlite3ExprSetColl(Expr*, CollSeq*);
Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*);
int sqlite3CheckCollSeq(Parse *, CollSeq *);
int sqlite3CheckObjectName(Parse *, const char *);
void sqlite3VdbeSetChanges(sqlite3 *, int);
const void *sqlite3ValueText(sqlite3_value*, u8);
int sqlite3ValueBytes(sqlite3_value*, u8);
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
void(*)(void*));
void sqlite3ValueFree(sqlite3_value*);
sqlite3_value *sqlite3ValueNew(sqlite3 *);
char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
#ifdef SQLITE_ENABLE_STAT2
char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *);
#endif
int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
extern const unsigned char sqlite3OpcodeProperty[];
extern const unsigned char sqlite3UpperToLower[];
extern const unsigned char sqlite3CtypeMap[];
extern const Token sqlite3IntTokens[];
extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
#ifndef SQLITE_OMIT_WSD
extern int sqlite3PendingByte;
#endif
#endif
void sqlite3RootPageMoved(Db*, int, int);
void sqlite3Reindex(Parse*, Token*, Token*);
void sqlite3AlterFunctions(void);
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
int sqlite3GetToken(const unsigned char *, int *);
void sqlite3NestedParse(Parse*, const char*, ...);
void sqlite3ExpirePreparedStatements(sqlite3*);
int sqlite3CodeSubselect(Parse *, Expr *, int, int);
void sqlite3SelectPrep(Parse*, Select*, NameContext*);
int sqlite3ResolveExprNames(NameContext*, Expr*);
void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
void sqlite3AlterFinishAddColumn(Parse *, Token *);
void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*);
char sqlite3AffinityType(const char*);
void sqlite3Analyze(Parse*, Token*, Token*);
int sqlite3InvokeBusyHandler(BusyHandler*);
int sqlite3FindDb(sqlite3*, Token*);
int sqlite3FindDbName(sqlite3 *, const char *);
int sqlite3AnalysisLoad(sqlite3*,int iDB);
void sqlite3DeleteIndexSamples(sqlite3*,Index*);
void sqlite3DefaultRowEst(Index*);
void sqlite3RegisterLikeFunctions(sqlite3*, int);
int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
void sqlite3MinimumFileFormat(Parse*, int, int);
void sqlite3SchemaFree(void *);
Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
void (*)(sqlite3_context*,int,sqlite3_value **),
void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
FuncDestructor *pDestructor
);
int sqlite3ApiExit(sqlite3 *db, int);
int sqlite3OpenTempDatabase(Parse *);
void sqlite3StrAccumInit(StrAccum*, char*, int, int);
void sqlite3StrAccumAppend(StrAccum*,const char*,int);
char *sqlite3StrAccumFinish(StrAccum*);
void sqlite3StrAccumReset(StrAccum*);
void sqlite3SelectDestInit(SelectDest*,int,int);
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
void sqlite3BackupRestart(sqlite3_backup *);
void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
/*
** The interface to the LEMON-generated parser
*/
void *sqlite3ParserAlloc(void*(*)(size_t));
void sqlite3ParserFree(void*, void(*)(void*));
void sqlite3Parser(void*, int, Token, Parse*);
#ifdef YYTRACKMAXSTACKDEPTH
int sqlite3ParserStackPeak(void*);
#endif
void sqlite3AutoLoadExtensions(sqlite3*);
#ifndef SQLITE_OMIT_LOAD_EXTENSION
void sqlite3CloseExtensions(sqlite3*);
#else
# define sqlite3CloseExtensions(X)
#endif
#ifndef SQLITE_OMIT_SHARED_CACHE
void sqlite3TableLock(Parse *, int, int, u8, const char *);
#else
#define sqlite3TableLock(v,w,x,y,z)
#endif
#ifdef SQLITE_TEST
int sqlite3Utf8To8(unsigned char*);
#endif
#ifdef SQLITE_OMIT_VIRTUALTABLE
# define sqlite3VtabClear(Y)
# define sqlite3VtabSync(X,Y) SQLITE_OK
# define sqlite3VtabRollback(X)
# define sqlite3VtabCommit(X)
# define sqlite3VtabInSync(db) 0
# define sqlite3VtabLock(X)
# define sqlite3VtabUnlock(X)
# define sqlite3VtabUnlockList(X)
#else
void sqlite3VtabClear(sqlite3 *db, Table*);
int sqlite3VtabSync(sqlite3 *db, char **);
int sqlite3VtabRollback(sqlite3 *db);
int sqlite3VtabCommit(sqlite3 *db);
void sqlite3VtabLock(VTable *);
void sqlite3VtabUnlock(VTable *);
void sqlite3VtabUnlockList(sqlite3*);
# define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
#endif
void sqlite3VtabMakeWritable(Parse*,Table*);
void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
void sqlite3VtabFinishParse(Parse*, Token*);
void sqlite3VtabArgInit(Parse*);
void sqlite3VtabArgExtend(Parse*, Token*);
int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
int sqlite3VtabCallConnect(Parse*, Table*);
int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
int sqlite3VtabBegin(sqlite3 *, VTable *);
FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
int sqlite3Reprepare(Vdbe*);
void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
int sqlite3TempInMemory(const sqlite3*);
VTable *sqlite3GetVTable(sqlite3*, Table*);
const char *sqlite3JournalModename(int);
int sqlite3Checkpoint(sqlite3*, int);
int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
/* Declarations for functions in fkey.c. All of these are replaced by
** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
** key functionality is available. If OMIT_TRIGGER is defined but
** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
** this case foreign keys are parsed, but no other functionality is
** provided (enforcement of FK constraints requires the triggers sub-system).
*/
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
void sqlite3FkCheck(Parse*, Table*, int, int);
void sqlite3FkDropTable(Parse*, SrcList *, Table*);
void sqlite3FkActions(Parse*, Table*, ExprList*, int);
int sqlite3FkRequired(Parse*, Table*, int*, int);
u32 sqlite3FkOldmask(Parse*, Table*);
FKey *sqlite3FkReferences(Table *);
#else
#define sqlite3FkActions(a,b,c,d)
#define sqlite3FkCheck(a,b,c,d)
#define sqlite3FkDropTable(a,b,c)
#define sqlite3FkOldmask(a,b) 0
#define sqlite3FkRequired(a,b,c,d) 0
#endif
#ifndef SQLITE_OMIT_FOREIGN_KEY
void sqlite3FkDelete(sqlite3 *, Table*);
#else
#define sqlite3FkDelete(a,b)
#endif
/*
** Available fault injectors. Should be numbered beginning with 0.
*/
#define SQLITE_FAULTINJECTOR_MALLOC 0
#define SQLITE_FAULTINJECTOR_COUNT 1
/*
** The interface to the code in fault.c used for identifying "benign"
** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
** is not defined.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
void sqlite3BeginBenignMalloc(void);
void sqlite3EndBenignMalloc(void);
#else
#define sqlite3BeginBenignMalloc()
#define sqlite3EndBenignMalloc()
#endif
#define IN_INDEX_ROWID 1
#define IN_INDEX_EPH 2
#define IN_INDEX_INDEX 3
int sqlite3FindInIndex(Parse *, Expr *, int*);
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
int sqlite3JournalSize(sqlite3_vfs *);
int sqlite3JournalCreate(sqlite3_file *);
#else
#define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
#endif
void sqlite3MemJournalOpen(sqlite3_file *);
int sqlite3MemJournalSize(void);
int sqlite3IsMemJournal(sqlite3_file *);
#if SQLITE_MAX_EXPR_DEPTH>0
void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
int sqlite3SelectExprHeight(Select *);
int sqlite3ExprCheckHeight(Parse*, int);
#else
#define sqlite3ExprSetHeight(x,y)
#define sqlite3SelectExprHeight(x) 0
#define sqlite3ExprCheckHeight(x,y)
#endif
u32 sqlite3Get4byte(const u8*);
void sqlite3Put4byte(u8*, u32);
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
void sqlite3ConnectionUnlocked(sqlite3 *db);
void sqlite3ConnectionClosed(sqlite3 *db);
#else
#define sqlite3ConnectionBlocked(x,y)
#define sqlite3ConnectionUnlocked(x)
#define sqlite3ConnectionClosed(x)
#endif
#ifdef SQLITE_DEBUG
void sqlite3ParserTrace(FILE*, char *);
#endif
/*
** If the SQLITE_ENABLE IOTRACE exists then the global variable
** sqlite3IoTrace is a pointer to a printf-like routine used to
** print I/O tracing messages.
*/
#ifdef SQLITE_ENABLE_IOTRACE
# define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; }
void sqlite3VdbeIOTraceSql(Vdbe*);
SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
#else
# define IOTRACE(A)
# define sqlite3VdbeIOTraceSql(X)
#endif
/*
** These routines are available for the mem2.c debugging memory allocator
** only. They are used to verify that different "types" of memory
** allocations are properly tracked by the system.
**
** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
** the MEMTYPE_* macros defined below. The type must be a bitmask with
** a single bit set.
**
** sqlite3MemdebugHasType() returns true if any of the bits in its second
** argument match the type set by the previous sqlite3MemdebugSetType().
** sqlite3MemdebugHasType() is intended for use inside assert() statements.
**
** sqlite3MemdebugNoType() returns true if none of the bits in its second
** argument match the type set by the previous sqlite3MemdebugSetType().
**
** Perhaps the most important point is the difference between MEMTYPE_HEAP
** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means
** it might have been allocated by lookaside, except the allocation was
** too large or lookaside was already full. It is important to verify
** that allocations that might have been satisfied by lookaside are not
** passed back to non-lookaside free() routines. Asserts such as the
** example above are placed on the non-lookaside free() routines to verify
** this constraint.
**
** All of this is no-op for a production build. It only comes into
** play when the SQLITE_MEMDEBUG compile-time option is used.
*/
#ifdef SQLITE_MEMDEBUG
void sqlite3MemdebugSetType(void*,u8);
int sqlite3MemdebugHasType(void*,u8);
int sqlite3MemdebugNoType(void*,u8);
#else
# define sqlite3MemdebugSetType(X,Y) /* no-op */
# define sqlite3MemdebugHasType(X,Y) 1
# define sqlite3MemdebugNoType(X,Y) 1
#endif
#define MEMTYPE_HEAP 0x01 /* General heap allocations */
#define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */
#define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */
#define MEMTYPE_PCACHE 0x08 /* Page cache allocations */
#define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */
#endif /* _SQLITEINT_H_ */