Labelled Algebraic Graphs A Tale of Four Monoids

Andrey Mokhov

GitHub: @snowleopard, Twitter: @andreymokhov
Haskell eXchange, October 2018

Google

algebraic graphs
0 \& Q

This kind of graph:

- Labelled vertices
- Can have cycles
- Can have self-loops
- Directed/undirected

- No vertex ports
- No 'forbidden' edges

- Labelled/unlabelled edges

Part I:
 Algebraic Graphs

From math to Haskell

Pair (V, E) such that $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$
 - Example: $(\{1,2,3\},\{(1,2),(1,3)\})$

From math to Haskell

Pair (V, E) such that $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$

- Example: $(\{1,2,3\},\{(1,2),(1,3)\})$

data Graph a = Graph
\{ vertices :: Set a
, edges :: Set (asa) \} ~
example :: Graph Int
example $=$ Graph $[1,2,3][(1,2),(1,3)]$

Problem

Pair (V, E) such that $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$

- Non-example: (\{1\}, \{(1,2)\})

Problem

Pair (V, E) such that $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$

- Non-example: (\{1\}, \{(1,2)\})
data Graph a = Graph
\{ vertices : : Set a
, edges : : Set (a,a) \}
nonExample :: Graph Int
nonExample = Graph [1] [(1,2)]

Problem

Pair (V, E) such that $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$

- Non-example: $(\{1\},\{(1,2)\})$
data Graph a = Graph
 \{ vertices :: Set a , edges :: Set (a,a) \}
nonExample :: Graph Int nonExample = Graph [1] [(1,2)]

Problem

Pair (V, E) such that $\mathrm{E} \subseteq \mathrm{V} \times \mathrm{V}$

- Non-example: $(\{1\},\{(1,2)\})$
data Graph a = Graph \{ vertices :: Set a
, edges :: Set (asa) \} ~
nonExample :: Graph Int nonExample = Graph [1] [(1,2)]

Hard to express in types

Solution space:

1. Fix Haskell
2. Fix math

Algebraic graphs

data Graph a = Empty
Vertex a Overlay (Graph a) (Graph a)
Connect (Graph a) (Graph a)

Every graph can be represented by a Graph a expression. Non-graphs cannot be represented.

Algebraic graphs

data Graph a = Empty Vertex a Overlay (Graph a) (Graph a) Connect (Graph a) (Graph a)

Every graph can be represented by a Graph a expression. Non-graphs cannot be represented.
A. Mokhov, V. Khomenko. "Algebra of Parameterised Graphs", ACM Transactions on Embedded Computing Systems, 2014

Empty :: Graph a

Empty :: Graph a

(\emptyset, \varnothing)

Vertex :: a -> Graph a

$(\{a\}, \varnothing)$

Overlay :: Graph a -> Graph a -> Graph a

$$
\left(V_{1}, E_{1}\right)+\left(V_{2}, E_{2}\right)=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)
$$

Connect :: Graph a -> Graph a -> Graph a

$$
\left(V_{1}, E_{1}\right) \times\left(V_{2}, E_{2}\right)=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup V_{1} \times V_{2}\right)
$$

Algebraic graphs

data Graph a = Empty
Vertex a Overlay (Graph a) (Graph a) Connect (Graph a) (Graph a)

Empty is the empty graph (\varnothing, \varnothing)
Vertex a is the singleton graph ($\{a\}, \varnothing$)
Overlay of $\left(V_{1}, E_{1}\right)$ and $\left(V_{2}, E_{2}\right)$ is $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$
Connect of $\left(V_{1}, E_{1}\right)$ and $\left(V_{2}, E_{2}\right)$ is $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup V_{1} \times V_{2}\right)$

1

Vertex 1
Vertex 2

$\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}$
 Overlay (Vertex 1) (Vertex 2)
 Or simply $1+2$

Connect (Vertex 1) (Vertex 1)

$$
1 \times 2+1 \times 3
$$

Overlay (Connect (Vertex 1) (Vertex 2)) (Connect (Vertex 1) (Vertex 3))

Connect (Vertex 1) (Vertex 1)

Can we
factor out 1?

$$
1 \times 2+1 \times 3
$$

2) (Connect (Vertex 1) (Vertex 3))

Connect (Vertex 1) (Vertex 1)

Overlay (Connect (Vertex 1) (Vertex 2)) (Connect (Vertex 1) (Vertex 3))

Distributivity

$$
\begin{aligned}
& \left.\left.\left.\begin{array}{l}
1 \\
0
\end{array} \rightarrow \begin{array}{l}
2 \\
0 \\
+ \\
3 \\
0
\end{array}=\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)=\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\begin{array}{l}
2 \\
1
\end{array}\right) \\
& x(y+z)=x y+x z \\
& (x+y) z=x z+y z
\end{aligned}
$$

Distributivity

I bet it's just a semiring...

Distributivity

 a semiring...

$$
\begin{aligned}
& x(y+z)=x y+x z \\
& (x+y) z=x z+y z
\end{aligned}
$$

Decomposition

Intuition: any graph expression can be broken down into an overlay of vertices and edges

Algebraic structure

Axioms:

Overlay + is commutative and associative
Connect \times is associative
The empty graph ε is the identity of connect \times
Connect \times distributes over overlay +
Decomposition: $x y z=x y+x z+y z$
Theorems:
Overlay + is idempotent and has ε as the identity

Algebraic structure

Axioms:

Overlay + is commutative and associative
Connect \times is associative
The empty graph ε is the identity of connect \times
Connect \times distributes over overlay +
Decomposition: $x y z=x y+x z+y z$
Theorems:

Monoid count: 2

Overlay + is idempotent and has ε as the identity

Decomposition axiom is strange

A proof that $0=1$:

$$
\begin{aligned}
0 & =0 \times 1 \times 1 \\
& =0 \times 1+0 \times 1+1 \times 1 \\
& =0+0+1 \\
& =1
\end{aligned}
$$

(1 is identity of \times)
(decomposition)
(1 is identity of \times)
(0 is identity of +)

Decomposition axiom is strange

A proof that $0=1$:

(1 is identity of \times)
(decomposition)
(1 is identity of \times)
(0 is identity of +)

Other flavours of the algebra

Non-empty graphs: Drop the Empty constructor
Undirected graphs: Add $x y=y x$
Reflexive graphs: Add Vertex $\mathbf{v}=$ Vertex $\mathbf{v} \times$ Vertex \mathbf{v}
Transitive graphs: Add $y \neq \varepsilon \Rightarrow x y+y z=x y+x z+y z$
... and their various combinations:

- Preorders = Reflexive + Transitive
- Equivalence relations = Undirected + Reflexive + Transitive

Part II:

A library for algebraic graphs in just 100 lines of code

Reusing functional programming abstractions

```
data Graph a = Empty
                Vertex a
                Overlay (Graph a) (Graph a)
                Connect (Graph a) (Graph a)
instance Eq a => Eq (Graph a) -- via normal form
instance Num a => Num (Graph a)
instance Functor Graph
instance Applicative Graph
instance Monad Graph
instance MonadPlus Graph
```


Reusing functional programming abstractions

```
data Graph a = Empty
                Vertex a
                Overlay (Graph a) (Graph a)
                Connect (Graph a) (Graph a)
```


Graph as a Num

instance Num a => Num (Graph a) where fromInteger = Vertex . fromInteger
(+) = Overlay
(*) = Connect

signum	$=$ const Empty
abs	$=$ id
negate	$=$ id

example :: Graph Int
example $=1$ * (2 + 3)
-- Instead of: Graph $[1,2,3][(1,2),(1,3)]$

From four primitives to a library

-- An abstract interface or a type class
empty :: Graph a
vertex :: a -> Graph a
overlay :: Graph a -> Graph a -> Graph a
connect :: Graph a -> Graph a -> Graph a

From four primitives to a library

-- An abstract interface or a type class
empty :: Graph a vertex :: a -> Graph a
overlay :: Graph a -> Graph a -> Graph a connect :: Graph a -> Graph a -> Graph a
-- Combine primitives into larger graphs vertices :: [a] -> Graph a vertices vs = fold overlay empty (map vertex vs)
edge :: a -> a -> Graph a edge u v = connect (vertex u) (vertex v)

Folding algebraic graphs

-- Like fold but for graphs
fold :: b -> (a ->b) $->(\mathrm{b}->\mathrm{b}->\mathrm{b})->(\mathrm{b}->\mathrm{b}->\mathrm{b})$ -> Graph a -> b
fold e vo c = go where

Folding algebraic graphs

-- Like foldr but for graphs
foldg :: b -> (a -> b) -> (b -> b -> b) -> (b -> b -> b) -> Graph a -> b
foldg e v o c = go
where

isEmpty :: Graph a -> Bool
isEmpty = foldg True (const False) (\&\&) (\&\&)

Folding algebraic graphs

-- Like fold but for graphs
fold :: b -> (a ->b) $->(\mathrm{b}->\mathrm{b}->\mathrm{b})->(\mathrm{b}->\mathrm{b}->\mathrm{b})$ -> Graph a -> b
fold e vo c = go where

The arguments (e, v, o, c) must satisfy the laws of the algebra

```
go Empty = e
go (Vertex x ) = v x
go (Overlay x y) = o (go x) (go y)
go (Connect x y) = c (go x) (go y)
```

isEmpty :: Graph a -> Bool
isEmpty = foldg True (const False) (\&\&) (\&\&)

Folding algebraic graphs

```
hasVertex :: Eq a => a -> Graph a -> Bool
hasVertex x = foldg False (==x) (||) (||)
```

vertexSet :: Ord a => Graph a -> Set a vertexSet = foldg Set.empty singleton union union
transpose :: Graph a -> Graph a
transpose = foldg empty vertex overlay (flip connect)

```
size :: Graph a -> Int
size = foldg 1 (const 1) (+) (+)
```


Folding algebraic graphs

```
hasVertex :: Eq a => a -> Graph a -> Bool
hasVertex x = foldg False (==x) (||) (||)
```

vertexSet :: Ord a => Graph a -> Set a vertexSet = foldg Set.empty singleton union union
transpose :: Graph a -> Graph a
transpose = foldg empty vertex overlay (flip connect)
size :: Graph a -> Int size = foldg 1 (const 1) (+)

Part III: Labelled Algebraic Graphs

Labelled algebraic graphs

data Graph a = Empty
data Graph e a = Empty
| Vertex a
| Connect e (Graph ea) (Graph ea)

Labelled algebraic graphs

data Graph a = Empty
data Graph e a = Empty
Vertex a
Connect e (Graph e a) (Graph e a)

Labels

We need zero label 0 to indicate a missing edge

- Labels are edge capacities: θ is just 0
- Labels are distances between vertices: θ is ∞
- Labels are regular expressions: 0 is \varnothing

We need a way to compose 'parallel' labels:

- Labels are edge capacities: <+> is max
- Labels are distances between vertices: <+> is min
- Labels are regular expressions: <+> is |

To stay sane we better require <+> to be associative and have identity 0

Labels

We need zero label 0 to indicate a missing edge

- Labels are edge capacities: θ is just 0
- Labels are distances between vertices: θ is ∞
- Labels are regular expressions: θ is \varnothing

We need a way to compose 'parallel' labels:

- Labels are edge capacities: <+> is max
- Labels are distances between vertices: <+> is min
- Labels are regular expressions: <+> is |

Monoid count: 3

To stay sane we better require <+> to be associative and have identity 0

Overlaying edge-labelled graphs

data Graph e a = Empty
| Vertex a
| Connect e (Graph e a) (Graph e a)
-- Convenient aliases
$\begin{array}{ll}\text { zero : : Monoid e =>e } & (\langle+\rangle): \text { Monoid e =>e ->e ->e } \\ \text { zero }=\text { mempty } & (\langle+\rangle)=\text { mappend }\end{array}$
overlay :: Monoid e => Graph e a -> Graph e a -> Graph e a overlay = Connect zero

We will continue using + to denote the graph overlay operation.

Connecting edge-labelled graphs

data Graph e a = Empty
| Vertex a
| Connect e (Graph ea) (Graph ea)
edge :: e -> a -> a -> Graph e a
edge ex y = Connect e (Vertex x) (Vertex y)
-- Convenient ternary-ish operator
(-<) :: a ->e -> (ace) (>-) :: (a,e) -> a -> Graph ea
$x-<e=(x, e) \quad(x, e)>-y=e d g e ~ e x y$
We'll use $x-\langle e\rangle-y$ to denote an edge connecting x and y with label e

Composing labels in sequence

We need a way to compose 'sequences' of labels:

- Labels are edge capacities: <.> is min
- Labels are distances between vertices: <. > is +
- Labels are regular expressions: <.> is;

We need label 1 to indicate the empty sequence

- Labels are edge capacities: 1 is ∞
- Labels are distances between vertices: 1 is 0
- Labels are regular expressions: 1 is ε

To stay sane we better require <.> to be associative and have identity 1

Composing labels in sequence

We need a way to compose 'sequences' of labels:

- Labels are edge capacities: <.> is min
- Labels are distances between vertices: <. > is +
- Labels are regular expressions: <.> is;

We need label 1 to indicate the empty sequence

- Labels are edge capacities: 1 is ∞
- Labels are distances between vertices: 1 is 0
- Labels are regular expressions: 1 is ε

Composing labels in sequence

```
data Graph e a = Empty
    | Vertex a
class Monoid e => Semiring e where
        one :: e
        (<.>) :: e -> e -> e
```

 | Connect e (Graph ea) (Graph ea)
 -- The connect operator from unlabelled algebraic graphs
(x) : : Semiring e => Graph e a -> Graph ea -> Graph ea
(x) = Connect one

Unlabelled graphs are Bool-labelled

data Graph a = Empty

$$
\mathrm{e}=\text { Sol } 0=\text { False } 1=\text { True } \quad(\langle+\rangle)=(| |) \quad(\langle.\rangle)=(\& \&)
$$

data Graph e a = Empty
Vertex a
Connect e (Graph ea) (Graph e a)

Unlabelled graphs are Bool-labelled

data Graph a = Empty

data Graph e a = Empty
Vertex a
Connect e (Graph ea) (Graph e a)

Example 1: transportation networks

EastCoast network

Example 1: transportation networks

type Network e a = Graph (Distance e) a
type JourneyTime = Int -- In minutes
data City = Aberdeen \mid Edinburgh | Glasgow
\mid London \mid Newcastle

EastCoast network

Example 1: transportation networks

type Network e a = Graph (Distance e) a
type JourneyTime = Int -- In minutes
data City = Aberdeen | Edinburgh | Glasgow

\[\)| $\mid \text { London } \mid \text { Newcastle }$ |
| :---: |

\]

eastCoast : : Network JourneyTime City
eastCoast $=$ overlays
[Aberdeen -<150>- Edinburgh
, Edinburgh -<90>- Newcastle
, Newcastle -<170>- London]

EastCoast network

Example 1: transportation networks

Example 1: transportation networks


```
scotRail :: Network JourneyTime City
scotRail = overlays
    [ Aberdeen -<140>- Edinburgh
    , Glasgow -< 50>- Edinburgh
    , Glasgow -< 70>- Edinburgh ]
```


Example 1: transportation networks

ScotRail network

scotRail : : Network JourneyTime City scotRail = overlays
[Aberdeen -<140>- Edinburgh
, Glasgow -< 50>- Edinburgh
, Glasgow -< 70>- Edinburgh]

In the Distance semiring we can simplify this network algebraically:

$$
x-\langle 50\rangle-y+x-\langle 70\rangle-y
$$

$$
=
$$

$$
x-<\min 5070>-y
$$

$$
=
$$

$$
x-\langle 50\rangle-y
$$

Example 1: transportation networks

network : : Network JourneyTime City network = overlay scotRail eastCoast

EastCoast network

Example 1: transportation networks

Example 2: finite automata

Choice

Complete
type Automaton a s = Graph (RegularExpression a) s
data State = Choice | Payment | Complete
data Alphabet = Coffee | Tea | Cancel | Pay

Example 2: finite automata


```
automaton = overlays [ Choice -<[Coffee, Tea]>- Payment
    , Payment -<[ ]>- Complete
```


Example 2: finite automata

$$
\begin{aligned}
\text { automaton = overlays } & {[\text { Choice }-\langle[\text { Coffee, Tea] }>- \text { Payment }} \\
& , \text { Payment }-\langle[\text { Pay }]>- \text { Complete }
\end{aligned}
$$

Example 2: finite automata

$$
\begin{array}{rlrl}
\text { automaton = overlays } & {[\text { Choice }-\langle[\text { Coffee, Tea }]>- \text { Payment }} \\
& , \text { Payment }-\langle[\text { Pay } &]>- \text { Complete } \\
& , \text { Choice }-\langle[\text { Cancel } &]>- \text { Complete } \\
& , \text { Payment }-\langle[\text { Cancel } &]>- \text { Choice }]
\end{array}
$$

Example 2: finite automata

After closure, we also have the following edges:

- Payment -<(Cancel;(Coffee | Tea))*>- Payment
- Payment -<(Cancel;(Coffee | Tea))*;(Pay | Cancel;Cancel)>- Complete

Part IV:

Algebraic Graphs Library

Algebraic graphs library

Algebraic graphs are available on Hackage

- Graph construction \& transformation API
- http://hackage.haskell.org/package/algebraic-graphs
- https://github.com/snowleopard/alga

More theory and examples in Haskell Symposium 2017 paper:

- https://github.com/snowleopard/alga-paper

Parts of the API are formally verified in Agda:

- https://github.com/algebraic-graphs/agda

600+ QuickCheck properties...

Performance

Google Summer of Code project:

- Student: Alexandre Moine
- https://github.com/haskell-perf/graphs

Benchmark suite for Alga, containers, fgl, Hash-Graph
Various performance optimisations

- e.g. use rewrite rules to make transpose . star as fast as:

```
transposeStar :: a -> [a] -> Graph a
transposeStar x [] = vertex x
transposeStar x ys = connect (vertices ys) (vertex x)
```

addEdge

addVertex

creation

addEdge

addVertex

equality

Why not use Alga?

Alga is new, experimental and unstable

- Version 0.2 released recently, with many breaking changes
- Every new algorithm is a (cool!) research problem

Why use the containers library instead:

- Mature, bundled with GHC
- Performance
- A textbook data structure, no surprises

Why use the fgl library instead:

- Mature, comes with a lot of algorithms
- Convenient for expressing many algorithms (DFS, BFS, etc.)

Thank you!
 andrey.mokhov@ncl.ac.uk @andreymokhov

P.S.: Have you come across decomposition $x y z=x y+x z+y z$?
P.P.S.: Plenty of open research directions: graph algorithms, compact graph representation, links to topology, etc. Help me!

A library for algebraic graphs in just 100 lines of code

Reusing functional programming abstractions

```
data Graph a = Empty
                Vertex a
                Overlay (Graph a) (Graph a)
                Connect (Graph a) (Graph a)
instance Eq a => Eq (Graph a) -- via normal form
instance Num a => Num (Graph a)
instance Functor Graph
instance Applicative Graph
instance Monad Graph
instance MonadPlus Graph
```


Reusing functional programming abstractions

```
data Graph a = Empty
                Vertex a
                Overlay (Graph a) (Graph a)
                Connect (Graph a) (Graph a)
```


Graph as a Num

instance Num a => Num (Graph a) where
fromInteger = Vertex . fromInteger
(+) = Overlay
(*) = Connect

signum	$=$ const Empty
abs	$=$ id
negate	$=$ id

example :: Graph Int
example $=1$ * (2 + 3)
-- Instead of: Graph $[1,2,3][(1,2),(1,3)]$

Graph as a Functor

class Functor f where
fmap :: (a -> b) -> fa -> f b
-- Lists
fmap (+1) $[1,2,3]==[2,3,4]$
fmap show $[1,2,3]==[" 1 ", ~ " 2 ", ~ " 3 "]$
-- Graphs
fmap $(+1)(1+2 * 3)=2+3 * 4$
fmap show $(1+2$ * 3) == "1" + "2" * "3"

Merge vertices using Functor

mergeCD :: Graph String
-> Graph String
mergeCD g = fmap f g where

$$
\begin{aligned}
f \text { "C" } & =\text { "CD" } \\
f \text { "D" } & =\text { "CD" } \\
f x & =x
\end{aligned}
$$

Merge vertices using Functor

Graph as a Monad

class Applicative m => Monad m where

$$
\begin{aligned}
& \text { return }:: a->m a \\
& (\gg=):: m a->(a->m b)->m b
\end{aligned}
$$

-- Lists
neighbours $x=[x-1, x+1]$
fmap neighbours $[1,2]==[[0,2],[1,3]]$
$[1,2] \gg=$ neighbours $==[0,2,1,3]$
-- Graphs
neighbours $x=\operatorname{Vertex}(x-1)+\operatorname{Vertex}(x+1)$
$(1 * 2) \gg=$ neighbours $==(0+2) *(1+3)$

Split vertices using Monad

splitCD :: Graph String
-> Graph String
splitCD g = g >>= f where

$$
\begin{aligned}
f \text { "CD" } & =\text { Vertex "C" } \\
& + \text { Vertex "D" } \\
f x \quad & =\text { Vertex } x
\end{aligned}
$$

Split vertices using Monad

Graph as a MonadPlus

class Monad m => MonadPlus m where

```
mzero :: m a
mplus ::m a -> m a -> m a
```

-- Lists
mzero == []
mplus $[1,2][2,3]==[1,2]++[2,3]==[1,2,2,3]$
-- Graphs
mzero == Empty
mplus $(1+2)(2 * 3)=(1+2)+(2 * 3)==1+2 * 3$

Find induced subgraphs using MonadPlus

 induceBCE :: Graph String -> Graph String induceBCE = mfilter (`elem ["B", "C", "E"])-- From Control.Monad:
mfilter : : MonadPlus m

$$
\Rightarrow \text { (a -> Bool) }->\mathrm{m} \text { a }->\mathrm{m} \text { a }
$$

mfilter p ma = do

$$
a<-m a
$$

if p a then return a else mzero

Find induced subgraphs using MonadPlus

Cartesian graph product

box :: Graph a -> Graph b -> Graph (a, b) box x y $=$ msum \$ xs ++ ys
where

$$
\begin{aligned}
& \text { xs }=\operatorname{map}(\backslash b->f m a p(, b) x) \$ \text { toList } y \\
& \text { ys }=\operatorname{map}(\backslash a->\operatorname{fmap}(a,) \text { y) \$ toList } x
\end{aligned}
$$

From four primitives to a library

-- An abstract interface or a type class
empty :: Graph a
vertex :: a -> Graph a
overlay :: Graph a -> Graph a -> Graph a
connect :: Graph a -> Graph a -> Graph a

From four primitives to a library

-- An abstract interface or a type class
empty :: Graph a vertex :: a -> Graph a
overlay :: Graph a -> Graph a -> Graph a connect :: Graph a -> Graph a -> Graph a
-- Combine primitives into larger graphs vertices :: [a] -> Graph a vertices vs = foldr overlay empty (map vertex vs)
clique :: [a] -> Graph a
clique vs = foldr connect empty (map vertex vs)

From four primitives to a library

$$
\begin{aligned}
& \text { edge :: a -> a -> Graph a } \\
& \text { edge } u \text { v }=\text { ??? } \\
& \text { star : : a -> [a] -> Graph a } \\
& \text { star u vs =??? }
\end{aligned}
$$

From four primitives to a library

```
edge :: a -> a -> Graph a
edge u v = connect (vertex u) (vertex v)
star :: a -> [a] -> Graph a
star u vs = ???
```


From four primitives to a library

```
edge :: a -> a -> Graph a
edge u v = connect (vertex u) (vertex v)
star :: a -> [a] -> Graph a
star u vs = connect (vertex u) (vertices vs)
```


From four primitives to a library

```
edge :: a -> a -> Graph a
edge \(u\) v = connect (vertex \(u\) ) (vertex v)
```

star :: a -> [a] -> Graph a
star u vs = connect (vertex u) (vertices vs)
isSubgraphOf g h = overlay g h == h
hasEdge u vg = ???

From four primitives to a library

```
edge :: a -> a -> Graph a
edge \(u\) v = connect (vertex u) (vertex v)
```

star :: a -> [a] -> Graph a
star u vs = connect (vertex u) (vertices vs)
isSubgraphOf g h = overlay g h == h
hasEdge u vg = edge u v `isSubgraphOf` g

From four primitives to a library

edge :: a -> a -> Graph a
edge u v = connect (vertex u) (vertex v)
star :: a -> [a] -> Graph a
star u vs = connect (vertex u) (vertices vs)
isSubgraphOf g h = overlay g h == h
hasEdge u vg = edge u v `isSubgraphOf` h
where
h = mfilter (`elem` [us]) g

Folding algebraic graphs

-- Like fold but for graphs
fold :: b -> (a ->b) $->(\mathrm{b}->\mathrm{b}->\mathrm{b})->(\mathrm{b}->\mathrm{b}->\mathrm{b})$ -> Graph a -> b
fold e vo c = go where

Folding algebraic graphs

-- Like foldr but for graphs
foldg :: b -> (a ->b) -> (b -> b -> b) $->(\mathrm{b}->\mathrm{b}->\mathrm{b})$ -> Graph a -> b
foldg e v o c = go
where

isEmpty :: Graph a -> Bool
isEmpty = foldg True (const False) (\&\&) (\&\&)

Folding algebraic graphs

-- Like fold but for graphs
fold :: b -> (a ->b) $->(\mathrm{b}->\mathrm{b}->\mathrm{b})->(\mathrm{b}->\mathrm{b}->\mathrm{b})$ -> Graph a -> b
fold e vo c = go where

The arguments (e, v, o, c) must satisfy the laws of the algebra

```
go Empty
\[
=e
\]
\[
\text { go (Vertex } x \text { ) }=v x
\]
go (Overlay x y) = o (go x) (go y)
\[
\text { go }(\text { Connect } x y)=c(\text { go } x)(\text { go } y)
\]
```

isEmpty :: Graph a -> Bool
isEmpty = foldg True (const False) (\&\&) (\&\&)

Folding algebraic graphs

```
hasVertex :: Eq a => a -> Graph a -> Bool
hasVertex x = foldg False (==x) (||) (||)
```

vertexSet :: Ord a => Graph a -> Set a vertexSet = foldg Set.empty singleton union union
transpose :: Graph a -> Graph a
transpose = foldg empty vertex overlay (flip connect)

```
size :: Graph a -> Int
size = foldg 1 (const 1) (+) (+)
```


Folding algebraic graphs

```
hasVertex :: Eq a => a -> Graph a -> Bool
hasVertex x = foldg False (==x) (||) (||)
```

vertexSet :: Ord a => Graph a -> Set a vertexSet = foldg Set.empty singleton union union
transpose :: Graph a -> Graph a transpose = foldg empty vertex overlay (flip connect)
size :: Graph a -> Int size = foldg 1 (const 1) (+)

