
Labelled Algebraic Graphs
A Tale of Four Monoids

Haskell eXchange, October 2018

Andrey Mokhov
GitHub: @snowleopard, Twitter: @andreymokhov

2

This kind of graph:

– Labelled vertices

– Can have cycles

– Can have self-loops

– Directed/undirected

– Labelled/unlabelled edges

– No vertex ports

– No ‘forbidden’ edges

3

New!

Part I:

Algebraic Graphs

4

Pair (V, E) such that E ⊆ V × V

– Example: ({1,2,3}, {(1,2), (1,3)})

5

From math to Haskell

Pair (V, E) such that E ⊆ V × V

– Example: ({1,2,3}, {(1,2), (1,3)})

6

data Graph a = Graph

{ vertices :: Set a
, edges :: Set (a,a) }

example :: Graph Int

example = Graph [1,2,3] [(1,2), (1,3)]

From math to Haskell

Pair (V, E) such that E ⊆ V × V

– Non-example: ({1}, {(1,2)})

7

Problem

Pair (V, E) such that E ⊆ V × V

– Non-example: ({1}, {(1,2)})

8

data Graph a = Graph

{ vertices :: Set a
, edges :: Set (a,a) }

nonExample :: Graph Int

nonExample = Graph [1] [(1,2)]

Problem

Pair (V, E) such that E ⊆ V × V

– Non-example: ({1}, {(1,2)})

9

data Graph a = Graph

{ vertices :: Set a
, edges :: Set (a,a) }

nonExample :: Graph Int

nonExample = Graph [1] [(1,2)]

Problem

Hard to

express

in types

Pair (V, E) such that E ⊆ V × V

– Non-example: ({1}, {(1,2)})

10

data Graph a = Graph

{ vertices :: Set a
, edges :: Set (a,a) }

nonExample :: Graph Int

nonExample = Graph [1] [(1,2)]

Problem

Hard to

express

in types

Solution space:

1. Fix Haskell

2. Fix math ✓

11

Algebraic graphs

Every graph can be represented by a Graph a expression.

Non-graphs cannot be represented.

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

12

Algebraic graphs

Every graph can be represented by a Graph a expression.

Non-graphs cannot be represented.

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

A. Mokhov, V. Khomenko. ”Algebra of Parameterised Graphs“,

ACM Transactions on Embedded Computing Systems, 2014

Empty :: Graph a

Empty :: Graph a

(∅, ∅)

15

Vertex :: a -> Graph a

({a}, ∅)

16

Overlay :: Graph a -> Graph a -> Graph a

(V1, E1) + (V2, E2) = (V1 ∪ V2, E1 ∪ E2)

17

Connect :: Graph a -> Graph a -> Graph a

(V1, E1) × (V2, E2) = (V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2)

18

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

Empty is the empty graph (∅, ∅)

Vertex a is the singleton graph ({a}, ∅)

Overlay of (V1, E1) and (V2, E2) is (V1 ∪ V2, E1 ∪ E2)

Connect of (V1, E1) and (V2, E2) is (V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2)

Algebraic graphs

19

Vertex 1 Vertex 2

Overlay (Vertex 1) (Vertex 2)

Connect (Vertex 1) (Vertex 2)

Or simply 1 × 2

Or simply 1 + 2

Connect (Vertex 1) (Vertex 1)

20

Overlay (Connect (Vertex 1) (Vertex 2))

(Connect (Vertex 1) (Vertex 3))

1 × 2 + 1 × 3

1 × 1

Connect (Vertex 1) (Vertex 1)

21

Overlay (Connect (Vertex 1) (Vertex 2))

(Connect (Vertex 1) (Vertex 3))

1 × 2 + 1 × 3

1 × 1

Can we

factor out 1?

Connect (Vertex 1) (Vertex 1)

22

Overlay (Connect (Vertex 1) (Vertex 2))

(Connect (Vertex 1) (Vertex 3))

1 × 2 + 1 × 3

1 × 1

Can we

factor out 1?

Yes!

Distributivity

23

x(y + z) = xy + xz

(x + y)z = xz + yz

Distributivity

24

x(y + z) = xy + xz

(x + y)z = xz + yz

I bet it’s just

a semiring…

Distributivity

25

x(y + z) = xy + xz

(x + y)z = xz + yz

I bet it’s just

a semiring…

No!

Decomposition

26

xyz = xy + xz + yz

Intuition: any graph expression can be broken

down into an overlay of vertices and edges

Algebraic structure

27

Axioms:
Overlay + is commutative and associative

Connect × is associative

The empty graph ε is the identity of connect ×

Connect × distributes over overlay +

Decomposition: xyz = xy + xz + yz

Theorems:

Overlay + is idempotent and has ε as the identity

Algebraic structure

28

Axioms:
Overlay + is commutative and associative

Connect × is associative

The empty graph ε is the identity of connect ×

Connect × distributes over overlay +

Decomposition: xyz = xy + xz + yz

Theorems:

Overlay + is idempotent and has ε as the identity

Decomposition axiom is strange

29

A proof that 0 = 1:

0 = 0 × 1 × 1 (1 is identity of ×)

= 0 × 1 + 0 × 1 + 1 × 1 (decomposition)

= 0 + 0 + 1 (1 is identity of ×)

= 1 (0 is identity of +)

Decomposition axiom is strange

30

A proof that 0 = 1:

0 = 0 × 1 × 1 (1 is identity of ×)

= 0 × 1 + 0 × 1 + 1 × 1 (decomposition)

= 0 + 0 + 1 (1 is identity of ×)

= 1 (0 is identity of +)

Non-empty graphs: Drop the Empty constructor

Undirected graphs: Add xy = yx

Reflexive graphs: Add Vertex v = Vertex v × Vertex v

Transitive graphs: Add y≠ε ⟹ xy + yz = xy + xz + yz

… and their various combinations:

– Preorders = Reflexive + Transitive

– Equivalence relations = Undirected + Reflexive + Transitive

31

Other flavours of the algebra

Part II:

A library for algebraic graphs

in just 100 lines of code

32

33

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

instance Eq a => Eq (Graph a) -- via normal form
instance Num a => Num (Graph a)
instance Functor Graph
instance Applicative Graph
instance Monad Graph
instance MonadPlus Graph
...

Reusing functional programming abstractions

34

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

instance Eq a => Eq (Graph a) -- via normal form
instance Num a => Num (Graph a)
instance Functor Graph
instance Applicative Graph
instance Monad Graph
instance MonadPlus Graph
...

Reusing functional programming abstractions

Correspond to basic

graph transformations:

merging, splitting,

removing vertices, etc.

35

instance Num a => Num (Graph a) where

fromInteger = Vertex . fromInteger

(+) = Overlay

(*) = Connect

signum = const Empty

abs = id

negate = id

Graph as a Num

example :: Graph Int

example = 1 * (2 + 3)

-- Instead of: Graph [1,2,3] [(1,2), (1,3)]

From four primitives to a library

-- An abstract interface or a type class
empty :: Graph a
vertex :: a -> Graph a
overlay :: Graph a -> Graph a -> Graph a
connect :: Graph a -> Graph a -> Graph a

36

From four primitives to a library

-- An abstract interface or a type class
empty :: Graph a
vertex :: a -> Graph a
overlay :: Graph a -> Graph a -> Graph a
connect :: Graph a -> Graph a -> Graph a

-- Combine primitives into larger graphs
vertices :: [a] -> Graph a
vertices vs = foldr overlay empty (map vertex vs)

edge :: a -> a -> Graph a
edge u v = connect (vertex u) (vertex v)

37

Folding algebraic graphs
-- Like foldr but for graphs

foldg :: b -> (a -> b) -> (b -> b -> b) -> (b -> b -> b)
-> Graph a -> b

foldg e v o c = go
where

go Empty = e
go (Vertex x) = v x
go (Overlay x y) = o (go x) (go y)
go (Connect x y) = c (go x) (go y)

38

isEmpty :: Graph a -> Bool
isEmpty = foldg True (const False) (&&) (&&)

Folding algebraic graphs
-- Like foldr but for graphs

foldg :: b -> (a -> b) -> (b -> b -> b) -> (b -> b -> b)
-> Graph a -> b

foldg e v o c = go
where

go Empty = e
go (Vertex x) = v x
go (Overlay x y) = o (go x) (go y)
go (Connect x y) = c (go x) (go y)

39

isEmpty :: Graph a -> Bool
isEmpty = foldg True (const False) (&&) (&&)

Folding algebraic graphs
-- Like foldr but for graphs

foldg :: b -> (a -> b) -> (b -> b -> b) -> (b -> b -> b)
-> Graph a -> b

foldg e v o c = go
where

go Empty = e
go (Vertex x) = v x
go (Overlay x y) = o (go x) (go y)
go (Connect x y) = c (go x) (go y)

40

The arguments (e, v, o, c) must

satisfy the laws of the algebra

Folding algebraic graphs

hasVertex :: Eq a => a -> Graph a -> Bool
hasVertex x = foldg False (==x) (||) (||)

vertexSet :: Ord a => Graph a -> Set a
vertexSet = foldg Set.empty singleton union union

transpose :: Graph a -> Graph a
transpose = foldg empty vertex overlay (flip connect)

size :: Graph a -> Int
size = foldg 1 (const 1) (+) (+)

41

Folding algebraic graphs

hasVertex :: Eq a => a -> Graph a -> Bool
hasVertex x = foldg False (==x) (||) (||)

vertexSet :: Ord a => Graph a -> Set a
vertexSet = foldg Set.empty singleton union union

transpose :: Graph a -> Graph a
transpose = foldg empty vertex overlay (flip connect)

size :: Graph a -> Int
size = foldg 1 (const 1) (+) (+)

42

Breaks laws:

size(x) ≠ size(x+ε)

Part III:
Labelled Algebraic Graphs

43

44

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

Labelled algebraic graphs

data Graph e a = Empty

| Vertex a

| Connect e (Graph e a) (Graph e a)

45

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

Labelled algebraic graphs

data Graph e a = Empty

| Vertex a

| Connect e (Graph e a) (Graph e a)

Main idea:
Overlay = Connect 0

Labels
We need zero label 0 to indicate a missing edge

– Labels are edge capacities: 0 is just 0

– Labels are distances between vertices: 0 is ∞

– Labels are regular expressions: 0 is ∅

We need a way to compose ‘parallel’ labels:

– Labels are edge capacities: <+> is max

– Labels are distances between vertices: <+> is min

– Labels are regular expressions: <+> is |

To stay sane we better require <+> to be associative and have identity 0
46

Labels
We need zero label 0 to indicate a missing edge

– Labels are edge capacities: 0 is just 0

– Labels are distances between vertices: 0 is ∞

– Labels are regular expressions: 0 is ∅

We need a way to compose ‘parallel’ labels:

– Labels are edge capacities: <+> is max

– Labels are distances between vertices: <+> is min

– Labels are regular expressions: <+> is |

To stay sane we better require <+> to be associative and have identity 0
47

48

Overlaying edge-labelled graphs

data Graph e a = Empty

| Vertex a

| Connect e (Graph e a) (Graph e a)

-- Convenient aliases

zero :: Monoid e => e (<+>) :: Monoid e => e -> e -> e

zero = mempty (<+>) = mappend

overlay :: Monoid e => Graph e a -> Graph e a -> Graph e a

overlay = Connect zero

We will continue using + to denote the graph overlay operation.

49

Connecting edge-labelled graphs

data Graph e a = Empty

| Vertex a

| Connect e (Graph e a) (Graph e a)

edge :: e -> a -> a -> Graph e a

edge e x y = Connect e (Vertex x) (Vertex y)

-- Convenient ternary-ish operator

(-<) :: a -> e -> (a,e) (>-) :: (a,e) -> a -> Graph e a

x -< e = (x,e) (x,e) >- y = edge e x y

We’ll use x-<e>-y to denote an edge connecting x and y with label e

Composing labels in sequence
We need a way to compose ‘sequences’ of labels:

– Labels are edge capacities: <.> is min

– Labels are distances between vertices: <.> is +

– Labels are regular expressions: <.> is ;

We need label 1 to indicate the empty sequence

– Labels are edge capacities: 1 is ∞

– Labels are distances between vertices: 1 is 0

– Labels are regular expressions: 1 is ε

To stay sane we better require <.> to be associative and have identity 1
50

Composing labels in sequence
We need a way to compose ‘sequences’ of labels:

– Labels are edge capacities: <.> is min

– Labels are distances between vertices: <.> is +

– Labels are regular expressions: <.> is ;

We need label 1 to indicate the empty sequence

– Labels are edge capacities: 1 is ∞

– Labels are distances between vertices: 1 is 0

– Labels are regular expressions: 1 is ε

To stay sane we better require <.> to be associative and have identity 1
51

Composing labels in sequence

52

data Graph e a = Empty

| Vertex a

| Connect e (Graph e a) (Graph e a)

class Monoid e => Semiring e where

one :: e

(<.>) :: e -> e -> e

-- The connect operator from unlabelled algebraic graphs

(×) :: Semiring e => Graph e a -> Graph e a -> Graph e a

(×) = Connect one

53

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

Unlabelled graphs are Bool-labelled

data Graph e a = Empty

| Vertex a

| Connect e (Graph e a) (Graph e a)

e=Bool 0=False 1=True (<+>)=(||) (<.>)=(&&)

54

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

Unlabelled graphs are Bool-labelled

data Graph e a = Empty

| Vertex a

| Connect e (Graph e a) (Graph e a)

e=Bool 0=False 1=True (<+>)=(||) (<.>)=(&&)

1

2

3 4

Example 1: transportation networks

55

Example 1: transportation networks

56

type Network e a = Graph (Distance e) a

type JourneyTime = Int -- In minutes

data City = Aberdeen | Edinburgh | Glasgow

| London | Newcastle

Example 1: transportation networks

57

type Network e a = Graph (Distance e) a

type JourneyTime = Int -- In minutes

data City = Aberdeen | Edinburgh | Glasgow

| London | Newcastle

eastCoast :: Network JourneyTime City

eastCoast = overlays

[Aberdeen -<150>- Edinburgh

, Edinburgh -< 90>- Newcastle

, Newcastle -<170>- London]

Example 1: transportation networks

58

Example 1: transportation networks

59

scotRail :: Network JourneyTime City

scotRail = overlays

[Aberdeen -<140>- Edinburgh

, Glasgow -< 50>- Edinburgh

, Glasgow -< 70>- Edinburgh]

Example 1: transportation networks

60

scotRail :: Network JourneyTime City

scotRail = overlays

[Aberdeen -<140>- Edinburgh

, Glasgow -< 50>- Edinburgh

, Glasgow -< 70>- Edinburgh]

In the Distance semiring

we can simplify this

network algebraically:

x-<50>-y + x-<70>-y
=

x-<min 50 70>-y
=

x-<50>-y

Example 1: transportation networks

61

network :: Network JourneyTime City

network = overlay scotRail eastCoast

Example 1: transportation networks

62

Example 1: transportation networks

63

Axioms of labelled

algebraic graphs

Example 1: transportation networks

64

Axioms of labelled

algebraic graphs

Add transitivity:

y≠ε ⟹

x-<a>-y + y--z =

x-<a>-y + y--z +

x-<a+b>-z

Example 1: transportation networks

65

Axioms of labelled

algebraic graphs

Add transitivity:

y≠ε ⟹

x-<a>-y + y--z =

x-<a>-y + y--z +

x-<a+b>-z

Add reflexivity:
v = v-<0>-v

Example 2: finite automata

66

type Automaton a s = Graph (RegularExpression a) s

data State = Choice | Payment | Complete

data Alphabet = Coffee | Tea | Cancel | Pay

Example 2: finite automata

67

automaton = overlays [Choice -<[Coffee, Tea]>- Payment

, Payment -<[]>- Complete

]

Example 2: finite automata

68

automaton = overlays [Choice -<[Coffee, Tea]>- Payment

, Payment -<[Pay]>- Complete

]

Example 2: finite automata

69

automaton = overlays [Choice -<[Coffee, Tea]>- Payment

, Payment -<[Pay]>- Complete

, Choice -<[Cancel]>- Complete

, Payment -<[Cancel]>- Choice]

Example 2: finite automata

70

After closure, we also have the following edges:

– Payment -<(Cancel;(Coffee | Tea))*>- Payment

– Payment -<(Cancel;(Coffee | Tea))*;(Pay | Cancel;Cancel)>- Complete

Part IV:
Algebraic Graphs Library

71

Algebraic graphs library

Algebraic graphs are available on Hackage

– Graph construction & transformation API

– http://hackage.haskell.org/package/algebraic-graphs

– https://github.com/snowleopard/alga

More theory and examples in Haskell Symposium 2017 paper:

– https://github.com/snowleopard/alga-paper

Parts of the API are formally verified in Agda:

– https://github.com/algebraic-graphs/agda

600+ QuickCheck properties…
72

https://github.com/snowleopard/alga
https://github.com/snowleopard/alga
https://github.com/snowleopard/alga-paper
https://github.com/algebraic-graphs/agda

Performance

73

Google Summer of Code project:

– Student: Alexandre Moine

– https://github.com/haskell-perf/graphs

Benchmark suite for Alga, containers, fgl, Hash-Graph

Various performance optimisations

– e.g. use rewrite rules to make transpose . star as fast as:

transposeStar :: a -> [a] -> Graph a

transposeStar x [] = vertex x

transposeStar x ys = connect (vertices ys) (vertex x)

https://github.com/snowleopard/alga

P
e
rf

o
rm

a
n

c
e

74

P
e
rf

o
rm

a
n

c
e
 (

fu
si

o
n

)

75

Why not use Alga?

Alga is new, experimental and unstable

– Version 0.2 released recently, with many breaking changes

– Every new algorithm is a (cool!) research problem

Why use the containers library instead:

– Mature, bundled with GHC

– Performance

– A textbook data structure, no surprises

Why use the fgl library instead:

– Mature, comes with a lot of algorithms

– Convenient for expressing many algorithms (DFS, BFS, etc.)
76

Thank you!
andrey.mokhov@ncl.ac.uk

@andreymokhov

77

P.S.: Have you come across decomposition xyz = xy + xz + yz?

P.P.S.: Plenty of open research directions: graph algorithms,

compact graph representation, links to topology, etc. Help me!

A library for algebraic graphs

in just 100 lines of code

78

79

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

instance Eq a => Eq (Graph a) -- via normal form
instance Num a => Num (Graph a)
instance Functor Graph
instance Applicative Graph
instance Monad Graph
instance MonadPlus Graph
...

Reusing functional programming abstractions

80

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

instance Eq a => Eq (Graph a) -- via normal form
instance Num a => Num (Graph a)
instance Functor Graph
instance Applicative Graph
instance Monad Graph
instance MonadPlus Graph
...

Reusing functional programming abstractions

Correspond to basic

graph transformations:

merging, splitting,

removing vertices, etc.

81

instance Num a => Num (Graph a) where

fromInteger = Vertex . fromInteger

(+) = Overlay

(*) = Connect

signum = const Empty

abs = id

negate = id

Graph as a Num

example :: Graph Int

example = 1 * (2 + 3)

-- Instead of: Graph [1,2,3] [(1,2), (1,3)]

Graph as a Functor

82

class Functor f where

fmap :: (a -> b) -> f a -> f b

-- Lists

fmap (+1) [1, 2, 3] == [2, 3, 4]

fmap show [1, 2, 3] == ["1", "2", "3"]

-- Graphs

fmap (+1) (1 + 2 * 3) == 2 + 3 * 4

fmap show (1 + 2 * 3) == "1" + "2" * "3"

Merge vertices using Functor

83

mergeCD :: Graph String

-> Graph String

mergeCD g = fmap f g

where

f "C" = "CD"

f "D" = "CD"

f x = x

Merge vertices using Functor

84

Graph as a Monad

85

class Applicative m => Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

-- Lists

neighbours x = [x - 1, x + 1]

fmap neighbours [1, 2] == [[0, 2], [1, 3]]

[1, 2] >>= neighbours == [0, 2, 1, 3]

-- Graphs

neighbours x = Vertex (x - 1) + Vertex (x + 1)

(1 * 2) >>= neighbours == (0 + 2) * (1 + 3)

Split vertices using Monad

86

splitCD :: Graph String

-> Graph String

splitCD g = g >>= f

where

f "CD" = Vertex "C"

+ Vertex "D"

f x = Vertex x

Split vertices using Monad

87

Graph as a MonadPlus

88

class Monad m => MonadPlus m where

mzero :: m a

mplus :: m a -> m a -> m a

-- Lists

mzero == []

mplus [1, 2] [2, 3] == [1, 2] ++ [2, 3] == [1, 2, 2, 3]

-- Graphs

mzero == Empty

mplus (1 + 2) (2 * 3) == (1 + 2) + (2 * 3) == 1 + 2 * 3

Find induced subgraphs using MonadPlus

89

induceBCE :: Graph String -> Graph String

induceBCE = mfilter (`elem` ["B","C","E"])

-- From Control.Monad:

mfilter :: MonadPlus m

=> (a -> Bool) -> m a -> m a

mfilter p ma = do

a <- ma

if p a then return a else mzero

90

Find induced subgraphs using MonadPlus

Cartesian graph product

91

box :: Graph a -> Graph b -> Graph (a, b)

box x y = msum $ xs ++ ys

where

xs = map (\b -> fmap (,b) x) $ toList y

ys = map (\a -> fmap (a,) y) $ toList x

From four primitives to a library

-- An abstract interface or a type class
empty :: Graph a
vertex :: a -> Graph a
overlay :: Graph a -> Graph a -> Graph a
connect :: Graph a -> Graph a -> Graph a

92

From four primitives to a library

-- An abstract interface or a type class
empty :: Graph a
vertex :: a -> Graph a
overlay :: Graph a -> Graph a -> Graph a
connect :: Graph a -> Graph a -> Graph a

-- Combine primitives into larger graphs
vertices :: [a] -> Graph a
vertices vs = foldr overlay empty (map vertex vs)

clique :: [a] -> Graph a
clique vs = foldr connect empty (map vertex vs)

93

From four primitives to a library

94

edge :: a -> a -> Graph a

edge u v = ???

star :: a -> [a] -> Graph a

star u vs = ???

From four primitives to a library

95

edge :: a -> a -> Graph a

edge u v = connect (vertex u) (vertex v)

star :: a -> [a] -> Graph a

star u vs = ???

From four primitives to a library

96

edge :: a -> a -> Graph a

edge u v = connect (vertex u) (vertex v)

star :: a -> [a] -> Graph a

star u vs = connect (vertex u) (vertices vs)

From four primitives to a library

97

edge :: a -> a -> Graph a

edge u v = connect (vertex u) (vertex v)

star :: a -> [a] -> Graph a

star u vs = connect (vertex u) (vertices vs)

isSubgraphOf g h = overlay g h == h

hasEdge u v g = ???

From four primitives to a library

98

edge :: a -> a -> Graph a

edge u v = connect (vertex u) (vertex v)

star :: a -> [a] -> Graph a

star u vs = connect (vertex u) (vertices vs)

isSubgraphOf g h = overlay g h == h

hasEdge u v g = edge u v `isSubgraphOf` g

From four primitives to a library

99

edge :: a -> a -> Graph a

edge u v = connect (vertex u) (vertex v)

star :: a -> [a] -> Graph a

star u vs = connect (vertex u) (vertices vs)

isSubgraphOf g h = overlay g h == h

hasEdge u v g = edge u v `isSubgraphOf` h

where

h = mfilter (`elem` [u,v]) g

Folding algebraic graphs
-- Like foldr but for graphs

foldg :: b -> (a -> b) -> (b -> b -> b) -> (b -> b -> b)
-> Graph a -> b

foldg e v o c = go
where

go Empty = e
go (Vertex x) = v x
go (Overlay x y) = o (go x) (go y)
go (Connect x y) = c (go x) (go y)

10

0

isEmpty :: Graph a -> Bool
isEmpty = foldg True (const False) (&&) (&&)

Folding algebraic graphs
-- Like foldr but for graphs

foldg :: b -> (a -> b) -> (b -> b -> b) -> (b -> b -> b)
-> Graph a -> b

foldg e v o c = go
where

go Empty = e
go (Vertex x) = v x
go (Overlay x y) = o (go x) (go y)
go (Connect x y) = c (go x) (go y)

10

1

isEmpty :: Graph a -> Bool
isEmpty = foldg True (const False) (&&) (&&)

Folding algebraic graphs
-- Like foldr but for graphs

foldg :: b -> (a -> b) -> (b -> b -> b) -> (b -> b -> b)
-> Graph a -> b

foldg e v o c = go
where

go Empty = e
go (Vertex x) = v x
go (Overlay x y) = o (go x) (go y)
go (Connect x y) = c (go x) (go y)

10

2

The arguments (e, v, o, c) must

satisfy the laws of the algebra

Folding algebraic graphs

hasVertex :: Eq a => a -> Graph a -> Bool
hasVertex x = foldg False (==x) (||) (||)

vertexSet :: Ord a => Graph a -> Set a
vertexSet = foldg Set.empty singleton union union

transpose :: Graph a -> Graph a
transpose = foldg empty vertex overlay (flip connect)

size :: Graph a -> Int
size = foldg 1 (const 1) (+) (+) 10

3

Folding algebraic graphs

hasVertex :: Eq a => a -> Graph a -> Bool
hasVertex x = foldg False (==x) (||) (||)

vertexSet :: Ord a => Graph a -> Set a
vertexSet = foldg Set.empty singleton union union

transpose :: Graph a -> Graph a
transpose = foldg empty vertex overlay (flip connect)

size :: Graph a -> Int
size = foldg 1 (const 1) (+) (+) 10

4

Breaks laws:

size(x) ≠ size(x+ε)

