Newcastle
+ University

Labelled Algebraic Graphs

A Tale of Four Monoids

Andrey Mokhov
GitHub: @snowleopard, Twitter: @andreymokhov

Haskell eXchange, October 2018

GO gle algebraic graphs

All Images Videos News Shopping More

Y& | y=2x+4

7

v Q

Tools

y| = x2-4x-5

v

001 > 011
A
This kind of graph: C& Q«
is ki grap

, 010 101 111

— Labelled vertices

— Can have cycles %< %

— Can have self-loops New!

— Directed/undirected _\/7 (_ Aberdeen]
140

— Labelled/unlabelled edges [p——] 50 [Edinburghj
90

— No vertex ports [Newcastle)

— No ‘forbidden’ edges 170

[London j 3

Part I
Algebraic Graphs

From math to Haskell

Pair (V, E) such thatES V x V 1
— Example: ({1,2,3}, {(1,2), (1,3)}) <3

From math to Haskell

Pair (V, E) such thatES V x V 1
— Example: ({1,2,3}, {(1,2), (1,3)}) <3

data Graph a = Graph

{ vertices :: Set a
, edges :: Set (a,a) }

example :: Graph Int
example = Graph [1,2,3] [(1,2), (1,3)]

Problem

Pair (V, E) suchthatEc V x V
— Non-example: ({1}, {(1,2)})

Problem

Pair (V, E) suchthatEc V x V
— Non-example: ({1}, {(1,2)})

data Graph a = Graph

{ vertices :: Set a
, edges :: Set (a,a) }

nonExample :: Graph Int
nonExample = Graph [1] [(1,2)]

Problem
Pair (V, E) such that|[E € V x V| =)

Hard to
— Non-example: ({1}, {(1,2)}) express
data Graph a = Graph : In types
{ vertices :: Set a
, edges :: Set (a,a) }

nonExample :: Graph Int
nonExample = Graph [1] [(1,2)]

Problem
Pair (V, E) such that|[E € V x V| =)

Hard to
— Non-example: ({1}, {(1,2)} express
data Graph a = Graph) In types
{ vertices :: Set a : .
, edges .: Set (a,a) } Solution space:
1. Fix Haskell
nonExample :: Graph Int > Fix math

nonExample = Graph [1] [(1,2)]

10

Algebraic graphs

data Graph a = Empty

Vertex a

Overlay (Graph a) (Graph a)
Connect (Graph a) (Graph a)

Every graph can be represented by a Graph a expression.
Non-graphs cannot be represented.

11

Algebraic graphs

data Graph a = Empty

Vertex a

Overlay (Graph a) (Graph a)
Connect (Graph a) (Graph a)

Every graph can be represented by a Graph a expression.
Non-graphs cannot be represented.

A. Mokhov, V. Khomenko. “Algebra of Parameterised Graphs”,
ACM Transactions on Embedded Computing Systems, 2014

Empty :: Graph a

Empty :: Graph a

(2, 0)

Vertex :: a -> Graph a

z%\\w ,Wﬁg;

({a}, 0)

15

Overlay :: Graph a -> Graph a -> Graph a

(V,, E) + (V,, E,) = (V; UV,, E, U E,)

16

Connect :: Graph a -> Graph a -> Graph a

(V,, E)) x (V,, E;) = (V;UV,, E; UE, UV, x V,)

17

Algebraic graphs

data Graph a = Empty

Vertex a

Overlay (Graph a) (Graph a)
Connect (Graph a) (Graph a)

Empty is the empty graph (@, 0)

Vertex a is the singleton graph ({a}, 0)

Overlay of (V,, E;) and (V,, E,) is (V,U V,, E,UE,)

Connect of (V,, E;) and (V,, E,) is (V;UV,, E,UE, UV, x V,)

18

Vertex 1 Vertex 2

O ®
Overlay (Vertex 1) (Vertex 2

L O—>e
Connect (Vertex 1) (Vertex 2

Or simply 1 + 2

Yl

Or simply 1 x 2

Yl

19

//i\\ 1x1
KoY - —

Connect (Vertex 1) (Vertex 1)

)

%<:

3 1x2+1x3

13 .

N .)

Overlay (Connect (Vertex 1) (Vertex 2))
(Connect (Vertex 1) (Vertex 3))

20

&

Connect (Vertex 1) (Vertex 1)

@@
a3

4 2
%<j
3

_ ®/

T x1

Can we
factor out 1?

1x2+1x3

L~

Overlay (Connect (Vertex 1) (Vertex 2))
(Connect (Vertex 1) (Vertex 3))

21

//i\\ 1x1
KoY - —

Connect (Vertex 1) (Vertex 1)

)

%<:

3 1x2+1x3

13 .

N .)

Overlay (Connect (Vertex 1) (Vertex 2))
(Connect (Vertex 1) (Vertex 3))

|
Can we Yes!
factor out 1?

22

Distributivity

7N\
o
N
1
/Al_\ \
oW
1
N\
) e
N
+
\ Ve
w (e
NS

23

Distributivity

| bet it's just
a semiring...

/

W) + (o

AN
I

o

N\

= e

N
+

NR%

w (e

NS

No!
| bet it's just
a semiring...

Distributivity

/7N
o
N4
Ve
N
Il
N4
= ®
AN
+
N\l |/
W ®
72\

25

Decomposition

********************** ~ X =
2 | 2 0
g — — . . ,/;L/ + .
e N _ \\ \V,// ~
(// 1_)\/2 / 3 \/\ _ _ /
N\ o/ \\!/// /.) =
N e S— -~ ~ 1/ % N Vs N \
1 o3 (1771 >3
L 4 \“\i}\ .// \., ;f 77777777777 NS . /

XYZ = Xy + XZ + YyZ

Intuition: any graph expression can be broken
down into an overlay of vertices and edges

Algebraic structure

Axioms:
Overlay + I1s commutative and associative
Connect x Is associative
The empty graph ¢ is the identity of connect x
Connect x distributes over overlay +
Decomposition: xyz = Xy + Xz + yz

Theorems:
Overlay + is idempotent and has € as the identity

Algebraic structure

Axioms:
Overlay + I1s commutative and associative
Connect x Is associative
The empty graph ¢ is the identity of connect x

Connect x distributes over overlay + oid
Decomposition: Xyz = Xy + Xz + yz Mon
COUV\t 2
Theorems:

Overlay + is idempotent and has € as the identity

Decomposition axiom Is strange

A proof that 0 = 1.

0=0x1x1 (1is identity of x)
=0x1+0x1T+1x1 | (decomposition)
=0+0+1 (1is identity of x)

=1 (0 is identity of +)

Decomposition axiom Is strange

A proof that 0 = 1.

i/ } b (1is identity of x)
(decomposition)

" (1is identity of x)
§ (0 is identity of +)

30

Other flavours of the algebra

Non-empty graphs: Drop the Empty constructor
Undirected graphs: Add xy = yx

Reflexive graphs: Add Vertex v = Vertex v x Vertex v
Transitive graphs: Add y#e = Xy + yz = Xy + XZ + Yz
... and their various combinations:

— Preorders = Reflexive + Transitive
— Equivalence relations = Undirected + Reflexive + Transitive

31

Part Il:

A library for algebraic graphs
in just 100 lines of code

Reusing functional programming abstractions

data Graph a

instance
instance
instance
instance
instance
instance

Empty

Vertex a

|
| Overlay (Graph a) (Graph a)
|

Connect (Graph a) (Graph a)

Eqg a => Eq (Graph a) -- via normal form
Num a => Num (Graph a)

Functor Graph

Applicative Graph

Monad Graph

MonadPlus Graph

33

Reusing functional programming abstractions

data Graph a

instance
instance
instance
instance
instance
instance

Empty
Vertex a

|
| Overlay (Graph a) (Graph a)
|

Connect (Graph a) (Graph a)

Eqg a => Eq (Graph a) -- via normal form

Num a => Num (Graph a)
Functor Graph
Applicative Graph
Monad Graph
MonadPlus Graph

Correspond to basic

graph transformations:

merging, splitting,

removing vertices, etc.

34

Graph as a Num

instance Num a =>
fromInteger =
(+) =
(*) =
signum =
abs =
negate =

Num (Graph a) where
Vertex . fromInteger
Overlay

Connect

const Empty

id

id

example :: Graph Int
example = 1 * (2 + 3)

-- Instead of: Graph [1,2,3] [(1,2), (1,3)]

35

From four primitives to a library

-- An abstract interface or a type class

empty :: Graph a

vertex :: a -> Graph a

overlay :: Graph a -> Graph a -> Graph a
connect :: Graph a -> Graph a -> Graph a

36

From four primitives to a library

-- An abstract interface or a type class

empty :: Graph a

vertex :: a -> Graph a

overlay :: Graph a -> Graph a -> Graph a
connect :: Graph a -> Graph a -> Graph a

-- Combine primitives into larger graphs
vertices :: [a] -> Graph a
vertices vs = foldr overlay empty (map vertex vs)

edge :: a -> a -> Graph a
edge u v = connect (vertex u) (vertex v)

37

Folding algebraic graphs

-- Like foldr but for graphs

foldg :: b -> (a ->b) -> (b ->b ->b) -> (b ->b ->b)
-> Graph a -> b

foldg e v 0 ¢ = go

where
go Empty = e
go (Vertex x) = v X
go (Overlay x y) = o (go x) (go y)
go (Connect x y) = ¢ (go x) (go vy)

38

Folding algebraic graphs

-- Like foldr but for graphs
foldg :: b -> (a ->b) -> (b ->b ->b) -> (b ->b ->b)
-> Graph a -> b
foldg e v 0 ¢ = go
where

go Empty = e
go (Vertex x) = v X
go (Overlay x y) = o (go x) (goy)
go (Connect x y) c (go x) (go vy)

isEmpty :: Graph a -> Bool

isEmpty = foldg True (const False) (&&) (&&) 39

Folding algebraic graphs

-- Like foldr but for graphs
foldg :: b -> (a ->b) -> (b ->b ->b) -> (b ->b ->b)
-> Graph a -> b

foldg e v o c = go The arguments (e, v, 0, ¢) must
where satisfy the laws of the algebra
go Empty = e

go (Vertex x) = v X
go (Overlay x y) = o (go x) (go y)
go (Connect x y) c (go x) (go vy)

isEmpty :: Graph a -> Bool

isEmpty = foldg True (const False) (&&) (&&) 40

Folding algebraic graphs

hasVertex :: Eq a => a -> Graph a -> Bool

hasVertex x = foldg False (==x) (|]|) (|])

vertexSet :: Ord a => Graph a -> Set a

vertexSet = foldg Set.empty singleton union union
transpose :: Graph a -> Graph a

transpose = foldg empty vertex overlay (flip connect)
size :: Graph a -> Int

size = foldg 1 (const 1) (+) (+)

41

hasVertex ::

hasVertex

vertexSet ::

vertexSet

transpose ::

transpose

size :: Graph a -> Int ~ Breaks laws:
size = foldg 1 (const 1) (+) (+) size(x) # size(x+g)

Folding algebraic graphs

Eg a => a -> Graph a -> Bool
x = foldg False (==x) (|]|) (|])

Ord a => Graph a -> Set a
foldg Set.empty singleton union union

Graph a -> Graph a
= foldg empty vertex overlay (flip connect)

42

Part IlI:
Labelled Algebraic Graphs

Labelled algebraic graphs

data Graph a = Empty

Vertex a

Overlay (Graph a) (Graph a)
Connect (Graph a) (Graph a)

i

data Graph e a = Empty
| Vertex a
|

Connect e (Graph e a) (Graph e a)

44,

Labelled algebraic graphs

data Graph a

i

data Graph e

Empty

Vertex a

Overlay (Graph a) (Graph a)
Connect (Graph a) (Graph a)

Main idea:

Empty Overlay = Connect ©
Vertex a

Connect e (Graph e a) (Graph e a)

45

Labels

We need zero label 0 to indicate a missing edge . P P

— Labels are edge capacities: @ is just © 3‘x 5 X 2.x
— Labels are distances between vertices: @ is o _
, _ *y -+ y = ¢y
— Labels are regular expressions: @ is @ 5 5
We need a way to compose ‘parallel’ labels: *< °< *<

— Labels are edge capacities: <+> is max
— Labels are distances between vertices: <+> is min

— Labels are regular expressions: <+> is |

To stay sane we better require <+> to be associative and have identity 0
46

Labels

We need zero label 0 to indicate a missing edge . P P

— Labels are edge capacities: @ is just © 3.x 5 X 2.x
— Labels are distances between vertices: @ is o _
, _ *y -+ y = ¢y
— Labels are regular expressions: @ is @ 5 5
We need a way to compose ‘parallel’ labels: *< °< *<

— Labels are edge capacities: <+> is max
— Labels are distances between vertices: <+> is min 3
— Labels are regular expressions: <+> is | COUn-\-ﬂ

To stay sane we better require <+> to be associative and have identity 0
47

Overlaying edge-labelled graphs

data Graph e a

-- Convenient aliases

zero :: Monoid e => e (<+>) :: Monoid e => e -> e -> e
zero = mempty (<+>) = mappend
overlay :: Monoid e => Graph e a -> Graph e a -> Graph e a

overlay = Connect zero

We will continue using + to denote the graph overlay operation. 48

Connecting edge-labelled graphs

data Graph e a

edge :: e -> a -> a -> Graph e a
edge e x y = Connect e (Vertex x) (Vertex y)

-- Convenient ternary-ish operator
(-<) 2 a ->e -> (a,e) (>-) :: (a,e) -> a -> Graph e a
X -< e = (x,e) (x,e) >- y = edge e Xy

We'll use x-<e>-y to denote an edge connecting x and y with label e 49

Composing labels in sequence

We need a way to compose ‘sequences’ of labels: R P 4,_

— Labels are edge capacities: <. > is min rr X
. . . 2 2
— Labels are distances between vertices: <. > is + y = 7 y
® —)
— Labels are regular expressions: <.> is; 5 5
We need label 1 to indicate the empty sequence *< <

— Labels are edge capacities: 1 is oo
— Labels are distances between vertices: 1 is 0

— Labels are regular expressions: 1 is €

To stay sane we better require <. > to be associative and have identity 1
50

Composing labels in sequence

We need a way to compose ‘sequences’ of labels: R P 4,_

— Labels are edge capacities: <. > is min = X
. . . 2 2
— Labels are distances between vertices: <. > is +
oy = 7| sy

— Labels are regular expressions: <.> is; 5 5
We need label 1 to indicate the empty sequence < — .

— Labels are edge capacities: 1 is oo \d

— Labels are distances between vertices: 1 is 0 \\/\OF\O 4

— Labels are regular expressions: 1 is € COUﬂto

To stay sane we better require <. > to be associative and have identity 1
51

Composing labels in sequence

data Graph e a

class Monoid e => Semiring e where
one roe
(<.>) :: e ->e -> e

-- The connect operator from unlabelled algebraic graphs
(x) :: Semiring e => Graph e a -> Graph e a -> Graph e a
(%)

x) = Connect one

52

Unlabelled graphs are Bool-labelled

data Graph a = Empty

Vertex a

Overlay (Graph a) (Graph a)
Connect (Graph a) (Graph a)

ﬁ e=Bool ©=False 1=True (<+>)=(|]) (<.>)=(&&)

data Graph e a =
| Vertex a
| Connect e (Graph e a) (Graph e a)

53

Unlabelled graphs are Bool-labelled

data Graph a = Empty
Vertd |
Overlay| 2 pph a) (Graph a)
Connect#(Graph | 3 |Graph g4

ﬁ e=Bool ©=False 1=True (<+>)=(|]|) (<.>)=(&&)
data Graph e a Empty

| Vertex a
| Connect e (Graph e a) (Graph e a)

54

Example 1: transportation networks

FEastCoast network

[Aberdeen]
150

[Edinburgh]
90

[Newcastle]
170

[London]

Example 1: transportation networks

type Network e a

type JourneyTime =

data City

Aberdeen | Edinburgh | Glasgow

London

Graph (Distance e) a

Int -- In minutes

| Newcastle

FEastCoast network

[Aberdeen]
150

[Edinburgh]
90

[Newcastle]
170

[London]

56

Example 1: transportation networks

FEastCoast network

type Network e a = Graph (Distance e) a

type JourneyTime = Int -- In minutes (: Aberdeen j
data City = Aberdeen | Edinburgh | Glasgow 150
| London | Newcastle [Edinburgh j
90
eastCoast :: Network JourneyTime City

eastCoast = overlays [Newcastle j

[Aberdeen -<150>- Edinburgh 170
, Edinburgh -< 90>- Newcastle [: London :]
, Newcastle -<170>- London]

Example 1: transportation networks

ScotRatil network

[Aberdeen]
140

[Glasgow] [Edinburgh]
N_70 “

50

Example 1: transportation networks

ScotRatil network

[Aberdeen]
20 140
[Glasgow] [Edinburgh]
N_70 ~
scotRail :: Network JourneyTime City

scotRail = overlays
[Aberdeen -<140>- Edinburgh
, Glasgow -< 50>- Edinburgh
, Glasgow -< 70>- Edinburgh]

59

Example 1: transportation networks

ScotRatil network

In the Distance semiring
[Aberdeen] we can simplify this
50 140 network algebraically:
[Glasgow] [Edinburgh] X-<50>-y + X-<70>-y
N_70 “~ -
’ X-<min 50 70>-y
scotRail :: Network JourneyTime City =
scotRail = overlays X-<50>-y

[Aberdeen -<140>- Edinburgh
, Glasgow -< 50>- Edinburgh
, Glasgow -< 70>- Edinburgh]

60

Example 1: transportation networks

ScotRail network EastCoa,st network

[Aberdeen] [Aberdeen]
>0 140 150

[Glasgow] [Edinburgh] [Edinburgh]
70 7 90

[Newcastle]
network :: Network JourneyTime City 170

network = overlay scotRail eastCoast
[London]

Example 1: transportation networks

[Aberdeen]
140| (150

[Glasgow] [Edmburgh]
707 g9

50

[Newcastle]
170

[London]

Example 1: transportation networks

Axioms of labelled [Aberdeen |
algebraic graphs
140
[Glasgow] 20 [Edinburgh]
90

[Newcastle]
170

[London]

Example 1: transportation networks

Axioms of labelled
algebraic graphs

Add transitivity:

y£E =
X-<a>-y + y--z =
X-<a>-y + y--z +
X-<a+b>-z

[Glasgow

Aberdeen
Q
2 140
20 [Edinburgh 230
N2 90
&
@ Newcastle | >0
170
London

400

Example 1: transportation networks

Axliongs c?f Iabellhed Aberdeen
algebralc grapns Q
> 140| (0)

Add transitivity: [Glasgow >0 [Edinburgh | 230
¥4
y#e = (0) X, 90 @ 400
X-<a>-y + y--z = 0
G @ Newcastle | [>g0

X-<a+b>-z 170 @
Add reflexivity: London

V = V-<0>-V @

Example 2: finite automata

[Choice j [Paymentj [Completej

type Automaton a s = Graph (RegularExpression a) s

data State = Choice | Payment | Complete
data Alphabet = Coffee | Tea | Cancel | Pay

66

Example 2: finite automata

Coffee
N
[Choice j&[Paymentj [Completej

automaton = overlays [Choice -<[Coffee, Tea]>- Payment

, Payment -<]J]1>- Complete

] 6/

Example 2: finite automata

Coffee

N
[Choice %{Paymentjﬂ)@ompletej

automaton = overlays [Choice -<[Coffee, Tea]>- Payment

, Payment -<[Pay]1>- Complete

] 68

Example 2: finite automata

Coffee
N
[Choice %{Paymentjﬂ)@ompletej
K—/
\\\\ Cancel

Cancel

automaton = overlays [Choice -<[Coffee, Tea]>- Payment

, Payment -<[Pay]1>- Complete
, Choice -<[Cancel]>- Complete
, Payment -<[Cancel]>- Choice]

69

Example 2: finite automata

Coffee
N
[Choice %{Paymentjﬂ)@ompletej
w
\ Cancel

Cancel

After closure, we also have the following edges:
— Payment -<(Cancel;(Coffee | Tea))*>- Payment
— Payment -<(Cancel;(Coffee | Tea))*;(Pay | Cancel;Cancel)>- Complete

Part IV:
Algebraic Graphs Library

Algebraic graphs library

Algebraic graphs are available on Hackage
— Graph construction & transformation API
— http://hackage.haskell.org/package/algebraic-graphs
— https://github.com/snowleopard/alga

More theory and examples in Haskell Symposium 2017 paper:

— https://github.com/snowleopard/alga-paper

Parts of the API are formally verified in Agda:
— https://github.com/algebraic-graphs/agda

600+ QuickCheck properties...

72

https://github.com/snowleopard/alga
https://github.com/snowleopard/alga
https://github.com/snowleopard/alga-paper
https://github.com/algebraic-graphs/agda

Performance

Google Summer of Code project:
— Student: Alexandre Moine
— https://github.com/haskell-perf/graphs

Benchmark suite for Alga, containers, fgl, Hash-Graph

Various performance optimisations
— e.g. use rewrite rules to make transpose . star as fast as:

transposeStar :: a -> [a] -> Graph a
transposeStar x [] = vertex x
transposeStar x ys = connect (vertices ys) (vertex x)

https://github.com/snowleopard/alga

Performance

100.0 ms

10.00 ms

1.000 ms

100.0 s

10.00 ps

1.000 ps

1.000 s

100.0 ms

10.00 ms

1.000 ms

100.0 ps

10.00 ps

1.000 ps

10.00 ms

1.000 ms

100.0 ps

10.00 ps

1.000 ps

100.0 ns

10.00 ns

1.000 ns

Il Alga [l Containers [l Fal

addEdge

- 100.0 ms
10.00 ms
1.000 ms
100.0 ps

10.00 ps

1.000 ps
Clique Mesh RealLife
edgelist
- 1.000 s
100.0 ms
10.00 ms
1.000 ms
100.0 ps
10.00 ps
1.000 ps
Clique Mesh RealLife
hasVertex

r 1.000 s

Clique Mesh

RealLife

Hash-Graph

addVertex

Clique Mesh RealLife
equality
Clique Mesh RealLife
reachable

Clique Mesh

ReallLife

10.00 s

1.000 s

100.0 ms

10.00 ms

1.000 ms

100.0 ps

10.00 ps

1.000 ps

100.0 ms

1.000 ms

10.00 ps

100.0 ns

1.000 ns

10.00 s

1.000s

100.0 ms

10.00 ms

1.000 ms

100.0 ps

10.00 ps

1.000 ps

creation

Clique Mesh RealLife
hasEdge
Clique Mesh ReallLife
removeEdge

RealLife

Clique Mesh

Graphs used: Clique with 1000 vertices, Mesh with 1000 vertices

74

Performance (fusion)

addEdge

10.00s 10.00s
1.000 s 1.000s
100.0 ms 100.0 ms
10.00 ms 10.00 ms
1.000 ms 1.000 ms
100.0 ps 100.0 ps
10.00 ps 10.00 ps
1.000 ps — 1.000 ps
Clique Mesh RealLife
hasEdge
10.00s 10.00s
1.000s 1.000 s
100.0 ms 100.0 ms
10.00 ms 10.00 ms
1.000 ms 1.000 ms
100.0 ps 100.0 ps
10.00 ps 10.00 ps
1.000 ps — 1.000 ps
Clique Mesh RealLife
removeEdge
10.00s 10.00 s
1.000s 1.000's
100.0 ms
100.0 ms
10.00 ms
10.00 ms
1.000 ms
1.000 ms
100.0 ps
10.00 ps 100.0 ps
1.000 ps — 10.00 ps
Clique Mesh RealLife
Il Alga [l Containers [l Fal Hash-Graph

addVertex
Clique Mesh RealLife
hasVertex
Clique Mesh RealLife
removeVertex

Clique Mesh RealLife

10.00 s

1.000 s
100.0 ms
10.00 ms
1.000 ms
100.0 ps
10.00 ps

1.000 ps

10.00 s

1.000s

100.0 ms

10.00 ms

1.000 ms

100.0 ps

10.00 ps

10.00 s

1.000s

100.0 ms

10.00 ms

1.000 ms

100.0 ps

10.00 ps

equality

Clique Mesh RealLife

reachable

Clique Mesh ReallLife

transpose

Clique Mesh ReallLife

Graphs used: Clique with 1000 vertices, Mesh with 1000 vertices

75

Why not use Alga?

Alga is new, experimental and unstable
— Version 0.2 released recently, with many breaking changes
— Every new algorithm is a (cool!) research problem

Why use the containers library instead:
— Mature, bundled with GHC
— Performance
— A textbook data structure, no surprises

Why use the fgl library instead:
— Mature, comes with a lot of algorithms
— Convenient for expressing many algorithms (DFS, BFS, etc.)

Thank you!

andrey.mokhov@ncl.ac.uk
@andreymokhov

PS.: Have you come across decomposition xyz = xy + Xz + yz?

PPS.: Plenty of open research directions: graph algorithms,
compact graph representation, links to topology, etc. Help me!

77

A library for algebraic graphs
in just 100 lines of code

Reusing functional programming abstractions

data Graph a

instance
instance
instance
instance
instance
instance

Empty

Vertex a

|
| Overlay (Graph a) (Graph a)
|

Connect (Graph a) (Graph a)

Eqg a => Eq (Graph a) -- via normal form
Num a => Num (Graph a)

Functor Graph

Applicative Graph

Monad Graph

MonadPlus Graph

79

Reusing functional programming abstractions

data Graph a

instance
instance
instance
instance
instance
instance

Empty
Vertex a

|
| Overlay (Graph a) (Graph a)
|

Connect (Graph a) (Graph a)

Eqg a => Eq (Graph a) -- via normal form

Num a => Num (Graph a)
Functor Graph
Applicative Graph
Monad Graph
MonadPlus Graph

Correspond to basic

graph transformations:

merging, splitting,

removing vertices, etc.

80

Graph as a Num

instance Num a =>
fromInteger =
(+) =
(*) =
signum =
abs =
negate =

Num (Graph a) where
Vertex . fromInteger
Overlay

Connect

const Empty

id

id

example :: Graph Int
example = 1 * (2 + 3)

-- Instead of: Graph [1,2,3] [(1,2), (1,3)]

81

Graph as a Functor

class Functor f where
fmap :: (a -> b) -> fa ->fb

-- Lists

fmap (+1) [1, 2, 3] == [2, 3, 4]

fmap show [1, 2, 3] == ["1 s "3"]
-- Graphs

fmap (+1) (1 + 2 * 3) == 2 + 3 * 4

fmap show (1 + 2 * 3) == "1" + "2" * "3"

=

82

Merge vertices using Functor

mergeCD ::

Graph String

-> Graph String

mergeCD g
where

+ "C"

npn

.F
f x

fmap f g

IICDII
IICDII
X

-

A

(

83

Merge vertices using Functor

(x (%
—
(+ +
A B A A
....... B E C D
) N J

Graph as a Monad

class Applicative m => Monad m where

return :: a -> m a
(>>=) ::ma->(a->mb) ->mb
-- Lists

neighbours x = [x - 1, x + 1]
fmap neighbours [1, 2] == [[0, 2], [1, 3]]
[1, 2] >>= neighbours == [0, 2, 1, 3]

-- Graphs
neighbours x = Vertex (x - 1) + Vertex (x + 1)

(1 * 2) >>= neighbours == (0 + 2) * (1 + 3)

85

Split vertices using Monad

splitCD ::
-> Graph String
splitCD g = g »>>= f
where
+ "CD" = Vertex "C"
+ Vertex "D"

Graph String

f x = Vertex Xx

o)

o)

86

Split vertices using Monad

Graph as a MonadPlus

class Monad m => MonadPlus m where

mzero :: m a
mplus :: ma ->ma ->ma
-- Lists
mzero == []

mplus [1, 2] [2, 3] == [1, 2] ++ [2, 3] == [1, 2, 2, 3]

-- Graphs
mzero == Empty
mplus (1 + 2) (2 * 3) == (1 + 2) + (2 * 3) ==1+ 2 * 3
88

Find induced subgraphs using MonadPlus

induceBCE :: Graph String -> Graph String
induceBCE = mfilter (elem” ["B","C","E"])

-- From Control.Monad:
mfilter :: MonadPlus m
=> (a -> Bool) ->ma ->m a

mfilter p ma = do

a <- Mma

if p a then return a else mzero

Find induced subgraphs using MonadPlus

/ {/} N, o s 7N
AN U f \

& e

Cartesian graph product

O

> @

> @

box :: Graph a -> Graph b -> Graph (a, b)
box x y = msum $ xs ++ ys
where
xs = map (\b -> fmap (,b) x) $ tolList y
ys

map (\a -> fmap (a,) y) $ tolList x 91

From four primitives to a library

-- An abstract interface or a type class

empty :: Graph a

vertex :: a -> Graph a

overlay :: Graph a -> Graph a -> Graph a
connect :: Graph a -> Graph a -> Graph a

92

From four primitives to a library

-- An abstract interface or a type class

empty :: Graph a

vertex :: a -> Graph a

overlay :: Graph a -> Graph a -> Graph a
connect :: Graph a -> Graph a -> Graph a

-- Combine primitives into larger graphs
vertices :: [a] -> Graph a
vertices vs = foldr overlay empty (map vertex vs)

clique :: [a] -> Graph a

clique vs = foldr connect empty (map vertex vs) o3

edge ::

edge

star ::

star

From four primitives to a library

a ->a -> Graph a
uv = 22??

a -> [a] -> Graph a
uvs = ???

94

edge ::

edge

star ::

star

From four primitives to a library

a ->a -> Graph a
u v = connect (vertex u) (vertex v)

a -> [a] -> Graph a
uvs = 22?

95

edge ::

edge

star ::

star

From four primitives to a library

u

u

a ->a -> Graph a

\Y

connect (vertex u) (vertex v)

a -> [a] -> Graph a

VS

connect (vertex u) (vertices vs)

96

From four primitives to a library

edge :: a -> a -> Graph a
edge u v = connect (vertex u) (vertex v)

star :: a -> [a] -> Graph a
star u vs = connect (vertex u) (vertices vs)

isSubgraphOf g h = overlay g h == h
hasEdge u v g = ?2?

From four primitives to a library

edge :: a -> a -> Graph a
edge u v = connect (vertex u) (vertex v)

star :: a -> [a] -> Graph a
star u vs = connect (vertex u) (vertices vs)

isSubgraphOf g h = overlay g h == h
haskEdge u v g = edge u v isSubgraphOf g

98

From four primitives to a library

edge :: a -> a -> Graph a
edge u v = connect (vertex u) (vertex v)

star :: a -> [a] -> Graph a
star u vs = connect (vertex u) (vertices vs)

isSubgraphOf g h = overlay g h == h
haskEdge u v g = edge u v isSubgraphOf h
where

h = mfilter ("elem” [u,Vv]) g
99

Folding algebraic graphs

-- Like foldr but for graphs

foldg :: b -> (a ->b) -> (b ->b ->b) -> (b ->b ->b)
-> Graph a -> b

foldg e v 0 ¢ = go

where
go Empty = e
go (Vertex x) = v X
go (Overlay x y) = o (go x) (go y)
go (Connect x y) = ¢ (go x) (go vy)

Folding algebraic graphs

-- Like foldr but for graphs
foldg :: b -> (a ->b) -> (b ->b ->b) -> (b ->b ->b)
-> Graph a -> b
foldg e v 0 ¢ = go
where

go Empty = e
go (Vertex x) = v X
go (Overlay x y) = o (go x) (goy)
go (Connect x y) c (go x) (go vy)

isEmpty :: Graph a -> Bool
isEmpty = foldg True (const False) (&&) (&&) 10

Folding algebraic graphs

-- Like foldr but for graphs
foldg :: b -> (a ->b) -> (b ->b ->b) -> (b ->b ->b)
-> Graph a -> b

foldg e v o c = go The arguments (e, v, 0, ¢) must
where satisfy the laws of the algebra
go Empty = e

go (Vertex x) = v X
go (Overlay x y) = o (go x) (go y)
go (Connect x y) c (go x) (go vy)

isEmpty :: Graph a -> Bool
isEmpty = foldg True (const False) (&&) (&&) 10

Folding algebraic graphs

hasVertex :: Eq a => a -> Graph a -> Bool

hasVertex x = foldg False (==x) (|]|) (|])

vertexSet :: Ord a => Graph a -> Set a

vertexSet = foldg Set.empty singleton union union
transpose :: Graph a -> Graph a

transpose = foldg empty vertex overlay (flip connect)
size :: Graph a -> Int

size = foldg 1 (const 1) (+) (+) 10

hasVertex ::

hasVertex

vertexSet ::

vertexSet

transpose ::

transpose

size :: Graph a -> Int ~ Breaks laws:
size = foldg 1 (const 1) (+) (+) size(x) # size(x+g) |

Folding algebraic graphs

Eg a => a -> Graph a -> Bool
x = foldg False (==x) (|]|) (|])

Ord a => Graph a -> Set a
foldg Set.empty singleton union union

Graph a -> Graph a
= foldg empty vertex overlay (flip connect)

