Skip to content

Multi-EPL: Accurate Multi-source Domain Adaptation

Notifications You must be signed in to change notification settings

snudatalab/MultiEPL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-EPL

This package provides implementations of Multi-EPL, which is submitted at PLOS ONE.

Overview

Code structure

MultiEPL
├── data
│   └── digits: Digits-Five dataset
├── script
│   └── digits.sh: Shell file for Digits-Five experiments
└── src
    ├── loader
    │   ├── digits: for Digits-Five dataset setting
    │   │   ├── mnist.py
    │   │   ├── mnist_m.py
    │   │   ├── svhn.py
    │   │   ├── synthdigits.py
    │   │   └── usps.py
    │   └── dataloader.py: generate dataloader and dataset of Digits-Five
    ├── utils
    │   └── default_param.py: set default parameters
    ├── network
    │   └── network_digits.py: network for Multi-EPL with Digits-Five dataset
    ├── solver.py: solver class for training
    └── digits.py: code for training Multi-EPL with Digits-Five dataset

Data description

Install

Environment

  • Ubuntu
  • CUDA 10.0
  • Python 3.6.12
  • torch 1.7.1
  • torchvision 0.8.2
  • scipy 1.5.4

To create an anaconda environment with all the requirements:

conda env create -n <ENV_NAME> -f requirement.txt

How to use

git clone https://github.com/snudatalab/AUBER.git
cd Multi-EPL/script/
sh digits.sh

Contact us

About

Multi-EPL: Accurate Multi-source Domain Adaptation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published