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Abstract—Deep neural networks (DNNs) have shown phenom-
enal success in a wide range of applications. However, recent
studies have discovered that they are vulnerable to Adversarial
Examples, i.e., original samples with added subtle perturbations.
Such perturbations are often too small and imperceptible to
humans, yet they can easily fool the neural networks. Few defense
techniques against adversarial examples have been proposed, but
they require modifying the target model or prior knowledge
of adversarial examples generation methods. Likewise, their
performance remarkably drops upon encountering adversarial
example types not used during the training stage. In this paper,
we propose a new framework that can be used to enhance DNNs’
robustness by detecting adversarial examples. In particular, we
employ the decision layer of independently trained models as
features for posterior detection. The proposed framework doesn’t
require any prior knowledge of adversarial examples generation
techniques, and can be directly augmented with unmodified
off-the-shelf models. Experiments on the standard MNIST and
CIFAR10 datasets show that it generalizes well across not only
different adversarial examples generation methods but also vari-
ous additive perturbations. Specifically, distinct binary classifiers
trained on top of our proposed features can achieve a high
detection rate (> 90%) in a set of white-box attacks and maintain
this performance when tested against unseen attacks.

Index Terms—Adversarial Attacks, Deep Neural Networks,
Pattern Classification, Adversarial Examples, Deep Learning

I. INTRODUCTION

With the advent of large scale digital datasets and novel
computing architectures, deep neural networks (DNNs) have
recently attained impressive performances on diverse and
challenging problems such as object detection [1], speech
recognition [2], face recognition in-the-wild [3], malware
detection [4], self-driving vehicles [5], mutations analysis in
DNA [6], and prediction of structure-activity of potential drug
molecules [7], just to name a few.

In spite of their major breakthroughs in solving complex
tasks, researchers have lately discovered that DNNs are highly
vulnerable to deliberate perturbations, which, when added to
the input sample, can mislead the system to yield incorrect
output with very high confidence [8, 9]. The resultant samples
with deliberate perturbations are called adversarial examples
(AEs), i.e., carefully crafted versions of the clean samples that
are intentionally perturbed (e.g. by adding noise) to confuse
or fool the DNNs. Often, AEs are characterized by requiring
minimal perturbations, thereby for humans not only these
perturbations are imperceptible but also the corresponding
samples are indistinguishable from the original ones, yet
neural networks make errors with high probability [10]. For
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indistinguishable from x but is classified incorrectly, i.e.
f(x0) 6= TrueClass Label; though the x is correctly classified
by the f , i.e., f(x) = TrueClass Label. In other words, a
learned deep learning model for a specific task is represented
as f : X ! Y , where X and Y respectively represent the
input sample and output spaces, and for a given test sample
x 2 X

Find x0

s.t. f(x) 6= f(x0)
�(x, x0) < ✏

(1)

where x, x0 2 X and ✏ is the parameter that sets the maximum
perturbation allowed. �(x, x0) is the difference between x and
x0 that depends on the specific data type of X . For instance,
in case of strings, �(x, x0) represents the difference between
two strings. Several algorithms have been recently proposed
to solve Eq. 1 as an optimization problem, which have been
detailed in subsequent subsections.

Adversarial attacks can be bifurcated into white-box (a.k.a.
model dependent) and black-box (a.k.a. model independent)
attacks. In the former category, the adversary has varying
degrees of knowledge of or access to the target model and
its parameters. Since, adversary have model?s knowledge,
they may be able to produce very powerful AE. Though
obtaining internal information of model is difficult, still white-
box AE is possible [29]. In the latter category, the adversary
knows nothing about the models except the predictions. The
black-box AEs are more realistic threat, and existing DNNs
are vulnerable regardless of their underlying structure [27].
Additionally, the AE attack takes one of two forms. A non-
targeted AE is an x0, which causes the target DNN model to
yield any incorrect output by reducing the probability of the
true class: f(x0) 6= y, where y is a true category or label with
highest probability [35]. A targeted AE is an x0 that causes
the target DNN model to predict a specific incorrect output
y0: f(x0) = y0, where y 6= y0 [33].

Although the AE generation methods are generally divided
into white and black-box attacks, we here have grouped them
into three categories: white-box AEs, black-box AEs, DNN-
based AEs that utilize another specific deep model to produce
AEs, and physical AEs.

A. White-Box AEs methods

1) L-BFGS Attack: Szegedy et al. [15] first introduced
AEs for DNNs. Authors proposed a AEs generation algorithm
based on L-BFGS method solving the general targeted prob-
lem:

min
x0

⌘ k�(x, x0)k + J✓(x
0, y0) s.t. x0 2 [0, 1] (2)

where ⌘ is a constant that was estimated by line-searching
⌘ > 0 to compute approximate values of AEs, and J✓ is
loss function, e.g., cross-entropy. In [15], it was demonstrated
that the generated AEs may also be generalized not only
to different models but also to different training databases.
Authors argued that the success of AEs are owing to never
or hardly ever seen samples in the test databases. It is worth
mentioning that authors in [36] implemented L-BFGS Attack
with a binary search to find the optimal value for ⌘. Anyway,

the L-BFGS Attack is a time-consuming and impractical due
to use of an expensive linear search method to find the optimal
value. Fig. ?? shows an AE via L-BFGS Attack on ImageNet.

2) FGSM (Fast Gradient Sign Method): To overcome
some limitations of L-BFGS Attack method, Goodfellow et al.
[13] devised a fast method, called Fast Gradient Sign Method
(FGSM), to produce AEs. The FGSM technique only performs
one step gradient update along the direction of the sign of
gradient at each pixel. Specifically, the AEs are computed by:

x0 = x + ✏sign(rxJ✓(x, y)) (3)

The perturbation in FGSM can be estimated using back-
propagation. In [13], authors argued that the linear part of the
high dimensional DNNs could not resist AEs; though linear
behaviour speeds up the training. Similarly, regularization
approaches in DNNs (e.g., dropout, pretraining, etc.) could
not improve the robustness of the models. Fig. 1a depicts an
AE using FGSM.

sign(rxJ(✓, x, y))
✏sign(rxJ(✓, x, y))

B. Black-Box AEs methods

C. Quality of Service (QoS)

III. CONCLUSION
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Fig. 1: An adversarial sample generated with Fast Gradient
Sign Method (FGSM) in [8]. VGG16 [11] recognizes the clean
original image sample correctly with high confidence. When
small perturbation is added to the image, the model predicts
incorrect label with similar high confidence.

instance, an adversarial example as depicted in Fig. 1 can be
generated by adding some indiscernible perturbations into a
given image. The resultant adversarial image is misclassified
by the well-known convolutional classifier VGG16 [11], while
a human being can still classify it correctly without spotting
the deliberate added perturbations.

The vulnerability to AEs is severe as deep learning methods
are now being used in daily applications and also planned to be
deployed widely in the real-world. Moreover, AEs have unex-
pected transferability property [12], i.e., AEs generated for one
model can be utilized to compromise others designed for the
same task, regardless of the models’ architectures or training
techniques being significantly different. The issue of AEs is
particularly horrible in safety- and security-critical systems,
which can cause devastating consequences. For example, an
attacker can create physical AEs to baffle autonomous vehicles
by manipulating either a “stop” sign as to “go fast” sign
or “pedestrians on crosswalk” as “empty road”. Likewise, a
suspect can construct AEs to fool a face identification system
either for going unidentified or for gaining unauthorized
access.

Since AEs introduction in seminal works by Szegedy et al.
[13] and Goodfellow et al. [8], several studies in different
domains have investigated the vulnerability of deep learning
models against AEs. For example, image classification [14],
face recognition [15], and malware detection [16]. Similarly,
many works have focused on AEs generation methods, i.e.,
devising algorithms to produce AEs. Some AEs generation
techniques are based on the gradient of networks, such as
FGSM (Fast Gradient Sign Method) [8], FGV (Fast Gradient
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Value) [17], JSMA (Jacobian Saliency Map Attack) [18], while
others depend on solving optimization problems with different
procedure such as limited memory BFGS [13], Deepfool [10],
and C&W attack by Carlini & Wagner [19].

Consequently, to safeguard neural networks against AEs,
several countermeasure techniques have been proposed, which
roughly fall within two categories: adversarial defense and ad-
versarial detection. The first kind of methods aim at improving
the DNNs’ robustness to classify AEs correctly. Representative
examples are adversarial training (i.e., training the network
with clean and AEs samples) [20], defensive distillation (i.e.,
training a new robust network by using the distillation method)
[21] and bounded ReLU activations (i.e., enhancing network’s
stability against AEs by modifying standard unbounded ReLU)
[22]. While the second kind of methods attempt to detect an
adversarial example before the network’s decision is taken
into account. Namely, adversarial detection techniques put an
extra effort in devising a separate AEs detector to distinguish
clean samples from AEs with the assumption that intrinsically
original data is different from AEs [9, 23].

Despite the current progress on increasing robustness of
DNNs against AEs, both types of countermeasures (i.e., ad-
versarial defense and adversarial detection) still not only do
not scale well but also fail to adapt to changes in the AEs
generation approach. Especially, adversarial detection methods
have low generalization capability under varying or previously
unseen attacks, i.e., their performance degrades when they
encounter unfamiliar attack types not used during the training
[24]. In addition, comparatively limited researches have been
conducted on adversarial detection methods, though their
development requires less efforts and computation resources
as compared to adversarial defense systems. Formulating a
generalizable adversarial detection strategy may help under-
standing intrinsic vulnerabilities as well as gaining insights
on inner levels of DNNs, which in turn would help improving
their robustness and performances [24].

Towards this aim, we propose a novel method capable of
effectively detecting AEs without any prior knowledge about
potential AEs. Particularly, we devised an adversarial detection
method based on the divergence/matching of predictions of
two independently trained models that relevantly differ in
terms of architecture. Moreover, we propose a train scheme
for pairs of models that improves the detection accuracy in
some of the tested attacks. We refer to this training approach
as Online Transfer Learning (OLTL).

The main difference between our method and previous AEs
detection and defense approaches is that prior works usually
employ both clean and perturbed datasets for training the
methods in the main classification task. It is also important
to highlight that, despite the fact we employ two models,
no ensemble strategy is employed. Experimental results on
CIFAR10 and MNIST data sets show that the proposed ap-
proach can attain accuracies higher than 90.0% even when AEs
are crafted using attack strategies never seen by the detector.
Moreover, our method can detect AEs generated with Gaussian
Blur, Salt and Pepper, and Weighted Gaussian blur noises.

The remainder of this paper is organized as follows. Section
II presents prior works on adversarial defense and detection.

Section III describes different methods to generate AEs used
in this study. The proposed approach is detailed in Section IV.
Experimental protocol, dataset, models, figures of merit, and
experimental results and discussions are given in Section V.
Lastly, conclusions are drawn in Section VI.

II. RELATED WORK

Adversarial attacks (samples with adversarially-crafted
small perturbations) have recently emerged as a significant
threat to the deep learning techniques, thereby this finding
may hinder the large scale adoption of DNNs-based systems
in practical applications. There exists a number of methods to
generate adversarial samples or adversarial examples (AEs)
mainly based on the gradient of networks [8] or solving
optimization problems [13], and so on. Very few works have
attempted to give scientific reasoning for the vulnerability
phenomena of DNNs to AEs. For instance, authors in [13] gave
preliminary explanation that since the input space is densely
populated by low-probability adversarial pockets, thus each
point in the space is closer to many AEs. These AEs points
can be easily doctored to attain the desired model outcome. In
turn, Goodfellow et al. [8] argued that linear nature of DNNs-
based classifiers is the main source of vulnerability. While,
the work in [25] discussed “boundary tilting” view and argued
that usually AEs lie in regions where the decision boundary
is close to the manifold of training data.

The proposed defenses for mitigating AEs can be grouped
into two categories. The first category techniques try either
improving the robustness of DNNs or suppressing the success
rates of attacks. For instance, adversarial training [8], which is
training the system with AEs to augment the regularization and
loss functions and making the system more resilient. The other
technique is defensive distillation [21] in which additional
DNNs with softmax are trained to obstruct the deep learning
system from fitting too tightly to the data. However, it has been
demonstrated that defensive distillation method can be easily
circumvented with a minimal modified attack [19]. Other
approaches are pre-processing or denoising [26], i.e., removing
the adversarial noise from the input samples before feeding
them to neural networks, and architecture alteration [27], i.e.,
modifying the traditional neural network architectures, e.g.,
adding extra specific robust layers and functions.

The second category methods focus on detecting AEs as a
binary classification or anomaly detection problem. An AEs
detector distinguishes whether the input sample is an adversar-
ial attack or not. Xu et al. [28] proposed a Feature Squeezing
based AEs detection algorithm. The features are squeezed
either by decreasing each pixel’s color bit depth or smoothing
the sample using a spatial filter. The method employs a binary
classifier that uses as features the predictions of a target model
before and after squeezing of the input sample. As the method
relies on the effect of squeezing samples of a particular attack,
it works well only when the attack technique is known but less
effective under unknown ones. The method proposed in [23]
uses statistical tests to detect the AEs. This technique requires
large number of benign and adversarial examples to estimate
data distributions, thus it is less useful and practical. Metzen
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et al. [29] proposed augmenting the target model with a small
“detector” sub-network trained on both AEs and original clean
samples. However, this method as well requires sufficiently
large number of samples to function better. In [30], authors
perform unsupervised anomaly detection which is an intrinsi-
cally harder task when compared to binary classification and,
thus, has limited performance. Feinman et al. [9] exploited
the idea that AEs diverge from the benign data manifold and
estimated the difference between densities of set of true and
attack samples an indicator of AEs. Nonetheless, this method
is computationally expensive and gets confused when benign
samples are very close to AEs. As pointed out above in the
introduction section, most prior AEs detection methods all
in all lack generalization capability, namely their accuracy
deteriorates when faced unknown attacks (not used in training
process). Therefore, there is ample room for devising novel
AEs detection techniques.

III. ADVERSARIAL EXAMPLES GENERATION METHODS

In this section, we briefly describe the standard adversarial
attack generation methods utilized in this study. Adversarial
attacks to deep learning based systems can be either black-
box or white-box, where the adversary, respectively, does not
have and has knowledge of the model architecture, parameters
and its training data. In addition, the attacks could be targeted
and non-targeted, that aim to misguide DNNs to a specific
class and arbitrary class except the correct one, respectively.
In this work, we have used white-box non-targeted AEs.

Let f and x be a trained neural network and an original
sample. Generating an adversarial example xadv can be seen
as a box-constrained optimization problem:

min
xadv

||xadv − x||

s.t. f(xadv) = lincorrect

f(x) = lcorrect

lcorrect 6= lincorrect

(1)

where lcorrect and lincorrect are output labels of x and xadv ,
respectively. Many variants of the above optimization problem
have been presented in the literature to generate different kind
of AEs, which are discussed below:

A. Fast Gradient Sign Method (FGSM)

FGSM technique was introduced in [8] to generate AEs by
computing model’s loss function derivative with respect to the
input feature vector. The method performs one step update
along the direction of the gradient sign at each pixel. The
computation of AEs using this method can be expressed as:

xadv = x+ εsign(∇xJθ(x, lcorrect)), (2)

where Jθ is model’s loss function, ∇xJθ(x, y) is the loss
function’s gradient with respect to the input space, and ε is a
hyper-parameter that governs the maximum distance allowed
between adversarial and original samples.

B. Iterative Gradient Sign Method (IGSM)

An iterative version of FGSM technique called IGSM was
introduced by Kurakin et al. [14]. The intuitive notion of
IGSM method is taking multiple small steps iteratively while
adjusting the direction after each step, which increases the loss
of the model (i.e. one-step gradient ascent). Namely, instead of
merely applying certain amount of adversarial noise once with
a given ε, applying it several times iteratively with smaller ε,
which can be presented by a recursive formula:

xadv0 = x,

xadvi = clipx,ε(x
adv
i−1 + εsign(∇xadv

i−1
Jθ(x

adv
i−1, l

correct))),
(3)

here xadvi and clipx,ε denote the perturbed sample at the ith
iteration and a clipping of the adversarial sample’s values such
that they are within an ε-neighbourhood of the original sample
x, respectively.

C. Jacobian Saliency Map Attack (JSMA)

Papernot et al. [18] proposed a greedy iterative technique
for targeted attacks. Use of outputs derivative of a target model
leads to an adversarial perturbation that forces the model to
misclassify the manipulated sample into a specific target class.
Specifically, the sensitivity map per input features is computed
as:

xadv
i = xi +


0, if ∂ft(x)

∂xi
< 0 or

∑
j 6=t

∂fj(x)

∂xi
> 0

∂ft(x)
∂xi

|
∑
j 6=t

∂fj(x)

∂xi
|, otherwise

,

(4)
where t indicates the desired target class, subscript i is the
ith element (pixel) in the respective sample, and fj is the
probability of the jth class in the model’s output layer.

D. DeepFool

Moosavi-Dezfooli et al. [10] devised DeepFool method to
produce AEs by determining nearest distance from original
input to the decision boundary. An iterative attack by linear
approximation is executed in order to overcome the non-
linearity in high dimension. DeepFool uses concepts from
geometry to direct the search minimal perturbation to yield
successful attacks. At each iteration, the method perturbs the
image by a small vector that is computed to take the resulting
image to the boundary of the polyhedron, which is achieved
by linearizing the boundaries of the region within where the
image resides. The final attacker that is able to fool the model
is nothing but the accumulation of perturbations added in each
iteration. The minimal perturbation is computed as:

argmax
ηi

||ηi||2 s.t. f(xi) +∇f(xi)T ηi = 0, (5)

where ηi = xadvi − xi is the minimum perturbation added on
xi.



4

E. Additive Perturbation
In addition to above mentioned AEs generation methods,

we also produced adversarial attacks using additive noise
black-box perturbations, i.e., additive Gaussian noise attack,
Salt and Pepper noise attack, and Gaussian blur attack. In
order to generate AEs with these image quality degradations,
a line-search was performed internally to estimate minimal
adversarial perturbations.

IV. PROPOSED METHOD FOR ADVERSARIAL EXAMPLES
DETECTION

A. Decision Mismatch for Attacks Detection

In the work of Feinman et al. [9], it is shown that different
models make different mistakes when presented to same AEs.
In order to exploit that, authors use Dropout in “train mode”
and sample distinct models to predict the same input. A
divergence threshold is used to decide whether the input is
an attack or not. However, distinct models sampled from
dropping out parameters of a given neural network share most
of their structure. Hence, gradient-based attacks will have
similar impacts on their outputs. Moreover, in [28] subsequent
outputs of the same model obtained with an input sample
before and after decreasing each pixel’s color bit depth are
used as features for binary classification of attacks vs. clean
data. Once more, the same model is used for predictions of
gradient-based attacks, which exploit model’s structure for
building attacks.

We argue that mismatching of predictions will be maxi-
mized when the model’s structure is relevantly distinct. With
this in mind, we propose to perform classification with two
independently trained models and use their softmax output as
features for a separate binary classifier. The consistency on
the outputs provided by the two systems is an indicator of
clean samples while uncertainty will indicate a potential attack.
Employing different models in terms of their architectures,
will make gradient-based attacks have different effects on each
model, which is exactly what we intend to exploit in order to
spot attacks.

A diagram representing the proposed approach is shown in
Fig. 2. Two independently trained models receive the same
input and their concatenated outputs are used as features by
a binary classifier that performs classification of authentic
vs. attacker inputs. The requirements for model 1 and 2 are
matching performance on the task at hand and significant
structural differences. Detector can be any binary classifier
of choice.

The proposed approach also presents benefits in terms of
cost since only two predictions are required at test time
as opposed to [9] which need a relatively large number of
predictions for divergence evaluation. Besides that, no extra
processing is required on the tested samples, as is the case in
[28]. However, at train time our method requires the training
of two models for performing the same task.

B. Online Transfer Learning

Besides the detection approach fo AEs, we propose a
specific training scheme for classifiers referred to as Online

Model 1

Model 2
x

Detector Clean / Attack

Fig. 2: Detection method using decision mismatch - concate-
nated outputs of pretrained Models 1 and 2 are used as features
for the detector.

Transfer Learning (OLTL) aiming to improve the performance
on the detection task to be performed on top of the models
outputs.

Consider two distinct classifiers trained jointly on the same
task. One can formalize this particular learning problem as
solving the following:

argmax
θ,φ

log(Pθ(y|x)) + log(Pφ(y|x)), (6)

where Pθ(y|x) and Pφ(y|x) are conditional likelihoods of a
given class label y and the data x parametrized by θ and φ.

In the OLTL case, we augment the optimizee by including
the negative Kullback-Leibler divergences between Pθ(y|x)
and Pφ(y|x). We thus get:

argmax
θ,φ

log(Pθ(y|x)) + log(Pφ(y|x))−KL(Pθ(y|x)||Pφ(y|x))

−KL(Pφ(y|x)||Pθ(y|x)).
(7)

By doing so, we constrain the models to have matching
outputs. This is particularly convenient for detection of AEs.
Since we train models with OLTL exclusively presenting clean
samples, at test time models will have very similar outputs in
the case of unmodified original data and mismatching will be
an even stronger indication of potential attacks.

V. EXPERIMENTS

A. Datasets

We perform experiments on the well-known MNIST and CI-
FAR10 datasets. Both datasets consist of 50,000/10,000 train-
ing/testing images. MNIST contains 28x28 ten-class grayscale
images representing the digits from 0 to 9. CIFAR10 is a ten-
class dataset with 32x32 color images consisting of animals
and vehicles.

Subsets of the train partition of both MNIST and CIFAR10
were sampled for evaluation of the proposed scheme for
detections of AEs. As mentioned previously, seven different
attack strategies were tested in this study, namely FGSM,
IGSM, JSMA, DeepFool, Gaussian Blur, Gaussian Noise, and
Salt and Pepper. For each of them, samples were independently
selected at random without repetition. Each image picked was
selected randomly to become an attack and the model utilized
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Clean Gaussian 
Noise

Gaussian 
Blur

Salt and 
PepperFGSM IGSM JSMA DeepFool

Fig. 3: Samples after different attacks.

to generate the attack was also selected randomly. All attacks
were implemented using Foolbox [31].

In summary, by the end of the described process we had 7
independent datasets for each of MNIST and CIFAR10, each
of those containing 10,000 samples being approximately 50%
attacks that were generated using either model 1 or 2. Samples
of above mentioned attacks are shown in Fig. 3

B. Models Architectures and Training Details

1) MNIST: For MNIST, model 1 and 2 were selected as
a convolutional (CNN) and a 3-layers fully connected (MLP)
neural networks, respectively. Details of their architectures are
shown below:

• CNN: conv(5x5, 10) → maxpool(2x2) → conv(5x5, 20)
→ maxpool(2x2) → linear(350, 50) → dropout(0.5) →
linear(50, 10) → softmax.

• MLP: linear(784, 320) → dropout(0.5) → linear(320,
50)→ dropout(0.5) → linear(50, 10)→ softmax

All activation functions were set to ReLU. Training was
performed with Stochastic Gradient Descent (SGD) using
a fixed learning rate of 0.01 and mini-batches of size 64.
Training was executed for 10 and 20 epochs for independent
and OLTL schemes, respectively.

2) CIFAR10: In the case of CIFAR10, we selected the
widely used convolutional neural networks VGG16 and
ResNet50 [32, 33] as model 1 and 2 respectively. The models
were trained from scratch using SGD. The learning rate was
scheduled to start at 0.1 and decay by a factor of 1/10
after 10 epochs with no improvement on the validation set
accuracy. Momentum and L2 regularization were employed
with respecive coefficients set to 0.9 and 0.0005.

Performance of the models trained independently and with
OLTL for both datasets are presented in Table I. One can
notice that in some of the cases OLTL improves performance.
We intend to further investigate this aspect in future work.

C. Results and Discussion

We performed two main sets of experiments aiming to
evaluate: (a) detection performance of the proposed approach
when training and testing are performed using the same attack
strategy. Results here also include a comparison of detection

TABLE I: Performance on test data of the selected models
when trained independently and with the use of Online Trans-
fer Learning.

Dataset Model Test Accuracy (%)

MNIST
CNN 97.57

CNN OLTL 97.91
MLP 96.62

MLP OLTL 93.63

CIFAR10

VGG 92.50
VGG OLTL 92.70

ResNet 92.04
ResNet OLTL 94.10

performance gain when model 1 and 2 are trained with OLTL
as opposed to independent training; (b) generalization capacity
of the proposed approach by using data generated with a
particular attack strategy for training and a different one for
testing the detector.

Prior to proceeding to main experiments results, we provide
some illustrative analysis aiming to demonstrate the perfor-
mance of the selected attack strategies and the effectiveness
of the proposed approach. In Table II, the mean squared
error (MSE) averaged over 500 attacks generated with random
samples from both datasets is shown together with the success
rate of each attack. By success rate we mean the fraction of
the 500 random samples that successfully yielded attacks, i.e.
made the target model to predict the wrong class.

For our models, DeepFool is the strongest attack strategy
evaluated on MNIST since its MSE is at least one order
of magnitude lower than the other methods. In CIFAR10,
IGSM is the best performer. FGSM is the weakest of the
gradient-based attacks. The additive perpetuation strategies,
the ones that do not explicitly exploit the models structure to
generate attacks, i.e. Gaussian Blur, Gaussian Noise and Salt
and Pepper are, as expected, less effective when compared to
other methods that directly exploit models information to yield
refined attacks.

In order to visualize how discriminable attacks are when
compared to clean samples, we show the t-SNE embeddings
of the raw images and their representations with our features
in Fig. 4. Plots are generated under DeepFool attacks on
CIFAR10. One can clearly notice that the representation in
the proposed space of features makes attacks detectable.
Moreover, OLTL applied on the training phase of target models
1 and 2 makes the attacks even more separable from clean

TABLE II: Performance of different attacks evaluated in terms
of the average MSE for 500 samples as well as their success
rate.

Attack MSE Success Rate (%)
MNIST CIFAR10 MNIST CIFAR10

FGSM 2.13E-02 1.91E-03 100.0 100.0
IGSM 1.07E-02 3.34E-05 100.0 100.0
JSMA 1.24E-02 2.07E-04 95.6 100.0

DeepFool 6.17E-03 1.00E-04 100.0 99.8
Gaussian Blur 4.35E-02 3.04E-03 90.2 93.8

Gaussian Noise 5.67E-02 4.90E-03 67.4 100.0
Salt and Pepper 1.23E-01 2.13E-03 100.0 100.0
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(a) Raw images (b) Features for independent models
’

(c) Features for models trained with online transfer learning

Fig. 4: Two dimensional t-SNE embeddings of raw images (subplot a) and features for both independently trained models
(subplot b) and training with online transfer learning (subplot c). Blue dots are authentic samples and red dots are attacks
generated with DeepFool on 10,000 samples from CIFAR10. Attacks and clean data are indistinguishable for the case of raw
images. Representations in the feature space make attacks and clean samples discriminable, whereas online transfer learning
further enhances discrimination from clean samples since attacks concentrate in the center of the plot. Each blue cluster in the
feature space corresponds to a particular class.

samples when compared to independent training.
1) Binary Classifiers Performance: For evaluation of

the proposed detection approach, we trained three distinct
detectors on top the representations obtained with pretrained
models. Different detectors were used to verify the robustness
of the representation under study. The binary classifiers used
for detection were:

(a) Random Forest - 10 estimators were employed;
(b) K-Nearest Neighbors (KNN) - K was set to 3;
(c) Support Vector Machine (SVM) with RBF kernel.

And the following performance metrics were analyzed:

(a) Accuracy;
(b) F1 score, accounting for precision and sensitivity simul-

taneously;

(c) Area under ROC curve (AUC).

Evaluation of metrics was performed under 10-fold cross-
validation. Results are shown in Tables III and IV for MNIST
and CIFAR10, respectively. Scores are consistently higher than
90% in both datasets analyzed as well as across the different
detectors evaluated.

OLTL had different impacts on the two cases studied. For
CIFAR10, accuracy increased in almost all attacks with the
application of OLTL for KNN, which enforces the behavior
depicted in Fig. 4: since attacks concentrate closer with the use
of OLTL, neighboring data points are more likely to belong to
the same class. However, this behavior was not the same for
MNIST where results are in general better with independently
trained models.

In Tables V and VI we provide an evaluation of our
approach compared with results claimed in [28] and [34]. Even
though other methods present a higher sensitivity in attacks
such as FGSM and IGSM on MNIST, one can notice that our
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TABLE III: Performance of three distinct classifiers for MNIST attacks detection. Scores are evaluated under 10-fold cross-
validation. Each experiment was performed with an independent random subset of the train data containing 10,000 samples.

Attack Train Scheme
Classifier

Random Forest KNN SVM
Accuracy F1 AUC Accuracy F1 AUC Accuracy F1 AUC

FGSM Independent 0.94 0.94 0.94 0.93 0.93 0.93 0.93 0.92 0.93
OLTL 0.93 0.93 0.93 0.92 0.92 0.92 0.91 0.91 0.91

IGSM Independent 0.94 0.94 0.94 0.92 0.92 0.92 0.91 0.91 0.91
OLTL 0.93 0.92 0.93 0.92 0.92 0.92 0.91 0.9 0.91

JSMA Independent 0.95 0.95 0.95 0.93 0.93 0.93 0.92 0.92 0.92
OLTL 0.92 0.92 0.92 0.91 0.91 0.91 0.86 0.85 0.86

DeepFool Independent 0.94 0.93 0.94 0.93 0.93 0.93 0.92 0.91 0.92
OLTL 0.92 0.91 0.92 0.91 0.91 0.91 0.88 0.87 0.88

Gaussian Blur Independent 0.98 0.98 0.98 0.97 0.98 0.97 0.98 0.98 0.98
OLTL 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

Gaussian Noise Independent 0.96 0.97 0.96 0.96 0.97 0.96 0.96 0.97 0.96
OLTL 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.95 0.94

Salt and Pepper Independent 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
OLTL 0.92 0.92 0.92 0.92 0.92 0.92 0.91 0.91 0.91

TABLE IV: Performance of three distinct classifiers for CIFAR10 attacks detection. Scores are evaluated under 10-fold cross-
validation. Each experiment was performed with an independent random subset of the train data containing 10,000 samples.

Attack Train Scheme
Classifier

Random Forest KNN SVM
Accuracy F1 AUC Accuracy F1 AUC Accuracy F1 AUC

FGSM Independent 0.94 0.94 0.94 0.92 0.92 0.92 0.93 0.93 0.93
OLTL 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94

IGSM Independent 0.92 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93
OLTL 0.93 0.93 0.93 0.95 0.95 0.95 0.94 0.93 0.94

JSMA Independent 0.96 0.96 0.96 0.91 0.91 0.91 0.93 0.92 0.93
OLTL 0.95 0.95 0.95 0.94 0.92 0.94 0.94 0.94 0.94

DeepFool Independent 0.91 0.91 0.91 0.90 0.90 0.90 0.91 0.90 0.91
OLTL 0.91 0.91 0.91 0.93 0.93 0.93 0.93 0.92 0.93

Gaussian Blur Independent 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97
OLTL 0.96 0.97 0.96 0.96 0.96 0.96 0.97 0.97 0.97

Gaussian Noise Independent 0.95 0.94 0.94 0.94 0.94 0.94 0.95 0.95 0.95
OLTL 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96

Salt and Pepper Independent 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94
OLTL 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

proposed approach performs consistently well across attacks
and datasets and in harder cases, such as DeepFool or other
attacks on CIFAR10, the detection strategy evaluated in this
work still performs well.

2) Generalization to Unseen Attacks: A second set of
experiments was performed with the aim of verifying whether
a detector trained on particular attack strategy is able to detect
other kinds of attacks.

In order to do so, we used data from a particular attacker
for training the binary classifiers and evaluated their accuracy
on different attacks data. All possible pairs of attacks were
evaluated under this scheme and the accuracies obtained are
presented in Figures 5 and 6 for MNIST and CIFAR10.

Results indicate that our approach presents high detection
accuracy even when the detector is tested against unseen
attacks. Moreover, detectors trained on JSMA on MNIST are
the ones the perform best on different attacks. The same
behavior appears on CIFAR10 for DeepFool.

Detectors trained on additive noise attacks have much lower

generalization capacity. However, detectors trained on simple
attacks such as salt and pepper noise can still achieve surpris-
ingly high accuracies on refined attacks such as DeepFool and
JSMA. Another point to be mentioned is that the behavior
described repeats across a set of different binary classifiers
which by nature employ very different strategies to perform
classification. This consistently shows that the representation
proposed, i.e. the decision space of two distinct models,
embeds enough information to enable for robust detection of
current attacks as well as for new strategies applied to fool
the models since generalization to unseen attacks is observed.

TABLE V: Detection rate of attackers based on MNIST.

FGSM IGSM JSMA DeepFool
Feature Squeezing [28] 1.000 0.979 1.000 –

Ensemble [34] 0.998 0.997 – 0.450
Proposed 0.930 0.920 0.930 0.910
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Test

FGSM IGSM JSMA DeepFool

FGSM - 0.92 0.79 0.89 0.96 0.97 0.94

IGSM 0.96 - 0.86 0.92 0.97 0.96 0.94

JSMA 0.95 0.95 - 0.94 0.89 0.93 0.93

Tr
ai

n

DeepFool 0.95 0.94 0.89 - 0.95 0.96 0.94

0.65 0.60 0.56 0.54 - 0.83 0.69

0.87 0.81 0.64 0.72 0.97 - 0.88

0.93 0.89 0.80 0.88 0.97 0.97 -

Gaussian
Blur

Gaussian
Noise

Salt And
Pepper

Gaussian
Blur

Gaussian
Noise

Salt And
Pepper

(a) Random Forest

Test

FGSM IGSM JSMA DeepFool

FGSM - 0.92 0.81 0.89 0.95 0.95 0.93

IGSM 0.94 - 0.86 0.92 0.95 0.95 0.93

JSMA 0.88 0.89 - 0.90 0.74 0.90 0.88

Tr
ai

n

DeepFool 0.93 0.93 0.89 - 0.93 0.94 0.92

0.70 0.65 0.59 0.59 - 0.87 0.75

0.89 0.83 0.69 0.77 0.96 - 0.91

0.92 0.89 0.82 0.88 0.96 0.96 -

Gaussian
Blur

Gaussian
Noise

Salt And
Pepper

Gaussian
Blur

Gaussian
Noise

Salt And
Pepper

(b) KNN

Test

FGSM IGSM JSMA DeepFool

FGSM - 0.90 0.78 0.87 0.94 0.95 0.93

IGSM 0.92 - 0.87 0.91 0.92 0.93 0.92

JSMA 0.91 0.91 - 0.91 0.91 0.92 0.91

Tr
ai

n

DeepFool 0.91 0.91 0.89 - 0.91 0.92 0.91

0.66 0.59 0.55 0.54 - 0.83 0.70

0.89 0.80 0.62 0.72 0.96 - 0.90

0.91 0.87 0.76 0.84 0.94 0.95 -

Gaussian
Blur

Gaussian
Noise

Salt And
Pepper

Gaussian
Blur

Gaussian
Noise

Salt And
Pepper

(c) SVM

Fig. 5: Generalization capacity for MNIST of each detector when trained in the attacks on the row and evaluated on the attacks
on the columns. Values in the table indicate test accuracy.

Test

FGSM IGSM JSMA DeepFool

FGSM - 0.91 0.93 0.88 0.94 0.95 0.91

IGSM 0.92 - 0.90 0.90 0.96 0.92 0.93

JSMA 0.94 0.89 - 0.89 0.95 0.94 0.93

Tr
ai

n

DeepFool 0.94 0.95 0.91 - 0.96 0.94 0.95

0.76 0.72 0.66 0.68 - 0.80 0.83

0.86 0.82 0.79 0.78 0.94 - 0.83

0.78 0.82 0.76 0.77 0.93 0.81 -

Gaussian
Blur

Gaussian
Noise

Salt And
Pepper

Gaussian
Blur

Gaussian
Noise

Salt And
Pepper

(a) Random Forest

Test

FGSM IGSM JSMA DeepFool

FGSM - 0.92 0.91 0.88 0.93 0.93 0.92

IGSM 0.93 - 0.92 0.90 0.92 0.91 0.91

JSMA 0.92 0.92 - 0.89 0.91 0.92 0.92

Tr
ai

n

DeepFool 0.92 0.93 0.91 - 0.91 0.91 0.91

0.78 0.76 0.71 0.71 - 0.81 0.83

0.86 0.84 0.81 0.80 0.92 - 0.82

0.81 0.85 0.80 0.79 0.91 0.83 -

Gaussian
Blur

Gaussian
Noise

Salt And
Pepper

Gaussian
Blur

Gaussian
Noise

Salt And
Pepper

(b) KNN

Test

FGSM IGSM JSMA DeepFool

FGSM - 0.92 0.93 0.89 0.93 0.94 0.92

IGSM 0.92 - 0.92 0.91 0.93 0.92 0.92

JSMA 0.92 0.92 - 0.90 0.92 0.93 0.91

Tr
ai

n
DeepFool 0.92 0.92 0.92 - 0.91 0.92 0.91

0.80 0.72 0.73 0.67 - 0.81 0.81

0.85 0.81 0.77 0.78 0.91 - 0.78

0.80 0.80 0.79 0.72 0.93 0.83 -

Gaussian
Blur

Gaussian
Noise

Salt And
Pepper

Gaussian
Blur

Gaussian
Noise

Salt And
Pepper

(c) SVM

Fig. 6: Generalization capacity for CIFAR10 of each detector when trained in the attacks on the row and evaluated on the
attacks on the columns. Values in the table indicate test accuracy.

VI. CONCLUSION

In this work we proposed a new approach to perform
detection of adversarial attacks. The softmax layer outputs
of two previously trained models are used as features for
binary classification of attacks vs. clean samples. Moreover, a
particular training scheme for pairs of classifiers referred to as
Online Transfer Learning is proposed with the aim of making
the models to yield closely matching outputs when presented
to unmodified original samples.

Experiments performed on MNIST and CIFAR10 show

TABLE VI: Detection rate of attackers based on CIFAR10.

FGSM IGSM JSMA DeepFool
Feature Squeezing [28] 0.208 0.550 0.885 0.774

Ensemble [34] 0.998 0.488 – 0.426
Proposed 0.930 0.940 0.970 0.910

that different detectors can perform consistently well on a
set of untargeted white-box attacks. Moreover, generalization
to unseen attacking methods is observed leading to detectors
that can denounce new attack strategies. Classifiers trained on
simple attacks such as salt and pepper additive noise are able
to detect subtle state-of-the-art AEs with high accuracy. The
detection approach comes with the cost of training a second
model for the same task and performing two independent
predictions at test time.

For future work we intend to scale this approach to classi-
fication tasks involving a higher number of classes. Moreover,
even though the unconstrained testbed employed here - i.e.
untargeted attacks along with white-box model dependent
distortions - yields the most subtle and hence dificult to
detect AEs, evaluating the proposed method on black-box and
targeted attacks is a complementary analysis to be done.
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